
DRAINAGE ANALYSIS

for **Apartment Complex** Franklin Street Worcester, Massachusetts

November 12, 2021

Revised Through October 18, 2024

Prepared for: GoVenture Captial Group, LLC

Brendan Gove 10 E. Worcester Street, Suite 3A Worcester, MA 01605

Prepared by: Hannigan Engineering, Inc. 8 Monument Square Leominster, Massachusetts 01453 (978) 534-1234

TABLE OF CONTENTS

COVER SHEET

TABLE OF CONTENTS

- 1.0 Drainage Narrative
 - 1.1 Introduction
 - 1.2 Methods of Analysis
 - 1.3 Site Description
 - 1.4 Runoff Curve Numbers
 - 1.5 Design Criteria
 - 1.6 Conclusions

2.0 Hydrological Calculations

- 2.1 Pre-Development Calculations
- 2.2 Post-Development Calculations

3.0 Storm Water Management Forms

3.1 Operation and Maintenance

Figures

Figure 1 - Locus Map & Soils Mapping Figure 2 - Pre-Development Watershed Map Figure 3 - Post-Development Watershed Map 1.0 DRAINAGE NARRATIVE

1.0 <u>NARRATIVE</u> <u>1.1 INTRODUCTION</u> Revised Through October 18, 2024

On behalf of our client, GoVenture Capital Group, LLC., Hannigan Engineering, Inc. has prepared this Drainage Analysis and Report as part of the submittal package for Definitive Site Plan Approval from the City of Worcester. The proposed project is located on several parcels of land between Franklin, Artic, Keese and Plastic Streets consisting of approximately 5.9-acres of Developed land. It is the intent of the applicant to construct a new high-rise apartment building for a total of 364 dewlling units along with applicable surface parking, roadway and utility improvements.

The purpose of this analysis is to compare the pre-development and post-development peak flow rates to certain design points from the project. In particular, changes in peak rates of runoff generally associated with alterations of land use were studied. These alterations include land being transformed from areas of landscape (grass), woods, and brush to areas of grass, landscape, and impervious areas (rooftops, sidewalks and pavement). The effects of stormwater being redirected to new areas as a result of the proposed construction and the associated drainage system were reviewed as well. For the purposes of this report, any developed areas which are not impervious will be considered to consist of lawn and landscape areas.

The U.S. Soil Conservation Sevice (SCS) methods were utilized for this analysis in order to establish land use and run-off characteristics in the determination of pre- and post-development peak run-off rates. All proposed development areas and subsequent impacts on stormwater runoff relative to this development have been incorporated within this analysis and report.

In the area of the proposed development, many of the existing structures and areas of pavement and concrete will be removed in order to facilitate the construction of the new apartment building. This building will have an indoor parking garage along with additional surface parking areas for the tenants. As a result the project area will experience a net decrease in impervious areas due to the reconstruction of the property and redistribution of the impervious areas on the site. The project's drainage system will utilize a underground storage system to capture a portion of the runoff to aid in peak rate mitigation and provide additional recharge provisions. The proposed drainage system will also improve the water quality by providing TSS removal in compliance with the Stormwater Management Regulations.

1.2 METHOD OF ANALYSIS

The enclosed hydrologic calculations utilize the runoff estimating techniques developed by the USDA Soil Conservation Service (SCS). The following publications were used in the preparation of this report:

- 1. "Urban Hydrology for Small Watersheds"1
- 2. "National Engineering Handbook, Hydrology, Section 4" (NEH-4)2
- 3. "Handbook of Hydraulics" 6th ed. E.F. Brater & H. Williams³
- 4. "Soil Survey Report for Northeastern Worcester County" 1985 ed. USDA NRCS4

Using SCS publications and other texts on surface water hydrology, in conjunction with drainage software *HydroCAD* developed by Applied Microcomputer Systems⁵, Hannigan Engineering, Inc. has calculated peak rates of runoff relative to the subject site for conditions prior to development as well as conditions upon the completion of construction.

The drainage software program *HydroCAD* calculates peak rates of runoff similarly to the computer program known as *Computer Programs for Project Formulations-Hydrology*, *Technical Release Number 20 (TR-20)*, developed by SCS. This program and series of programs are the technical standard utilized by engineers, Planning Boards, Conservation Commission, and Municipal Agencies throughout the region and across the country for the evaluation of storm water conditions.

The analysis reviews certain parameters of sub-watersheds surrounding the subject site and how these parameters are affected by various rainfall conditions. These parameters include land cover and use, soil strata and permeability, and variations in slope. These parameters are used to develop rainfall runoff characteristics, which are used to analyze both pre and post development conditions within and surrounding the proposed construction activity. Some of these characteristics include times of concentration (Tc), peak rates of runoff, runoff volume, and the time the peak rate of runoff occurs within the particular storm event.

Times of concentration were computed by using the SCS "Upland Method" as described in the aforementioned National Engineering Handbook and were utilized for the analysis of the individual watersheds. The Upland Method computes the time of travel of storm waters over segments of the watershed depending upon land conditions, such as surface roughness, channel configuration, slope of land, and flow patterns. The addition of these travel times determines the individual watershed Time of Concentration. This method translates to more accurate Tc's than other more general methods.

1.3 SITE DESCRIPTION

The proposed site is approximately 5.9-acres and is comprised of several lots located along the southerly side of Franklin Street between Artic and Plastic Street in Worcester, Massachusetts. The topography of the land is generally flat in nature with little elevation relief through the property. Currently the project area is comprised of several older structures with many of them having been abandoned in recent years. Access to these building areas is provide paved driveways off of Artic Street and Plastics Street with other areas of concrete sidewalks associated with the previous uses. It is noted that much of the site is covered in gravel base which appears to be heavily degraded pavement with the base course still intact. The remaining areas are primarily overgrown brush and grass with little to no established woodland.

As part of the initial phase of construction, the existing structures within the property limits will be demolished. As part of the general site preparation, the existing pavement and concrete areas will be removed and disposed of off site and the existing utility connections such as sewer and water to the structures will be cut and capped at their respective mains.

Upon the completion initial demolition of the site, a single new high-rise apartment building will be constructed comprised of a total of 364 dwelling units. The building has been designed as a rectangular structure within the properties between Arctic and Plastic Street, with single center courtyard areas near the center of development, being at grade.

As part of the overall redevelopment of the area, the existing private portion of Arctic Street, south of the fire station as well as approximatly 400-feet of Plastic Street, will reconstructed to bring the existing roadway into current City Standards, including upgrades to several utilities. Access to several areas of surface parking areas between Arctic and Plastic Street via new driveways as well as new additional surface parking lot area located south of Keese Street.

Additional project improvements include various utility improvements including drainage, sewage, water and telecommunications.

It is noted that the existing property is currently located within the treatment district of the Upper Blackstone Wastewater Treatment Plant (WWTP), with treatment and mitigation measures being required to maximum extent practicable. As the site sits now the surface runoff and santiary sewage is discharged to a combined sewer system located within Franklin Street. The sewage and surface drainage infrastructure, with mitigation measures, will be directed towards Franklin Street as part of this project. Additional provisions have been provided for water, natural gas, electric and telecommunications connections within the Franklin Street as well.

For the purpose of the analysis, certain design points were reviewed. The design points are where the pre-development drainage for the subcatchment areas of the watershed over the property are directed. The same design points have been utilized and reviewed for both pre- and post-development runoff conditions. The design points are the basis for the design of the proposed drainage infrastructure and stormwater detention structures depicted on the plans.

The drainage from the site currently flows to one of six Design Points. Design Point #1 has been designated as a point in the gutter along Franklin Street west of the locus property. Design Point #2 has been designated as a combined sewer manhole located in Franklin Street. Design Point #3 is located at a catchbasin located on the abutting Fire Department Property. Design Point #4 is located at a low point on the 2 Keese Street Property that discharges to an existing 48" drainage line that runs under Interstate 290 and Design Point #5 is located at a catchbasin located within Keyes Street. Design Point #6 is designated as runoff to an offsite point within the Interstate 290 Layout.

1.4 SOIL CHARACTERISTICS

Soil types for this analysis were based upon review of soils information contained in the SCS publication *Interim Soil Report for Worcester County, Massachusetts – Northeastern Part.* The original mapping has been reestablished via the Web Soil Survey as part of the National Cooperative Soil Survey under the Natural Resource Conservation Service and its website (<u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>). This mapping is the basis for the soil type determinations for this analysis.

Soils within the subject watersheds are also hydrologically classified into different soil groups as defined by the Soil Conservation Service. The following table provides the SCS Hydrological Soil Group classification for each soil type. It is noted that the property contains exclusively Urban land which carries no designated for hydrological Soil Class. Further review of Surficical Geologic Map of the Worcester North Quandrangle, as issued by the USGS, shows this area being located within an outwash plain. These soil features are typically underlaid with coarse sand and gravel, thus typical of a Hydrological A soil. Further review of on site conditions by borings found that the underlying soil is tyupically sandy in nature consistent with the Type A Soil.

Soil Designation	Name	Hydrological Group
651	Urban Land	NA

1.5 RUNOFF CURVE NUMBERS

The SCS runoff curve numbers used in all watershed modeling contained in this report are based on the Hydrologic Soil Groups and land uses below;

Land Use	Hydrologic Soil Group	Curve #
Grass Cover (good)	A	39
Brush (poor)	A	48
Gravel Surface	A	96
Impervious Area	A	98

1.6 DESIGN CRITERIA

This drainage analysis was developed utilizing the Atlas-14 rainfall data specifically Type III, NRCC-D 24-hour storm for this region. The storm frequencies and the corresponding 24-hour rainfall amounts are as follows:

Storm Frequency (years)	Rainfall (inches)
2	3.13
10	4.68
25	5.88
100	8.34

1.7 THE PROPOSED DRAINAGE SYSTEM

As with any development, changes in land use such as the transformation of woodland areas to lawn, landscape and impervious areas can cause increased peak rates of runoff. On this particular project, the transformed areas consist of existing driveways and rooftops being converted to a similar impervious coverage, as well as alterations in land use from impervious areas to open lawn and landscaped areas. These increases in peak rates of runoff must be mitigated with an appropriately designed site including proper grading to direct stormwater flows to the storm drainage system.

As previously mentioned, the site is located within the treatment district of the Upper Blackstone Wastewater Treatment Plant (WWTP), with treatment and mitigation measures being required to maximum extent practicable. As part of this project, it is the intent to extend the existing drainage trunkline within Arctic Street further south as well as provide a new drainage trunkline within Plastic Street to capture runoff from the surrounding area. Currently, the site's drainage system is non-functional and experiences significant ponding post-storm events due to unfunctional or obsolete catchbasins.

The proposed redevelopment of the site will incorporate proper grading design and a series new deep-sump hooded catchbasins to capture the runoff, directing the stormwater through water quality devices to provide Total Suspended Solids (TSS) removal. Upon treatment, portions of the stormwater will be directed to the new trunklines, with the portions of the flows being directed to one of two small underground storage systems comprised of concrete galley chambers set within a bed of crushed stone to provide mitigation of peak rates of runoff and provide additional recharge capacity. The proposed stormwater design is predicated on the fact that there will be a natural reduction in impervious area on the property which will lend itself to a reduction in rates and volume of runoff to the municipal system. As part of this project, discharges from the project are directed to the combined system located within Franklin Street, which is the case under existing conditions.

Additionally, southerly portions of the development will be captured and treated by one of the two underground storage systems, with a new trunkline being installed to direct runoff from the surrounding area to an exiting 48" drainage line that runs through the development. Prior to construction this line will be reviewed to insure it is capable of accomoating the flows. Similar to the other discharge points the runoff from this area will be treated through a water quality device to provide TSS Removal before discharge.

The proposed underground stormwater system utilizes a concrete galley underground storage systems to capture stormwater and provide peak rate mitigation. The system is comprised of a series of pre-cast concrete structures with orifices distributed around the structure set within a bed of crushed stone with a manifold to ensure even distrubtion of stormwater within the system. This sytem is designed to capture and hold (i.e. detain) stormwater runoff from the proposed development areas and to allow for the controlled release of stormwater from the site. The Galley sytem will discharge stormwater to an the aforementioned drainage line extension within Plastic Street or the aforementioned existing drainge trunkline.

The proposed catch basins on the project will contain a deep sump (48-inch below the level of the outlet pipe), along with a hood to contain the majority of the roadway debris and sediment within the basin itself. The catchbasins will then discharge directly to the drainage trunk lines and then to a Hydrowork Hydroguard water quality units. These units have been designated at DMH#102, DMH#107, DMH#110, and DMH#114, and will provide additional cleaning and TSS removal prior to discharge, it can be expected that the water quality units and deep-sump catchbasins will achieve the 80 percent TSS removal required. In addition to the treatment and migitation facilities, the project also results in a net decrease in impervious areas which lends itself to enhanced natrual recharge around the site.

1.8 CONCLUSIONS

As stated above, the design points have been established at six points on or near the property. Changes in land use are the predominant cause of increases in peak rate of runoff to design points. In this as case, much of the post-development runoff is directed towards the combined sewer sytem within Franklin Street which as been designted as Design Point #2. With other flows being primarily directed towards Design Point #4, the existing draingae trunkline that is located within the property. These improvements and drainage system components will provide treatement and mitigation of peak rates to the site. The results of the analysis are shown below.

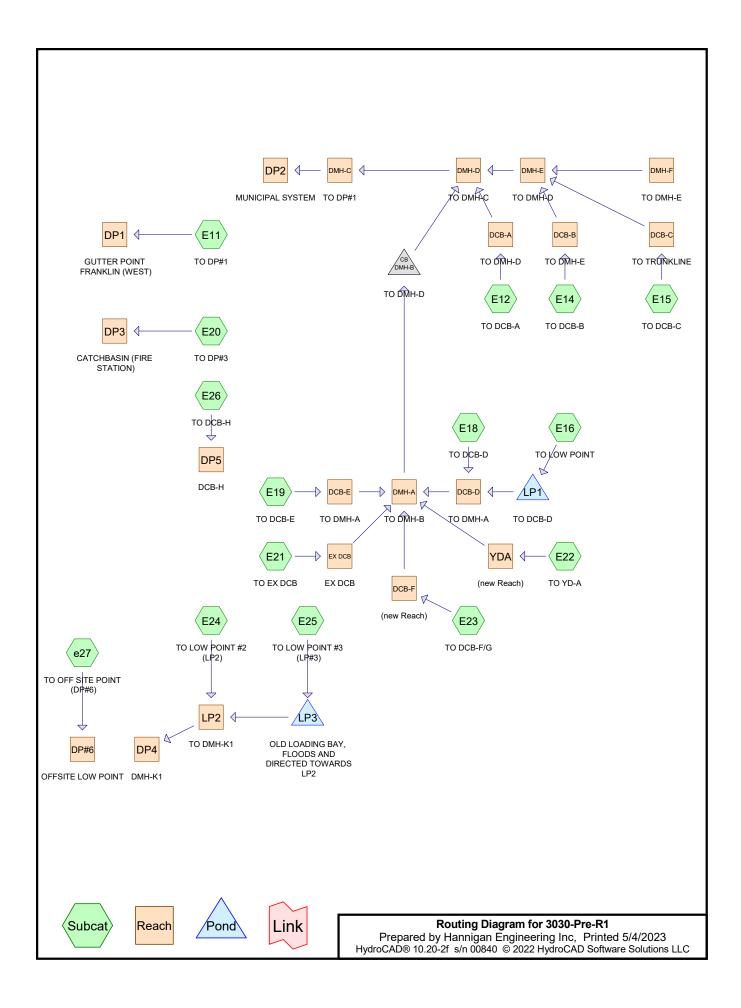
Design Point		esign Point 2-yr Storm		25-yr Storm	100-yr Storm	
41	Pre-	0.16	0.26	0.33	0.48	
#1	Post-	0.16	0.26	0.33	0.48	
#2	Pre-	10.15	16.25	21.00	30.75	
	Post-	7.44	12.85	17.23	27.03	
110	Pre-	0.31	0.61	0.85	1.36	
#3	Post-	0.31	0.61	0.85	1.36	
11.4	Pre-	4.57	8.59	12.28	19.13	
#4	Post-	1.33	3.36	5.19	11.96	
45	Pre-	0.30	0.46	0.58	0.83	
#5	Post-	0.00	0.00	0.00	0.94	
#6	Pre-	0.07	0.15	0.21	0.35	
	Post-	0.02	0.09	0.16	0.34	

All flows are in cubic feet per second.

As outlined above, the post-development peak rates of runoff have been mitigated for all design points. This assures that no adverse impacts to abutting properties relative to increases in peak rates of runoff will occur due to the proposed development upon the completion of construction. Additionally, the incorporation of water quality units will provide additional cleaning of the runoff prior to discharge in the municipal drainage system. The storm water management as outlined herein and as shown on the accompanying plans has the following positive values relative to storm water management:

- A) Attenuation of the 2-, 10-, 25- and 100-year storm events has mitigated increases in peak rates of runoff or has been justified herein.
- B) On-site roadway and pavement areas are directed to standard catch basins with deep sumps for collection of debris and sediments prior to discharge.
- C) The development adheres to the provisions of the Massachusetts Stormwater Management program with greater than 80% TSS removal.
- D) The Stormwater Operation and Maintenance Plan (OMP) attached, has been prepared to ensure long-term function of the system, as designed

J:\My Documents\PROJECTS\3000+\3030-GoVenture\Drainage\Drainage Report 2023.05.04\3030-Drainage-narrative.docx


¹⁰Urban Hydrology for Small Watersheds (Technical Release Number 55); Engineering Division, United States Dept. of Agriculture "Soil Conservation Service (Jan. 1975)

²"National Engineering Handbook Section 4- Hydrology" ; United States Dept. of Agriculture, Soil Conservation Service (March 1985) ³"Handbook of Hydraulics" - 6th ed., E.F. Brater & H. Williams (1976)

⁴"Interim Soil Report for Southern Worcester County" 1995 ed., Published by the Southern Worcester County Conservation District, in cooperation with the United States Department of Agriculture, Natural Resources Conservation Service (1995)

⁵ "HydroCAD" Drainage software developed by Applied Microcomputer, Page Hill Road, Chocorua, NH

2.0 HYDROLOGICAL CALCULATIONS 2.1 PRE-DEVELOPMENT CALCULATIONS

Project Notes

Rainfall events imported from "Atlas-14-Rain.txt" for 449 MA Worcester North

Rainfall Events Listing (selected events)

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
					((
1	2-Year	NRCC 24-hr	D	Default	24.00	1	3.13	2
2	10-Year	NRCC 24-hr	D	Default	24.00	1	4.68	2
3	25-Year	NRCC 24-hr	D	Default	24.00	1	5.88	2
4	100-Year	NRCC 24-hr	D	Default	24.00	1	8.34	2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.391	39	>75% Grass cover, Good, HSG A (E11, E15, E16, E18, E19, E20, E21, E23, E24, E25, e27)
0.015	48	Brush, Poor, HSG A (E24)
0.807	96	Gravel surface, HSG A (E12, E14, E15, E16, E18, E22, E23, E26)
6.022	98	Paved parking, HSG A (E11, E12, E14, E15, E16, E18, E19, E20, E21, E22, E23, E24, E25, E26, e27)
8.235	88	TOTAL AREA

Soil Listing (all nodes)

Are (acres		Subcatchment Numbers
8.23	5 HSG A	E11, E12, E14, E15, E16, E18, E19, E20, E21, E22, E23, E24, E25, E26, e27
0.00	0 HSG B	
0.00	0 HSG C	
0.00	0 HSG D	
0.00	0 Other	
8.23	5	TOTAL AREA

Ciouna Covers (an nodes)								
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment	
 (acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers	
1.391	0.000	0.000	0.000	0.000	1.391	>75% Grass cover, Good	E11, E15, E16, E18, E19, E20, E21,	
							E23, E24, E25, e27	
0.015	0.000	0.000	0.000	0.000	0.015	Brush, Poor	E24	
0.807	0.000	0.000	0.000	0.000	0.807	Gravel surface	E12, E14, E15, E16, E18, E22, E23, E26	
6.022	0.000	0.000	0.000	0.000	6.022	Paved parking	E11, E12, E14, E15, E16, E18, E19,	
							E20, E21, E22, E23, E24, E25, E26, e27	
8.235	0.000	0.000	0.000	0.000	8.235	TOTAL AREA		

Ground Covers (all nodes)

Line# Node Out-Invert Slope Diam/Height In-Invert Length n Width Inside-Fill Number (feet) (ft/ft) (feet) (feet) (inches) (inches) (inches) 1 DCB-D 469.11 466.67 15.0 0.1627 0.011 0.0 12.0 0.0 2 DCB-E 467.63 466.57 0.0883 0.011 0.0 12.0 0.0 12.0 3 DMH-D 455.90 455.21 99.0 0.0070 0.011 0.0 36.0 0.0 4 DMH-E 456.57 455.90 121.0 0.0055 0.011 0.0 36.0 0.0 5 DMH-F 458.13 456.57 268.0 0.0058 0.011 0.0 36.0 0.0 6 DMH-B 456.80 455.90 45.0 0.0200 0.011 0.0 15.0 0.0

Pipe Listing (all nodes)

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E11: TO DP#1	Runoff Area=2,852 sf 89.73% Impervious Runoff Depth=2.28" Flow Length=98' Slope=0.0170 '/' Tc=5.0 min CN=92 Runoff=0.16 cfs 0.012 af
Subcatchment E12: TO DCB-A	Runoff Area=11,373 sf 80.04% Impervious Runoff Depth=2.90" Flow Length=209' Tc=10.9 min CN=98 Runoff=0.60 cfs 0.063 af
Subcatchment E14: TO DCB-B	Runoff Area=11,310 sf 55.37% Impervious Runoff Depth=2.79" Flow Length=171' Tc=8.1 min CN=97 Runoff=0.66 cfs 0.060 af
Subcatchment E15: TO DCB-C	Runoff Area=8,235 sf 70.42% Impervious Runoff Depth=1.77" Flow Length=161' Slope=0.0110 '/' Tc=7.0 min CN=86 Runoff=0.35 cfs 0.028 af
Subcatchment E16: TO LOW POINT	Runoff Area=33,282 sf 43.34% Impervious Runoff Depth=2.48" Flow Length=183' Tc=5.0 min CN=94 Runoff=1.98 cfs 0.158 af
Subcatchment E18: TO DCB-D	Runoff Area=69,813 sf 94.39% Impervious Runoff Depth=2.68" Flow Length=305' Tc=7.0 min CN=96 Runoff=4.12 cfs 0.358 af
Subcatchment E19: TO DCB-E	Runoff Area=4,127 sf 82.02% Impervious Runoff Depth=1.85" Flow Length=177' Slope=0.0090 '/' Tc=5.0 min CN=87 Runoff=0.19 cfs 0.015 af
Subcatchment E20: TO DP#3	Runoff Area=9,426 sf 68.08% Impervious Runoff Depth=1.28" Flow Length=137' Tc=5.0 min CN=79 Runoff=0.31 cfs 0.023 af
Subcatchment E21: TO EX DCB	Runoff Area=10,744 sf 29.99% Impervious Runoff Depth=0.29" Flow Length=77' Slope=0.0200 '/' Tc=5.0 min CN=57 Runoff=0.03 cfs 0.006 af
Subcatchment E22: TO YD-A	Runoff Area=13,343 sf 58.95% Impervious Runoff Depth=2.79" Flow Length=125' Slope=0.0100 '/' Tc=5.0 min CN=97 Runoff=0.85 cfs 0.071 af
Subcatchment E23: TO DCB-F/G	Runoff Area=38,054 sf 78.48% Impervious Runoff Depth=1.77" Flow Length=287' Tc=5.2 min CN=86 Runoff=1.69 cfs 0.129 af
Subcatchment E24: TO LOW POINT #2 (LP2)	Runoff Area=49,908 sf 75.09% Impervious Runoff Depth=1.55" Flow Length=276' Tc=5.0 min CN=83 Runoff=1.97 cfs 0.148 af
Subcatchment E25: TO LOW POINT #3 (LP#3)	Runoff Area=88,999 sf 74.89% Impervious Runoff Depth=1.55" Flow Length=401' Tc=5.2 min CN=83 Runoff=3.47 cfs 0.264 af
Subcatchment E26: TO DCB-H	Runoff Area=4,779 sf 37.39% Impervious Runoff Depth=2.79" Flow Length=135' Slope=0.0200 '/' Tc=5.0 min CN=97 Runoff=0.30 cfs 0.025 af
Subcatchment e27: TO OFF SITE POINT (DP#6)	Runoff Area=2,493 sf 63.62% Impervious Runoff Depth=1.16" Flow Length=117' Tc=5.0 min CN=77 Runoff=0.07 cfs 0.006 af
Reach DCB-A: TO DMH-D	Inflow=0.60 cfs 0.063 af

Inflow=0.60 cfs 0.063 af Outflow=0.60 cfs 0.063 af

Prepared by Hannigan Engineering In HydroCAD® 10.20-2f s/n 00840 © 2022 Hyd	
Reach DCB-B: TO DMH-E	Inflow=0.66 cfs 0.060 af Outflow=0.66 cfs 0.060 af
Reach DCB-C: TO TRUNKLINE	Inflow=0.35 cfs 0.028 af Outflow=0.35 cfs 0.028 af
Reach DCB-D: TO DMH-A	Avg. Flow Depth=0.41' Max Vel=19.73 fps Inflow=6.06 cfs 0.515 af 12.0" Round Pipe n=0.011 L=15.0' S=0.1627 '/' Capacity=16.98 cfs Outflow=6.06 cfs 0.515 af
Reach DCB-E: TO DMH-A	Avg. Flow Depth=0.09' Max Vel=5.81 fps Inflow=0.19 cfs 0.015 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/' Capacity=12.51 cfs Outflow=0.19 cfs 0.015 af
Reach DCB-F: (new Reach)	Inflow=1.69 cfs 0.129 af Outflow=1.69 cfs 0.129 af
Reach DMH-A: TO DMH-B	Inflow=8.76 cfs 0.736 af Outflow=8.76 cfs 0.736 af
Reach DMH-C: TO DP#1	Inflow=10.15 cfs 0.887 af Outflow=10.15 cfs 0.887 af
Reach DMH-D: TO DMH-C	Avg. Flow Depth=0.80' Max Vel=6.75 fps Inflow=10.23 cfs 0.887 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=10.15 cfs 0.887 af
Reach DMH-E: TO DMH-D	Avg. Flow Depth=0.27' Max Vel=3.13 fps Inflow=1.01 cfs 0.088 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=0.97 cfs 0.088 af
Reach DMH-F: TO DMH-E	Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af
Reach DP#6: OFFSITE LOW POINT	Inflow=0.07 cfs 0.006 af Outflow=0.07 cfs 0.006 af
Reach DP1: GUTTER POINT FRANKLIN	I (WEST) Inflow=0.16 cfs 0.012 af Outflow=0.16 cfs 0.012 af
Reach DP2: MUNICIPAL SYSTEM	Inflow=10.15 cfs 0.887 af Outflow=10.15 cfs 0.887 af
Reach DP3: CATCHBASIN (FIRE STATI	ON) Inflow=0.31 cfs 0.023 af Outflow=0.31 cfs 0.023 af
Reach DP4: DMH-K1	Inflow=4.57 cfs 0.362 af Outflow=4.57 cfs 0.362 af
Reach DP5: DCB-H	Inflow=0.30 cfs 0.025 af Outflow=0.30 cfs 0.025 af
Reach EX DCB: EX DCB	Inflow=0.03 cfs 0.006 af Outflow=0.03 cfs 0.006 af

NRCC 24-hr D 2-Year Rainfall=3.13"

3030-Pre-R1

Inflow=4.57 cfs 0.362 af Outflow=4.57 cfs 0.362 af

Inflow=0.85 cfs 0.071 af Outflow=0.85 cfs 0.071 af

Peak Elev=459.60' Inflow=8.76 cfs 0.736 af 15.0" Round Culvert n=0.011 L=45.0' S=0.0200 '/' Outflow=8.76 cfs 0.736 af

Peak Elev=473.89' Storage=85 cf Inflow=1.98 cfs 0.158 af Outflow=1.95 cfs 0.157 af

Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS Peak Elev=464.61' Storage=2,978 cf Inflow=3.47 cfs 0.264 af Outflow=2.83 cfs 0.214 af

> Total Runoff Area = 8.235 ac Runoff Volume = 1.367 af Average Runoff Depth = 1.99" 26.88% Pervious = 2.214 ac 73.12% Impervious = 6.022 ac

Reach LP2: TO DMH-K1

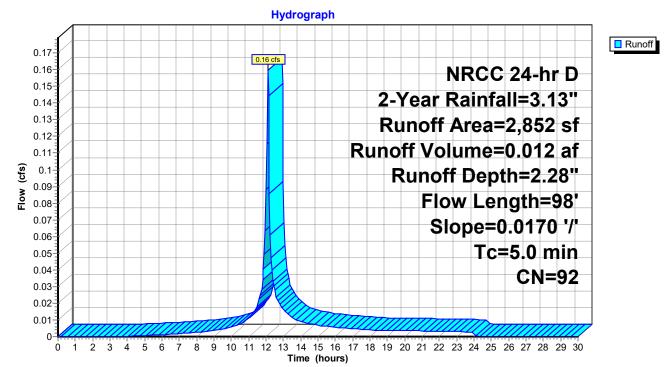
Reach YDA: (new Reach)

Pond DMH-B: TO DMH-D

Pond LP1: TO DCB-D

Summary for Subcatchment E11: TO DP#1

[49] Hint: Tc<2dt may require smaller dt

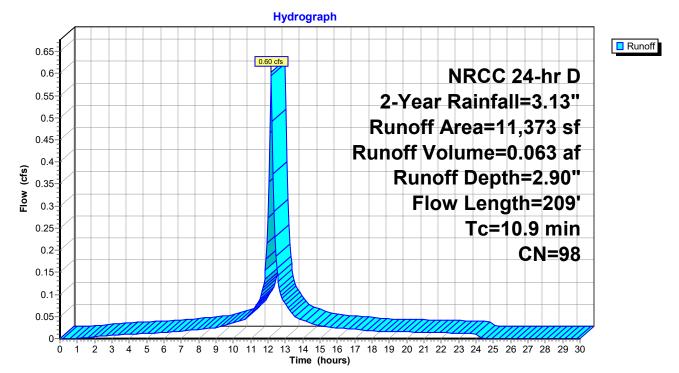

Runoff = 0.16 cfs @ 12.11 hrs, Volume= 0.012 af, Depth= 2.28" Routed to Reach DP1 : GUTTER POINT FRANKLIN (WEST)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

_	A	rea (sf)	CN	Description						
		293	39	>75% Grass cover, Good, HSG A						
_		2,559	98	Paved park	ing, HSG A	Α				
		2,852	92	Weighted A	verage					
		293		10.27% Pe	rvious Area					
		2,559		89.73% Im	pervious Ar	ea				
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.8	50	0.0170	1.11		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.3	48	0.0170	2.65		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
_		00	T . 4 . 1							

1.1 98 Total, Increased to minimum Tc = 5.0 min

Subcatchment E11: TO DP#1

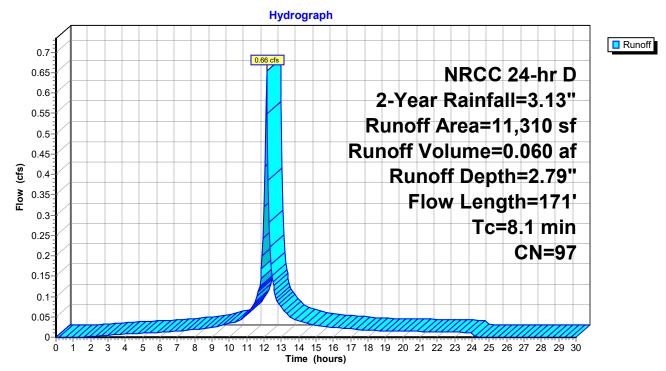

Summary for Subcatchment E12: TO DCB-A

Runoff = 0.60 cfs @ 12.18 hrs, Volume= 0.063 af, Depth= 2.90" Routed to Reach DCB-A : TO DMH-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

_	A	rea (sf)	CN	Description						
		9,103	98	Paved park	aved parking, HSG A					
_		2,270	96	Gravel surfa	ace, HSG A					
		11,373	98	Weighted A	verage					
		2,270		19.96% Pe	vious Area					
		9,103		80.04% Imp	pervious Are	ea				
	_									
		Length	Slope			Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	9.7	75	0.0120	0.13		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.13"				
	0.1	9	0.0120	1.76		Shallow Concentrated Flow, GRASS				
						Unpaved Kv= 16.1 fps				
	1.1	125	0.0080	1.82		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	10.9	209	Total							

Subcatchment E12: TO DCB-A


Summary for Subcatchment E14: TO DCB-B

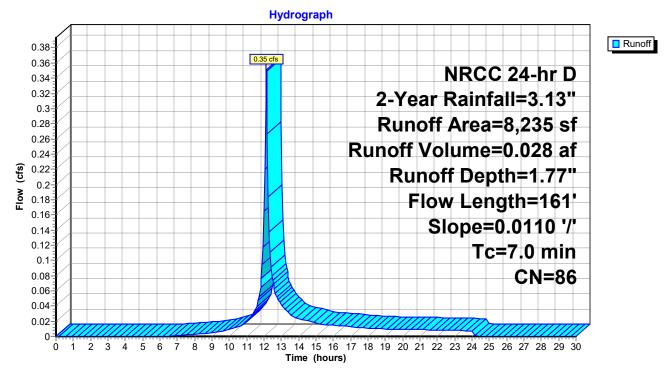
Runoff = 0.66 cfs @ 12.15 hrs, Volume= 0.060 af, Depth= 2.79" Routed to Reach DCB-B : TO DMH-E

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

	Area (sf)	CN	Description					
	6,262	6,262 98 Paved parking, HSG A						
	5,048 96 Gravel surface, HSG A							
	11,310	97	Weighted A	verage				
	5,048		44.63% Pe	rvious Area				
	6,262		55.37% Im	pervious Are	ea			
Тс	0	Slope	,	Capacity	Description			
(min)) (feet)	(ft/ft) (ft/sec)	(cfs)				
7.0) 50	0.0120	0.12		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
1.1	121	0.0080) 1.82		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
8.1	171	Total						

Subcatchment E14: TO DCB-B

Summary for Subcatchment E15: TO DCB-C


Runoff = 0.35 cfs @ 12.14 hrs, Volume= 0.028 af, Depth= 1.77" Routed to Reach DCB-C : TO TRUNKLINE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

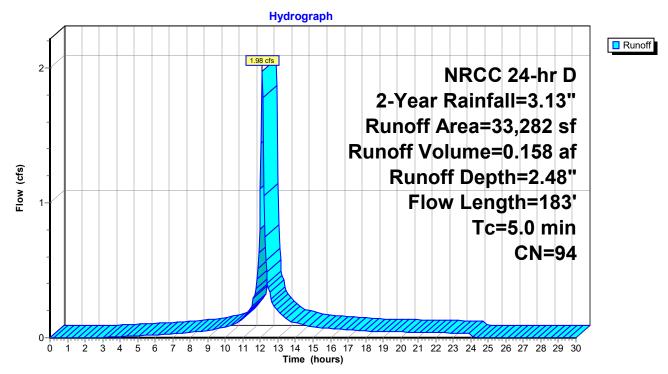
A	Area (sf)	CN	Description					
	1,643	39 >75% Grass cover, Good, HSG A						
	5,799	98	Paved park	ing, HSG A				
	793	96	Gravel surfa	ace, HSG A	١			
	8,235	86	Weighted A	verage				
	2,436		29.58% Pe	rvious Area				
	5,799		70.42% Im	pervious Ar	ea			
Tc	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
5.8	38	0.0110) 0.11		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.3	12	0.0110	0.70		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
0.9	111	0.0110) 2.13		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			

7.0 161 Total

Subcatchment E15: TO DCB-C

Summary for Subcatchment E16: TO LOW POINT

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.98 cfs @ 12.11 hrs, Volume= 0.158 af, Depth= 2.48" Routed to Pond LP1 : TO DCB-D

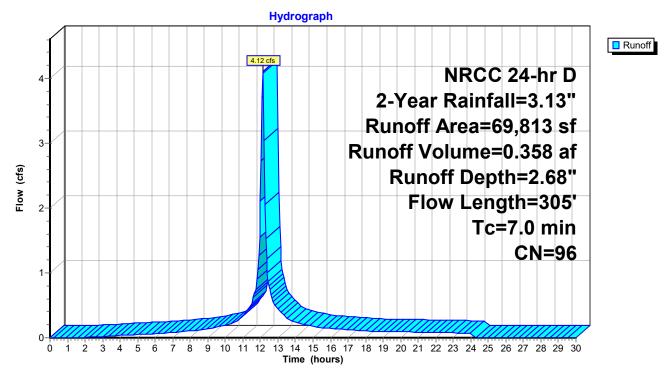
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

	Area (sf)	CN	Description					
	1,882 39 >75% Grass cover, Good, HSG A							
	14,426 98 Paved parking, HSG A							
	16,974 96 Gravel surface, HSG A							
	33,282	94	Weighted A	verage				
	18,856		56.66% Pe	rvious Area				
	14,426		43.34% Im	pervious Ar	ea			
To	0	Slope			Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
1.6	5 21	0.0800	0.21		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.9	29	0.0040	0.56		Sheet Flow, GRAVEL			
					Smooth surfaces n= 0.011 P2= 3.13"			
2.2	133	0.0040) 1.02		Shallow Concentrated Flow,			
					Unpaved Kv= 16.1 fps			
4 7	400	T 1 1			T 60 :			

4.7 183 Total, Increased to minimum Tc = 5.0 min

Subcatchment E16: TO LOW POINT

Summary for Subcatchment E18: TO DCB-D


Runoff = 4.12 cfs @ 12.14 hrs, Volume= 0.358 af, Depth= 2.68" Routed to Reach DCB-D : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

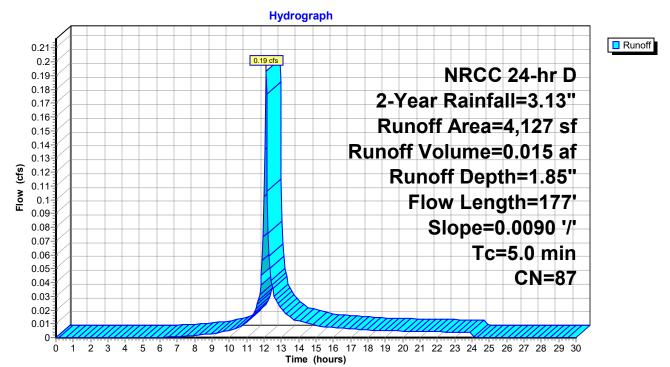
_	A	rea (sf)	CN	Description					
_	2,530 39 >75% Grass cover, Good, HSG A 65,894 98 Paved parking, HSG A								
_	1,389 96 Gravel surface, HSG A								
		69,813	96	Weighted A	verage				
		3,919		5.61% Perv					
		65,894		94.39% Im	pervious Are	ea			
	та	Longth	Cland	Valacity	Conseitu	Description			
	Tc (min)	Length	Slope (ft/ft	•		Description			
-	(min)	(feet)		/	(cfs)				
	3.8	23	0.0120	0.10		Sheet Flow,			
	0.0	07	0 0000	0.70		Grass: Short n= 0.150 P2= 3.13"			
	0.6	27	0.0090	0.76		Sheet Flow,			
	10	107	0 0000	1 5 2		Smooth surfaces n= 0.011 P2= 3.13"			
	1.2	107	0.0090) 1.53		Shallow Concentrated Flow,			
	1.4	148	0.0075	5 1.76		Unpaved Kv= 16.1 fps Shallow Concentrated Flow,			
	1.4	140	0.007	5 1.70		Paved Kv= 20.3 fps			
-	7.0	205	Total						

7.0 305 Total

Subcatchment E18: TO DCB-D

Summary for Subcatchment E19: TO DCB-E

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.19 cfs @ 12.11 hrs, Volume= 0.015 af, Depth= 1.85" Routed to Reach DCB-E : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

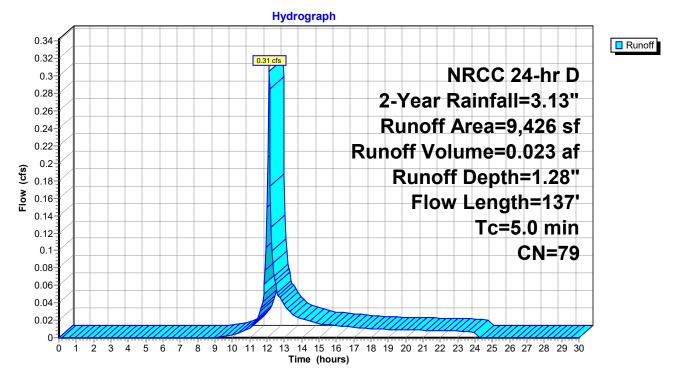
_	A	rea (sf)	CN	CN Description					
		742	39 >75% Grass cover, Good, HSG A						
_		3,385	98	Paved park	ing, HSG A				
		4,127	87	Weighted A	verage				
		742		17.98% Pe	rvious Area				
		3,385		82.02% Imj	pervious Ar	ea			
	Tc	Length	Slope	,		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	1.0	50	0.0090	0.86		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	1.1	127	0.0090	1.93		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	0.4	477	Tatal			$T_{0} = \Gamma Q$ min			

2.1 177 Total, Increased to minimum Tc = 5.0 min

Subcatchment E19: TO DCB-E

Summary for Subcatchment E20: TO DP#3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.31 cfs @ 12.12 hrs, Volume= 0.023 af, Depth= 1.28" Routed to Reach DP3 : CATCHBASIN (FIRE STATION)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

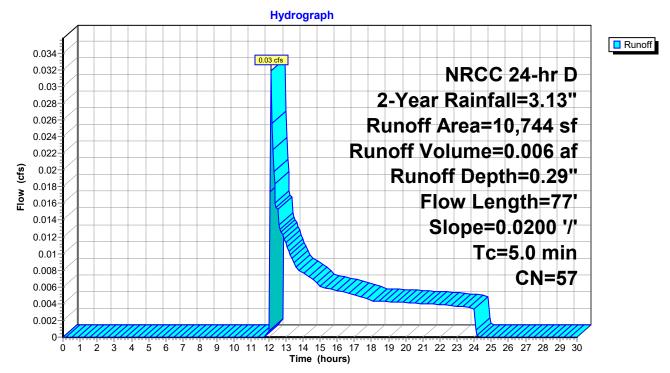
_	A	rea (sf)	CN	Description			
	3,009 39 >75% Grass cover, Good, HSG A						
_	6,417 98 Paved parking, HSG A						
		9,426	79	Weighted A	verage		
		3,009		31.92% Pe	rvious Area		
		6,417		68.08% Im	pervious Ar	ea	
	Та	Longth	Clone	Volocity	Consoitu	Description	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
-	0.3	18		//	(010)	Sheet Flow.	
	0.0	10	0.0000	, 1.14		Smooth surfaces $n=0.011$ P2= 3.13"	
	1.6	26	0.1300	0.27		Sheet Flow.	
	-	-				Grass: Short n= 0.150 P2= 3.13"	
	0.1	6	0.0150	0.69		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.6	87	0.0150) 2.49		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	26	107	Total	Increased	to minimum	$T_0 = 5.0 \text{ min}$	

2.6 137 Total, Increased to minimum Tc = 5.0 min

Subcatchment E20: TO DP#3

Summary for Subcatchment E21: TO EX DCB

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.03 cfs @ 12.16 hrs, Volume= 0.006 af, Depth= 0.29" Routed to Reach EX DCB : EX DCB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

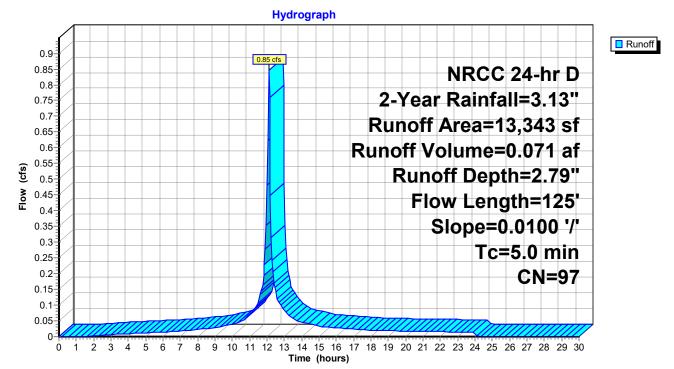
_	A	rea (sf)	CN	Description	Description					
		7,522	39 >75% Grass cover, Good, HSG A							
_		3,222 98 Paved parking, HSG A								
	10,744 57 Weighted Average									
		7,522		70.01% Pe	rvious Area					
		3,222	:	29.99% Im	pervious Ar	ea				
	Tc	Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.6	43	0.0200	1.15		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	1.2	7	0.0200	0.10		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.13"				
	0.2	27	0.0200	2.28		Shallow Concentrated Flow,				
_						Unpaved Kv= 16.1 fps				
	~ ~		T ()							

2.0 77 Total, Increased to minimum Tc = 5.0 min

Subcatchment E21: TO EX DCB

Summary for Subcatchment E22: TO YD-A

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.85 cfs @ 12.11 hrs, Volume= 0.071 af, Depth= 2.79" Routed to Reach YDA : (new Reach)

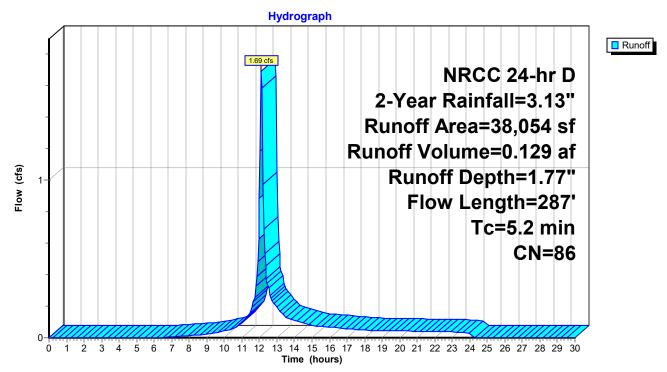
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

_	A	rea (sf)	CN	CN Description							
		7,866	98	98 Paved parking, HSG A							
_		5,477	96	96 Gravel surface, HSG A							
		13,343	97	Weighted A	verage						
		5,477		41.05% Pe	rvious Area						
		7,866		58.95% Im	pervious Are	ea					
	Tc	Length	Slope	e Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	0.9	50	0.0100	0.90		Sheet Flow, GRAVEL					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.8	75	0.0100) 1.61		Shallow Concentrated Flow, GRAVEL					
_						Unpaved Kv= 16.1 fps					
	17	125	Total	Inoropood	lo minimum	$T_0 = 5.0 \text{ min}$					

1.7 125 Total, Increased to minimum Tc = 5.0 min

Subcatchment E22: TO YD-A

Summary for Subcatchment E23: TO DCB-F/G


[49] Hint: Tc<2dt may require smaller dt

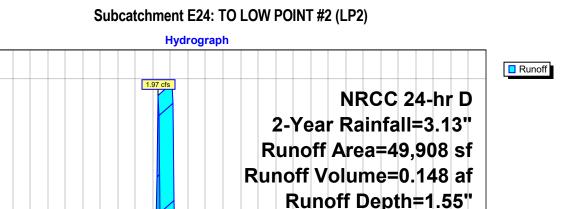
Runoff = 1.69 cfs @ 12.12 hrs, Volume= 0.129 af, Depth= 1.77" Routed to Reach DCB-F : (new Reach)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

Area	a (sf)	CN Description						
7	7,964 39 >75% Grass cover, Good, HSG A							
29,865 98 Paved parking, HSG A								
	225	96	Gravel surfa	ace, HSG A				
38	,054	86	Weighted A	verage				
8	,189		21.52% Pei	rvious Area				
29	,865		78.48% Imp	pervious Ar	ea			
	ength	Slope			Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.6	21	0.0800	0.21		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.8	29	0.0050	0.61		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
2.8	237	0.0050	1.44		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
5.2	287	Total						

Subcatchment E23: TO DCB-F/G

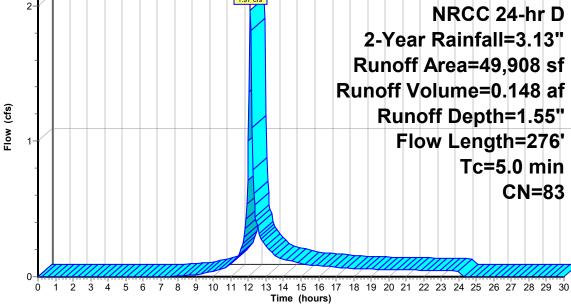
Summary for Subcatchment E24: TO LOW POINT #2 (LP2)


[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.97 cfs @ 12.12 hrs, Volume= 0.148 af, Depth= 1.55" Routed to Reach LP2 : TO DMH-K1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

A	Area (sf)	CN	Description		
	11,774	39	>75% Gras	s cover, Go	ood, HSG A
	37,475	98	Paved park	ing, HSG A	
	659	48	Brush, Poo	r, ĤSG A	
	49,908	83	Weighted A	verage	
	12,433		24.91% Pe	rvious Area	
	37,475		75.09% Im	pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.4	45	0.0600	0.22		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.1	5	0.0380	0.97		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
1.0	226	0.0380	3.96		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
4 5	070	T ()	1 1		

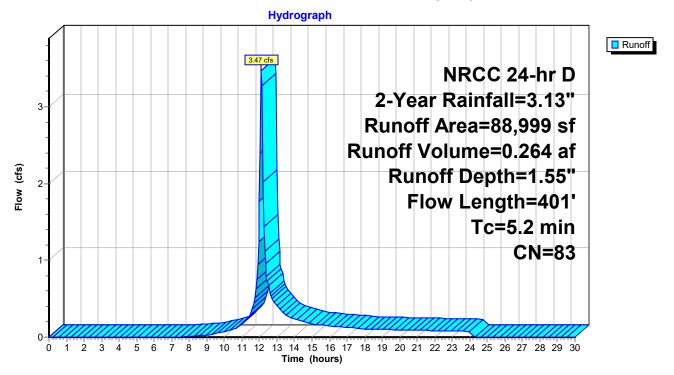

4.5 276 Total, Increased to minimum Tc = 5.0 min

NRCC 24-hr D 2-Year Rainfall=3.13"

Printed 5/4/2023

Page 27

Summary for Subcatchment E25: TO LOW POINT #3 (LP#3)


[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.47 cfs @ 12.12 hrs, Volume= 0.264 af, Depth= 1.55" Routed to Pond LP3 : OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

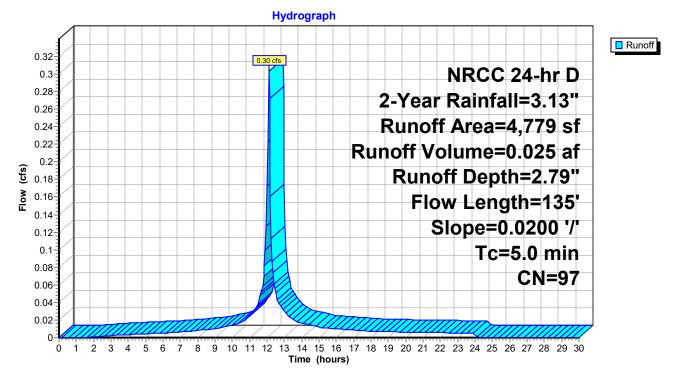
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

A	rea (sf)	CN	Description		
	22,346	39	>75% Gras	s cover, Go	od, HSG A
	66,653	98	Paved park	ing, HSG A	
	88,999	83	Weighted A	verage	
	22,346		25.11% Pe	rvious Area	
	66,653		74.89% Imp	pervious Are	ea
Tc	Length	Slope			Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.7	75	0.1300	0.34		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.0	10	0.1300	5.80		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
1.5	316	0.0300	3.52		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
5.2	401	Total			

Subcatchment E25: TO LOW POINT #3 (LP#3)

Summary for Subcatchment E26: TO DCB-H

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.30 cfs @ 12.11 hrs, Volume= 0.025 af, Depth= 2.79" Routed to Reach DP5 : DCB-H

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

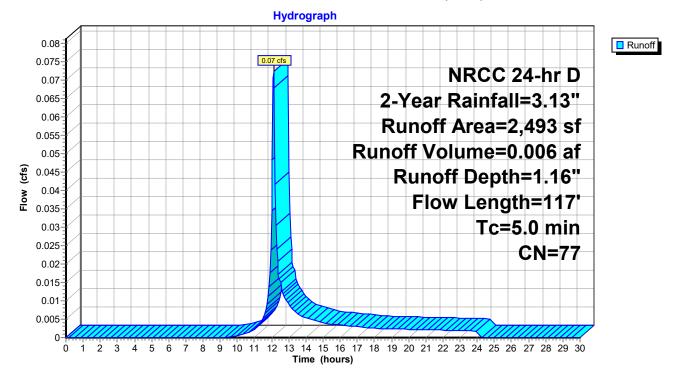
_	A	rea (sf)	CN	Description		
		1,787	98	Paved park	ing, HSG A	N Contraction of the second
_		2,992	96	Gravel surf	ace, HSG A	A
		4,779	97	Weighted A	verage	
		2,992		62.61% Pe	rvious Area	
		1,787		37.39% Imj	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	50	0.0200	1.18		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.5	85	0.0200	2.87		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	4.0	405	T ()			

1.2 135 Total, Increased to minimum Tc = 5.0 min

Subcatchment E26: TO DCB-H

Summary for Subcatchment e27: TO OFF SITE POINT (DP#6)

[49] Hint: Tc<2dt may require smaller dt

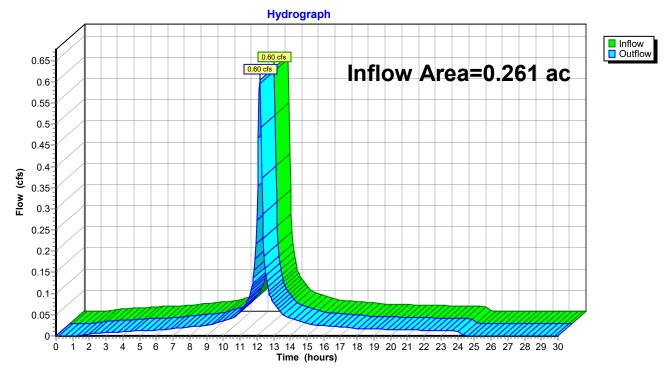

Runoff	=	0.07 cfs @	12.12 hrs, Volum	e= 0.006 af,	Depth= 1.16"
Routed	to Re	ach DP#6 : OF	FSITE LOW POIN	Т	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

_	A	rea (sf)	CN	Description		
		907	39	>75% Gras	s cover, Go	bod, HSG A
_		1,586	98	Paved park	ting, HSG A	
		2,493	77	Weighted A	verage	
		907		36.38% Pe	rvious Area	
		1,586		63.62% Im	pervious Ar	ea
	Тс	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	4.1	75	0.100	0.30		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	42	0.030) 3.52		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	12	117	Total	Inoroood	to minimum	$T_{0} = 5.0 \text{ min}$

4.3 117 Total, Increased to minimum Tc = 5.0 min

Subcatchment e27: TO OFF SITE POINT (DP#6)

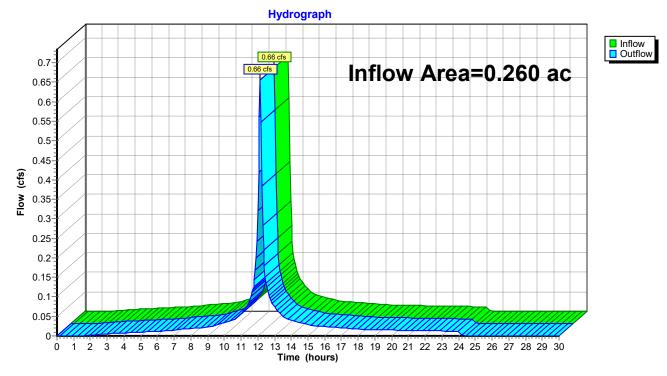


Summary for Reach DCB-A: TO DMH-D

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.261 ac, 80.04% Impervious, Inf	flow Depth = 2.90"	for 2-Year event		
Inflow =	0.60 cfs @ 12.18 hrs, Volume=	0.063 af			
Outflow =	0.60 cfs @ 12.18 hrs, Volume=	0.063 af, Atte	en= 0%, Lag= 0.0 min		
Routed to Reach DMH-D : TO DMH-C					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

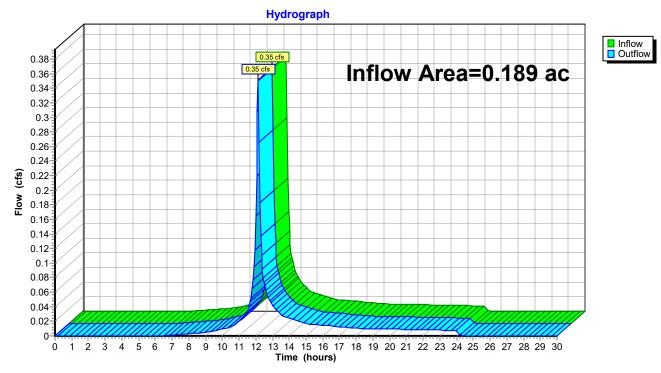

Reach DCB-A: TO DMH-D

Summary for Reach DCB-B: TO DMH-E

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.260 ac, 55.37% Impervious, Inflow	Depth = 2.79" for 2-Year event			
Inflow =	0.66 cfs @ 12.15 hrs, Volume=	0.060 af			
Outflow =	0.66 cfs @ 12.15 hrs, Volume=	0.060 af, Atten= 0%, Lag= 0.0 min			
Routed to Reach DMH-E : TO DMH-D					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DCB-B: TO DMH-E

Summary for Reach DCB-C: TO TRUNKLINE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.189 ac, 70.42% Impervious, Inflow	Depth = 1.77" for 2-Year event			
Inflow =	0.35 cfs @ 12.14 hrs, Volume=	0.028 af			
Outflow =	0.35 cfs @ 12.14 hrs, Volume=	0.028 af, Atten= 0%, Lag= 0.0 min			
Routed to Reach DMH-E : TO DMH-D					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

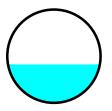
Reach DCB-C: TO TRUNKLINE

Summary for Reach DCB-D: TO DMH-A

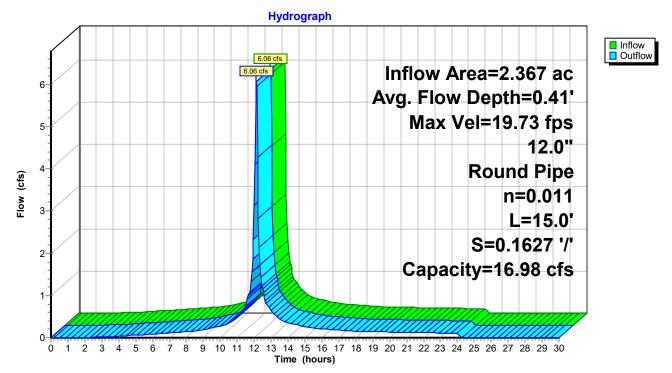
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 2.367 ac, 77.91% Impervious, Inflow Depth =
 2.61" for 2-Year event

 Inflow =
 6.06 cfs @
 12.13 hrs, Volume=
 0.515 af


 Outflow =
 6.06 cfs @
 12.14 hrs, Volume=
 0.515 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH-A : TO DMH-B
 0.515 af, Atten= 0%, Lag= 0.0 min
 0.515 af, Atten= 0%, Lag= 0.0 min

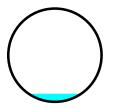

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 19.73 fps, Min. Travel Time= 0.0 min Avg. Velocity = 6.97 fps, Avg. Travel Time= 0.0 min

Peak Storage= 5 cf @ 12.13 hrs Average Depth at Peak Storage= 0.41', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 16.98 cfs

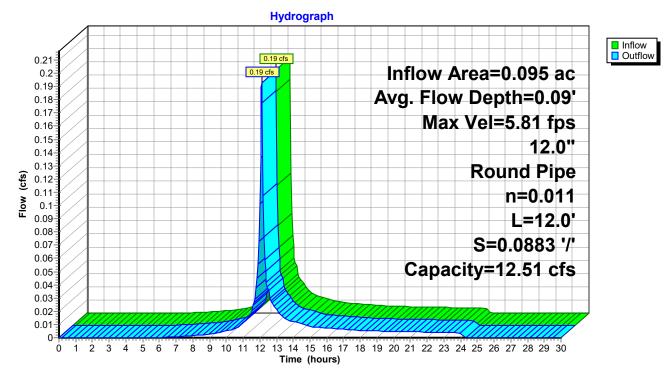
12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 15.0' Slope= 0.1627 '/' Inlet Invert= 469.11', Outlet Invert= 466.67'

Reach DCB-D: TO DMH-A

Summary for Reach DCB-E: TO DMH-A


[52] Hint: Inlet/Outlet conditions not evaluated

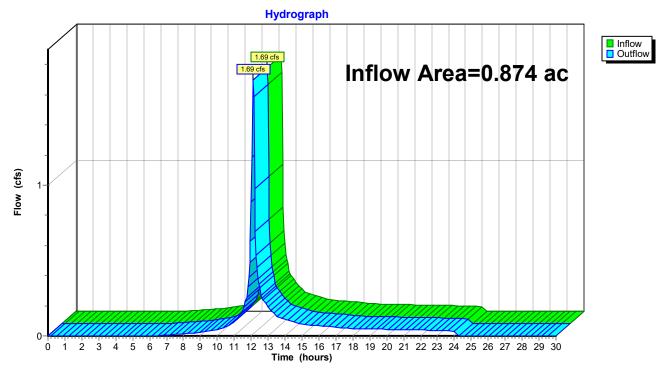
Inflow Area = 0.095 ac, 82.02% Impervious, Inflow Depth = 1.85" for 2-Year event Inflow = 0.19 cfs @ 12.11 hrs, Volume= 0.015 af Outflow = 0.19 cfs @ 12.12 hrs, Volume= 0.015 af, Atten= 0%, Lag= 0.1 min Routed to Reach DMH-A : TO DMH-B


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.81 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.15 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.12 hrs Average Depth at Peak Storage= 0.09', Surface Width= 0.56' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 12.51 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 12.0' Slope= 0.0883 '/' Inlet Invert= 467.63', Outlet Invert= 466.57'

Reach DCB-E: TO DMH-A

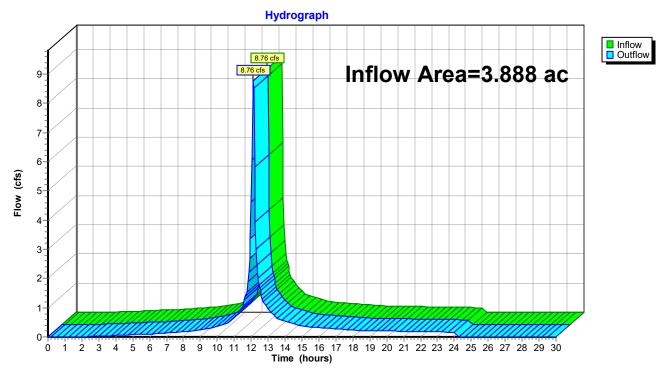


Summary for Reach DCB-F: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.874 ac, 78.48% Impervious, Inflo	w Depth = 1.77" for 2-Year event			
Inflow =	1.69 cfs @ 12.12 hrs, Volume=	0.129 af			
Outflow =	1.69 cfs @ 12.12 hrs, Volume=	0.129 af, Atten= 0%, Lag= 0.0 min			
Routed to Reach DMH-A : TO DMH-B					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

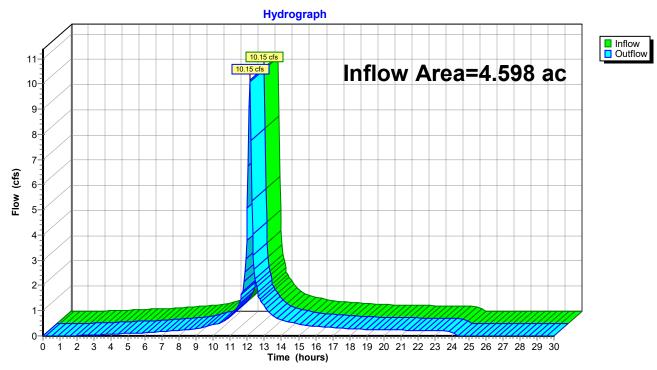

Reach DCB-F: (new Reach)

Summary for Reach DMH-A: TO DMH-B

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.888 ac, 73.60% Impervious, Ir	flow Depth = 2.27" for 2-Year event			
Inflow =	8.76 cfs @ 12.13 hrs, Volume=	0.736 af			
Outflow =	8.76 cfs @ 12.13 hrs, Volume=	0.736 af, Atten= 0%, Lag= 0.0 min			
Routed to Pond DMH-B : TO DMH-D					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DMH-A: TO DMH-B

Summary for Reach DMH-C: TO DP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.598 ac, 72.81% Impervious, Inflov	v Depth = 2.32"	for 2-Year event	
Inflow =	10.15 cfs @ 12.14 hrs, Volume=	0.887 af		
Outflow =	10.15 cfs @ 12.14 hrs, Volume=	0.887 af, Atte	en= 0%, Lag= 0.0 min	
Routed to Reach DP2 : MUNICIPAL SYSTEM				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

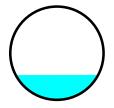
Reach DMH-C: TO DP#1

Summary for Reach DMH-D: TO DMH-C

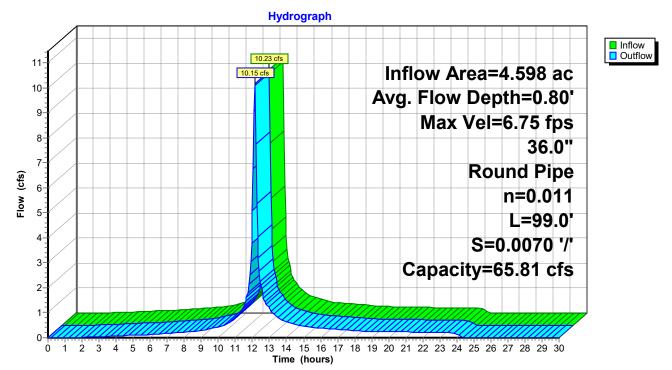
[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach DMH-E OUTLET depth by 0.52' @ 12.15 hrs
[79] Warning: Submerged Pond DMH-B Primary device # 1 OUTLET by 0.80'

 Inflow Area =
 4.598 ac, 72.81% Impervious, Inflow Depth =
 2.32" for 2-Year event

 Inflow =
 10.23 cfs @
 12.13 hrs, Volume=
 0.887 af


 Outflow =
 10.15 cfs @
 12.14 hrs, Volume=
 0.887 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach DMH-C : TO DP#1
 To DP#1
 10.887 af, Atten= 1%, Lag= 0.4 min

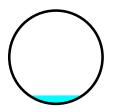

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.75 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.29 fps, Avg. Travel Time= 0.7 min

Peak Storage= 150 cf @ 12.14 hrs Average Depth at Peak Storage= 0.80', Surface Width= 2.65' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 65.81 cfs

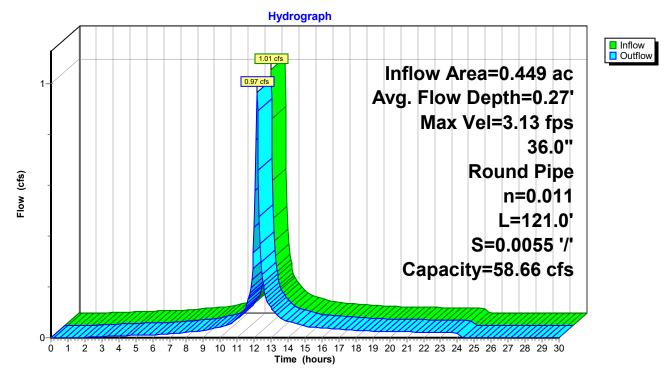
36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 99.0' Slope= 0.0070 '/' Inlet Invert= 455.90', Outlet Invert= 455.21'

Reach DMH-D: TO DMH-C

Summary for Reach DMH-E: TO DMH-D


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH-F outlet invert by 0.27' @ 12.15 hrs

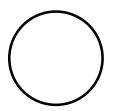
Inflow Area = 0.449 ac, 61.71% Impervious, Inflow Depth = 2.36" for 2-Year event Inflow = 1.01 cfs @ 12.15 hrs, Volume= 0.088 af Outflow = 0.97 cfs @ 12.16 hrs, Volume= 0.088 af, Atten= 4%, Lag= 0.9 min Routed to Reach DMH-D : TO DMH-C

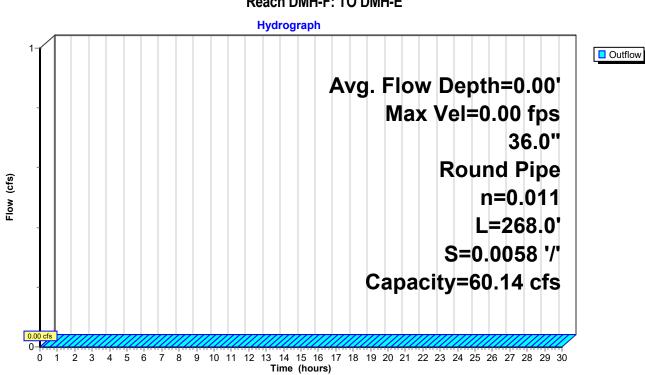

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.13 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.11 fps, Avg. Travel Time= 1.8 min

Peak Storage= 39 cf @ 12.15 hrs Average Depth at Peak Storage= 0.27', Surface Width= 1.72' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 58.66 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 121.0' Slope= 0.0055 '/' Inlet Invert= 456.57', Outlet Invert= 455.90'

Reach DMH-E: TO DMH-D

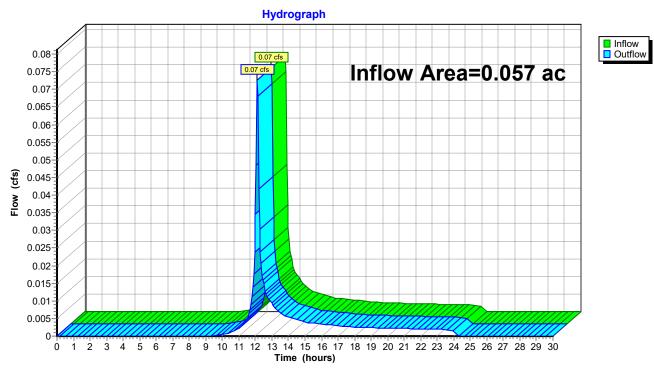



Summary for Reach DMH-F: TO DMH-E

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.14 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 268.0' Slope= 0.0058 '/' Inlet Invert= 458.13', Outlet Invert= 456.57'

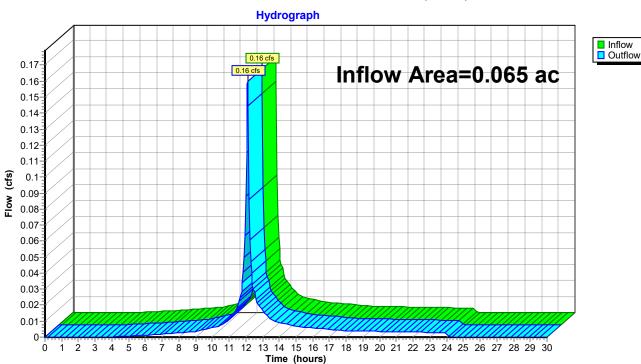

Reach DMH-F: TO DMH-E

Summary for Reach DP#6: OFFSITE LOW POINT

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.057 ac, 63.62% Impervious, Inflow E	Depth = 1.16" for 2-Year event
Inflow =	0.07 cfs @ 12.12 hrs, Volume=	0.006 af
Outflow =	0.07 cfs @ 12.12 hrs, Volume=	0.006 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DP#6: OFFSITE LOW POINT

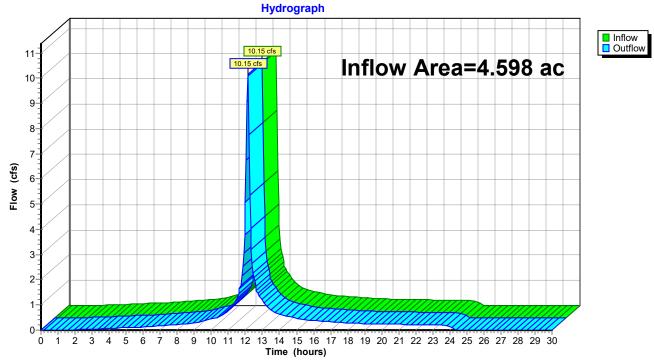
Summary for Reach DP1: GUTTER POINT FRANKLIN (WEST)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.065 ac, 89.73% Impervious, Inflow D	epth = 2.28" for 2-Year event
Inflow =	0.16 cfs @ 12.11 hrs, Volume=	0.012 af
Outflow =	0.16 cfs @ 12.11 hrs, Volume=	0.012 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP1: GUTTER POINT FRANKLIN (WEST)

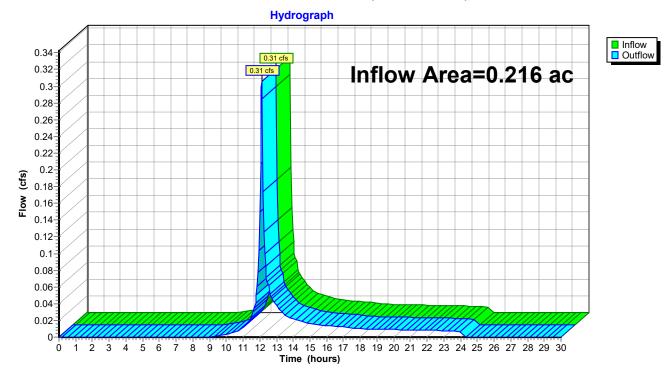

Summary for Reach DP2: MUNICIPAL SYSTEM

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.598 ac, 72.81% Impervious, Inflow	/ Depth = 2.32"	for 2-Year event
Inflow =	10.15 cfs @ 12.14 hrs, Volume=	0.887 af	
Outflow =	10.15 cfs @ 12.14 hrs, Volume=	0.887 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP2: MUNICIPAL SYSTEM

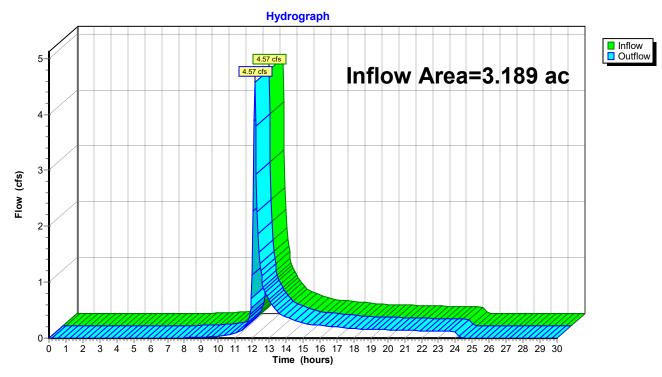

Summary for Reach DP3: CATCHBASIN (FIRE STATION)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.216 ac, 68.08% Impervious, Inflow E	Depth = 1.28" for 2-Year event
Inflow =	0.31 cfs @ 12.12 hrs, Volume=	0.023 af
Outflow =	0.31 cfs @ 12.12 hrs, Volume=	0.023 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP3: CATCHBASIN (FIRE STATION)

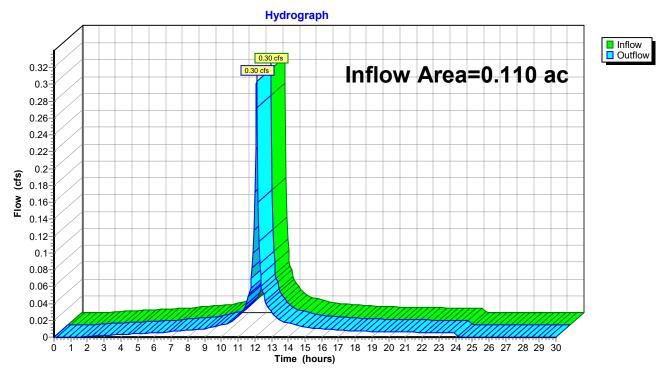


Summary for Reach DP4: DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.189 ac, 74.96% Impervious, Inflow D	Depth = 1.36" for 2-Year event
Inflow =	4.57 cfs @ 12.15 hrs, Volume=	0.362 af
Outflow =	4.57 cfs @ 12.15 hrs, Volume=	0.362 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

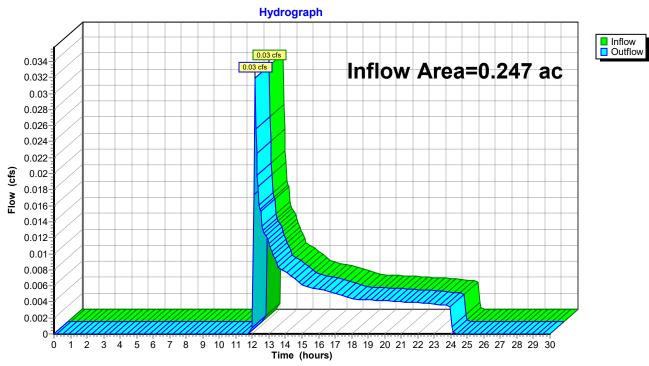

Reach DP4: DMH-K1

Summary for Reach DP5: DCB-H

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.110 ac, 37.39% Impervious, Inflow D	Depth = 2.79" for 2-Year event
Inflow =	0.30 cfs @ 12.11 hrs, Volume=	0.025 af
Outflow =	0.30 cfs @ 12.11 hrs, Volume=	0.025 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

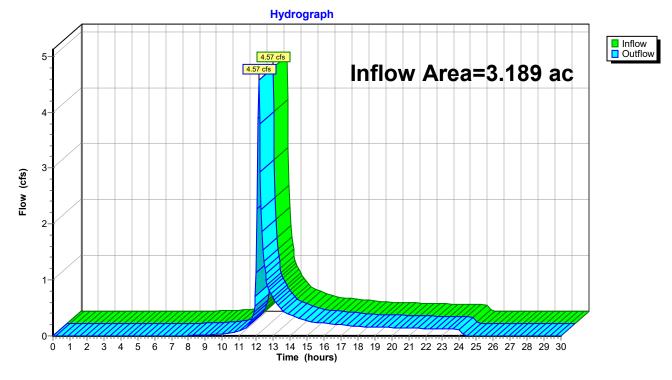

Reach DP5: DCB-H

Summary for Reach EX DCB: EX DCB

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.247 ac, 29.99% Impervious, Inflow	v Depth = 0.29" for 2-Year event	
Inflow =	0.03 cfs @ 12.16 hrs, Volume=	0.006 af	
Outflow =	0.03 cfs @ 12.16 hrs, Volume=	0.006 af, Atten= 0%, Lag= 0.0 m	nin
Routed to Read	ch DMH-A : TO DMH-B		

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

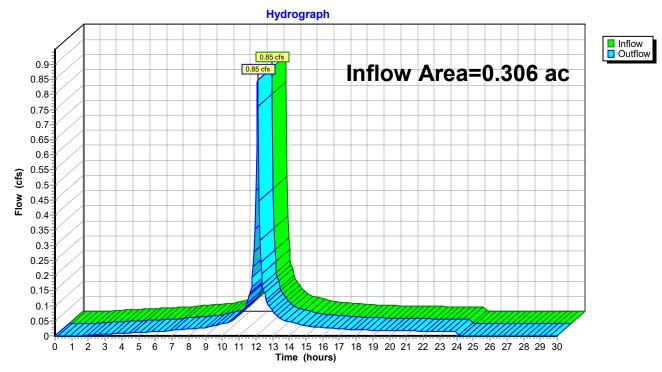

Reach EX DCB: EX DCB

Summary for Reach LP2: TO DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.189 ac, 74.96% Impervious, Inflow I	Depth = 1.36" for 2-Year event
Inflow =	4.57 cfs @ 12.15 hrs, Volume=	0.362 af
Outflow =	4.57 cfs @ 12.15 hrs, Volume=	0.362 af, Atten= 0%, Lag= 0.0 min
Routed to Rea	ich DP4 : DMH-K1	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach LP2: TO DMH-K1

Summary for Reach YDA: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.306 ac, 58.95% Impervious, Inflov	w Depth = 2.79" for 2-Year event
Inflow =	0.85 cfs @ 12.11 hrs, Volume=	0.071 af
Outflow =	0.85 cfs @ 12.11 hrs, Volume=	0.071 af, Atten= 0%, Lag= 0.0 min
Routed to Read	ch DMH-A : TO DMH-B	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach YDA: (new Reach)

Summary for Pond DMH-B: TO DMH-D

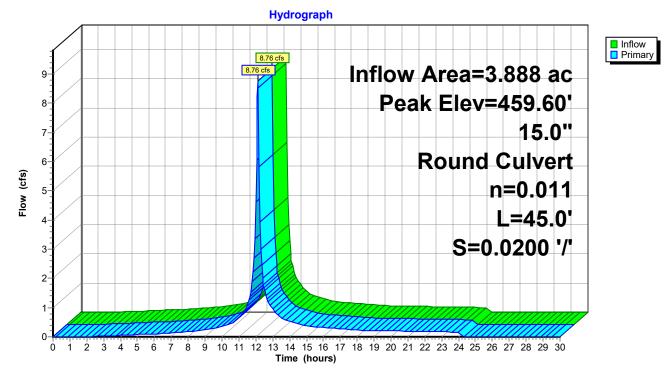
[57] Hint: Peaked at 459.60' (Flood elevation advised)

 Inflow Area =
 3.888 ac, 73.60% Impervious, Inflow Depth =
 2.27"
 for 2-Year event

 Inflow =
 8.76 cfs @
 12.13 hrs, Volume=
 0.736 af

 Outflow =
 8.76 cfs @
 12.13 hrs, Volume=
 0.736 af, Atten= 0%, Lag= 0.0 min

 Primary =
 8.76 cfs @
 12.13 hrs, Volume=
 0.736 af

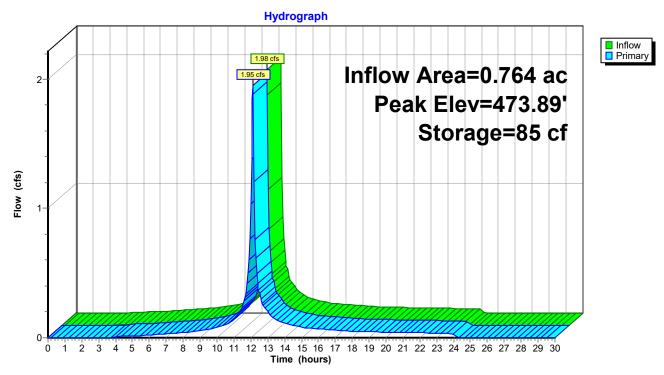

 Routed to Reach DMH-D : TO DMH-C
 0.736 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 459.60' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	456.80'	15.0" Round Culvert L= 45.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 456.80' / 455.90' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=8.40 cfs @ 12.13 hrs HW=459.45' (Free Discharge) 1=Culvert (Inlet Controls 8.40 cfs @ 6.85 fps)

Pond DMH-B: TO DMH-D



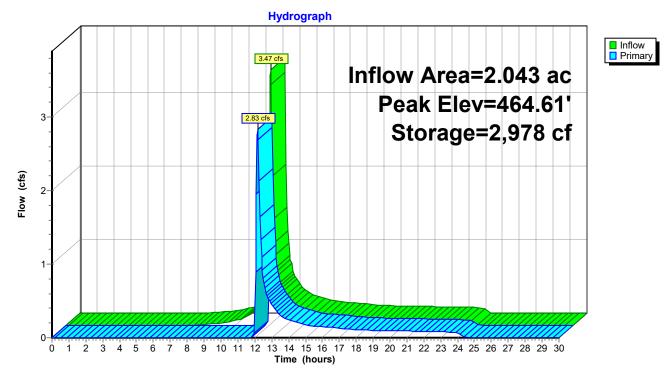
Summary for Pond LP1: TO DCB-D

Inflow Area = 0.764 ac, 43.34% Impervious, Inflow Depth = 2.48" for 2-Year event Inflow = 1.98 cfs @ 12.11 hrs, Volume= 0.158 af Outflow = 1.95 cfs @ 12.13 hrs, Volume= 0.157 af, Atten= 1%, Lag= 0.9 min Primary = 1.95 cfs @ 12.13 hrs, Volume= 0.157 af Routed to Reach DCB-D : TO DMH-A 0.157 af
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 473.89' @ 12.13 hrs Surf.Area= 1,050 sf Storage= 85 cf
Plug-Flow detention time= 3.5 min calculated for 0.157 af (100% of inflow) Center-of-Mass det. time= 2.2 min (800.9 - 798.7)
Volume Invert Avail.Storage Storage Description
#1 473.75' 231 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (cubic-feet)
473.75 120 0 0
474.00 1,725 231 231
Device Routing Invert Outlet Devices
#1 Primary 473.80' 25.0' long x 25.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
Primary OutFlow Max=1.86 cfs @ 12.13 hrs HW=473.89' (Free Discharge)

1=Broad-Crested Rectangular Weir (Weir Controls 1.86 cfs @ 0.81 fps)

Pond LP1: TO DCB-D

Summary for Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2


Inflow Area	a =	2.043 ac, 74.89% In	pervious, Inflow D	epth = 1.55"	for 2-Year event
Inflow	=	3.47 cfs @ 12.12 hrs	s, Volume=	0.264 af	
Outflow	=	2.83 cfs @ 12.17 hrs	s, Volume=	0.214 af, Atte	en= 18%, Lag= 3.1 min
Primary	=	2.83 cfs @ 12.17 hrs	s, Volume=	0.214 af	•
Routed	to Read	h LP2 : TO DMH-K1			

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 464.61' @ 12.17 hrs Surf.Area= 8,146 sf Storage= 2,978 cf

Plug-Flow detention time= 137.3 min calculated for 0.214 af (81% of inflow) Center-of-Mass det. time= 50.4 min (909.0 - 858.6)

Volume	Inve	ert Avail.S	torage S	Storage	Description	
#1	461.5	50' 16,	070 cf 🕻	Custom	Stage Data (Pr	rismatic) Listed below (Recalc)
Elevatio	et)	Surf.Area (sq-ft)	Inc.S (cubic-t	feet)	Cum.Store (cubic-feet)	
461.5		133		0	0	
462.0		180		78	78	
463.0	00	269		225	303	
464.0	00	376		323	625	
464.5	50	5,887	1	,566	2,191	
465.0	00	15,961	5	,462	7,653	
465.5	50	17,706	8	,417	16,070	
Device #1	Routing Primary	Inver 464.50)' 27.0' I Head	(feet) 0	10.0 '/' SideZ x 0.20 0.40 0.60	20.0' breadth Broad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60
			Coet.	(English	1) 2.68 2.70 2.	70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=2.70 cfs @ 12.17 hrs HW=464.61' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 2.70 cfs @ 0.88 fps)

Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E11: TO DP#1	Runoff Area=2,852 sf 89.73% Impervious Runoff Depth=3.78" Flow Length=98' Slope=0.0170 '/' Tc=5.0 min CN=92 Runoff=0.26 cfs 0.021 af
Subcatchment E12: TO DCB-A	Runoff Area=11,373 sf 80.04% Impervious Runoff Depth=4.44" Flow Length=209' Tc=10.9 min CN=98 Runoff=0.91 cfs 0.097 af
Subcatchment E14: TO DCB-B	Runoff Area=11,310 sf 55.37% Impervious Runoff Depth=4.33" Flow Length=171' Tc=8.1 min CN=97 Runoff=0.99 cfs 0.094 af
Subcatchment E15: TO DCB-C	Runoff Area=8,235 sf 70.42% Impervious Runoff Depth=3.17" Flow Length=161' Slope=0.0110 '/' Tc=7.0 min CN=86 Runoff=0.62 cfs 0.050 af
Subcatchment E16: TO LOW POINT	Runoff Area=33,282 sf 43.34% Impervious Runoff Depth=3.99" Flow Length=183' Tc=5.0 min CN=94 Runoff=3.09 cfs 0.254 af
Subcatchment E18: TO DCB-D	Runoff Area=69,813 sf 94.39% Impervious Runoff Depth=4.21" Flow Length=305' Tc=7.0 min CN=96 Runoff=6.30 cfs 0.563 af
Subcatchment E19: TO DCB-E	Runoff Area=4,127 sf 82.02% Impervious Runoff Depth=3.27" Flow Length=177' Slope=0.0090 '/' Tc=5.0 min CN=87 Runoff=0.33 cfs 0.026 af
Subcatchment E20: TO DP#3	Runoff Area=9,426 sf 68.08% Impervious Runoff Depth=2.53" Flow Length=137' Tc=5.0 min CN=79 Runoff=0.61 cfs 0.046 af
Subcatchment E21: TO EX DCB	Runoff Area=10,744 sf 29.99% Impervious Runoff Depth=0.94" Flow Length=77' Slope=0.0200 '/' Tc=5.0 min CN=57 Runoff=0.22 cfs 0.019 af
Subcatchment E22: TO YD-A	Runoff Area=13,343 sf 58.95% Impervious Runoff Depth=4.33" Flow Length=125' Slope=0.0100 '/' Tc=5.0 min CN=97 Runoff=1.29 cfs 0.110 af
Subcatchment E23: TO DCB-F/G	Runoff Area=38,054 sf 78.48% Impervious Runoff Depth=3.17" Flow Length=287' Tc=5.2 min CN=86 Runoff=2.97 cfs 0.231 af
Subcatchment E24: TO LOW POINT #2 (LP2)	Runoff Area=49,908 sf 75.09% Impervious Runoff Depth=2.89" Flow Length=276' Tc=5.0 min CN=83 Runoff=3.63 cfs 0.276 af
Subcatchment E25: TO LOW POINT #3 (LP#3)	Runoff Area=88,999 sf 74.89% Impervious Runoff Depth=2.89" Flow Length=401' Tc=5.2 min CN=83 Runoff=6.40 cfs 0.491 af
Subcatchment E26: TO DCB-H	Runoff Area=4,779 sf 37.39% Impervious Runoff Depth=4.33" Flow Length=135' Slope=0.0200 '/' Tc=5.0 min CN=97 Runoff=0.46 cfs 0.040 af
Subcatchment e27: TO OFF SITE POINT (DP#6)	Runoff Area=2,493 sf 63.62% Impervious Runoff Depth=2.36" Flow Length=117' Tc=5.0 min CN=77 Runoff=0.15 cfs 0.011 af
Reach DCB-A: TO DMH-D	Inflow=0.91 cfs 0.097 af

Inflow=0.91 cfs 0.097 af Outflow=0.91 cfs 0.097 af

3030-Pre-R1 Prepared by Hannigan Engineering HydroCAD® 10.20-2f s/n 00840 © 2022 I	
Reach DCB-B: TO DMH-E	Inflow=0.99 cfs 0.094 af Outflow=0.99 cfs 0.094 af
Reach DCB-C: TO TRUNKLINE	Inflow=0.62 cfs 0.050 af Outflow=0.62 cfs 0.050 af
Reach DCB-D: TO DMH-A	Avg. Flow Depth=0.53' Max Vel=22.05 fps Inflow=9.34 cfs 0.817 af 12.0" Round Pipe n=0.011 L=15.0' S=0.1627 '/' Capacity=16.98 cfs Outflow=9.34 cfs 0.817 af
Reach DCB-E: TO DMH-A	Avg. Flow Depth=0.11' Max Vel=6.85 fps Inflow=0.33 cfs 0.026 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/' Capacity=12.51 cfs Outflow=0.33 cfs 0.026 af
Reach DCB-F: (new Reach)	Inflow=2.97 cfs 0.231 af Outflow=2.97 cfs 0.231 af
Reach DMH-A: TO DMH-B	Inflow=14.04 cfs 1.203 af Outflow=14.04 cfs 1.203 af
Reach DMH-C: TO DP#1	Inflow=16.25 cfs 1.443 af Outflow=16.25 cfs 1.443 af
Reach DMH-D: TO DMH-C	Avg. Flow Depth=1.02' Max Vel=7.70 fps Inflow=16.36 cfs 1.443 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=16.25 cfs 1.443 af
Reach DMH-E: TO DMH-D	Avg. Flow Depth=0.34' Max Vel=3.61 fps Inflow=1.61 cfs 0.144 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=1.55 cfs 0.144 af
Reach DMH-F: TO DMH-E	Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af
Reach DP#6: OFFSITE LOW POINT	Inflow=0.15 cfs 0.011 af Outflow=0.15 cfs 0.011 af
Reach DP1: GUTTER POINT FRANKLIN (WEST)Inflow=0.26 cfsOutflow=0.26 cfsOutflow=0.26 cfs	
Reach DP2: MUNICIPAL SYSTEM	Inflow=16.25 cfs 1.443 af Outflow=16.25 cfs 1.443 af
Reach DP3: CATCHBASIN (FIRE ST	ATION) Inflow=0.61 cfs 0.046 af Outflow=0.61 cfs 0.046 af
Reach DP4: DMH-K1	Inflow=8.95 cfs 0.717 af Outflow=8.95 cfs 0.717 af
Reach DP5: DCB-H	Inflow=0.46 cfs 0.040 af Outflow=0.46 cfs 0.040 af
Reach EX DCB: EX DCB	Inflow=0.22 cfs 0.019 af Outflow=0.22 cfs 0.019 af

Inflow=8.95 cfs 0.717 af Outflow=8.95 cfs 0.717 af

Inflow=1.29 cfs 0.110 af Outflow=1.29 cfs 0.110 af

Peak Elev=463.00' Inflow=14.04 cfs 1.203 af 15.0" Round Culvert n=0.011 L=45.0' S=0.0200 '/' Outflow=14.04 cfs 1.203 af

Peak Elev=473.93' Storage=123 cf Inflow=3.09 cfs 0.254 af Outflow=3.05 cfs 0.254 af

Reach LP2: TO DMH-K1

Reach YDA: (new Reach)

Pond DMH-B: TO DMH-D

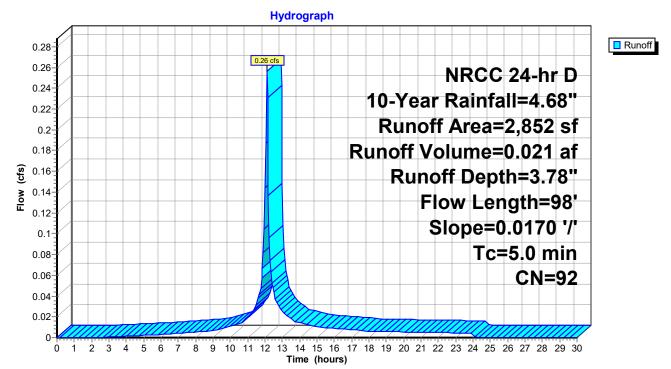
Pond LP1: TO DCB-D

Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS Peak Elev=464.67' Storage=3,528 cf Inflow=6.40 cfs 0.491 af Outflow=5.59 cfs 0.441 af

Total Runoff Area = 8.235 ac Runoff Volume = 2.328 af Average Runoff Depth = 3.39" 26.88% Pervious = 2.214 ac 73.12% Impervious = 6.022 ac

Summary for Subcatchment E11: TO DP#1

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.26 cfs @ 12.11 hrs, Volume= 0.021 af, Depth= 3.78" Routed to Reach DP1 : GUTTER POINT FRANKLIN (WEST)

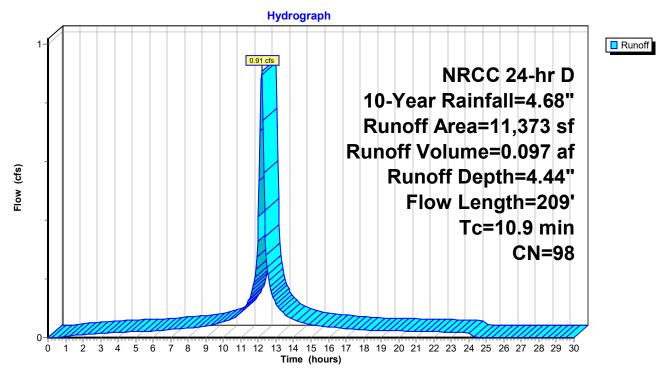
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description						
		293	39 >75% Grass cover, Good, HSG A							
_		2,559	2,559 98 Paved parking, HSG A							
	2,852 92 Weighted Average									
		293		10.27% Pe	rvious Area					
		2,559		89.73% Im	pervious Ar	ea				
	Tc	Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.8	50	0.0170	1.11		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.3	48	0.0170	2.65		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
		00	T ()			T 60 '				

1.1 98 Total, Increased to minimum Tc = 5.0 min

Subcatchment E11: TO DP#1

Summary for Subcatchment E12: TO DCB-A

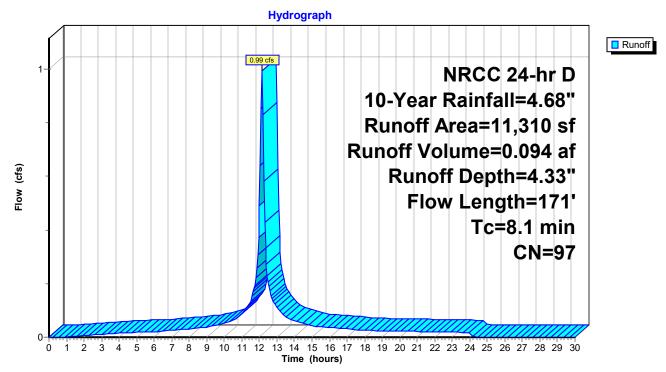

Runoff = 0.91 cfs @ 12.18 hrs, Volume= 0.097 af, Depth= 4.44" Routed to Reach DCB-A : TO DMH-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description						
		9,103 98 Paved parking, HSG A								
_		2,270	96	Gravel surface, HSG A						
		11,373	98	8 Weighted Average						
		2,270		19.96% Pe	rvious Area					
		9,103		80.04% Imj	pervious Ar	ea				
	_									
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	9.7	75	0.0120	0.13		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.13"				
	0.1	9	0.0120	1.76		Shallow Concentrated Flow, GRASS				
						Unpaved Kv= 16.1 fps				
	1.1	125	0.0080	1.82		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	10.0	000	Tatal							

10.9 209 Total

Subcatchment E12: TO DCB-A


Summary for Subcatchment E14: TO DCB-B

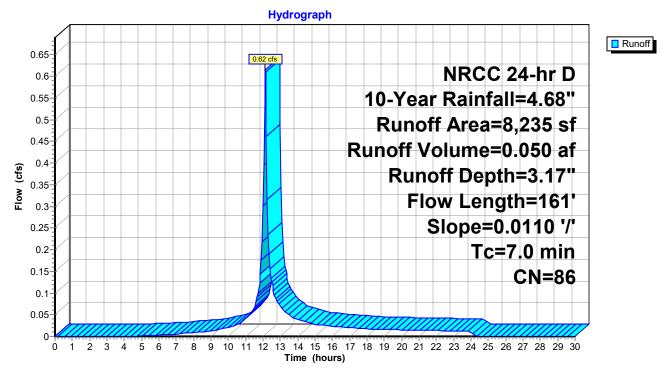
Runoff = 0.99 cfs @ 12.15 hrs, Volume= 0.094 af, Depth= 4.33" Routed to Reach DCB-B : TO DMH-E

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

	Area (sf)	CN	Description				
	6,262 98 Paved parking, HSG A						
5,048 96 Gravel surface, HSG A							
	11,310 97 Weighted Average						
	5,048		44.63% Pe	rvious Area			
	6,262		55.37% Im	pervious Ar	ea		
Тс	0	Slope	,	Capacity	Description		
(min) (feet)	(ft/ft) (ft/sec)	(cfs)			
7.0) 50	0.0120	0.12		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.13"		
1.1	121	0.0080) 1.82		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
8.1	171	Total					

Subcatchment E14: TO DCB-B

Summary for Subcatchment E15: TO DCB-C


Runoff = 0.62 cfs @ 12.14 hrs, Volume= 0.050 af, Depth= 3.17" Routed to Reach DCB-C : TO TRUNKLINE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

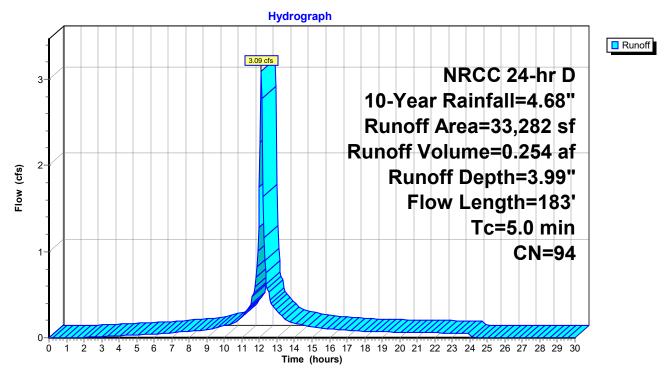
	Α	rea (sf)	CN	Description					
		1,643	39	>75% Grass cover, Good, HSG A					
		5,799							
		793	793 96 Gravel surface, HSG A						
	8,235 86 Weighted Average								
		2,436		29.58% Pe	rvious Area				
		5,799		70.42% Im	pervious Ar	ea			
	Тс	Length	Slope	e Velocity	Capacity	Description			
(m	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.8	38	0.0110	0.11		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.13"			
(0.3	12	0.0110	0.70		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
(0.9	111	0.0110) 2.13		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			

7.0 161 Total

Subcatchment E15: TO DCB-C

Summary for Subcatchment E16: TO LOW POINT

[49] Hint: Tc<2dt may require smaller dt


Runoff = 3.09 cfs @ 12.11 hrs, Volume= 0.254 af, Depth= 3.99" Routed to Pond LP1 : TO DCB-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

A	Area (sf)	CN	Description					
	1,882 39 >75% Grass cover, Good, HSG A							
	14,426 98 Paved parking, HSG A							
16,974 96 Gravel surface, HSG A								
	33,282	94	Weighted A	verage				
	18,856		56.66% Pe	rvious Area				
	14,426		43.34% Im	pervious Ar	ea			
_				. .				
Tc	0	Slope		Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
1.6	21	0.0800	0.21		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.9	29	0.0040	0.56		Sheet Flow, GRAVEL			
					Smooth surfaces n= 0.011 P2= 3.13"			
2.2	133	0.0040) 1.02		Shallow Concentrated Flow,			
					Unpaved Kv= 16.1 fps			
47	400	T ()						

4.7 183 Total, Increased to minimum Tc = 5.0 min

Subcatchment E16: TO LOW POINT

Summary for Subcatchment E18: TO DCB-D

Runoff = 6.30 cfs @ 12.14 hrs, Volume= 0.563 af, Depth= 4.21" Routed to Reach DCB-D : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

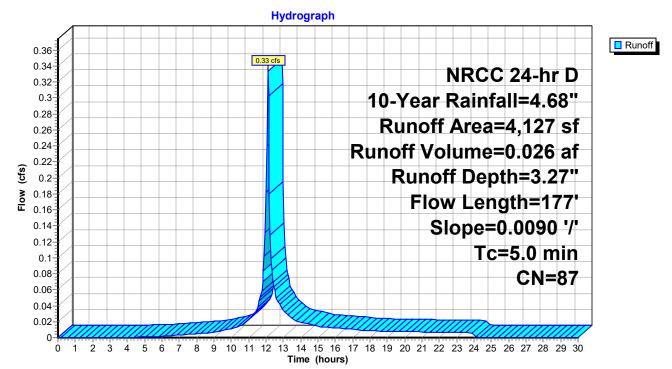
	A	rea (sf)	CN	Description					
	2,530 39 >75% Grass cover, Good, HSG A 65,894 98 Paved parking, HSG A								
-		1,389 96 Gravel surface, HSG A							
69,813 96 Weighted Average									
		3,919		5.61% Perv					
		65,894		94.39% Im	pervious Are	ea			
	То	Longth	Slow	e Velocity	Consoity	Description			
	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description			
-	3.8	23	0.0120	/	(0.0)	Sheet Flow,			
		-				Grass: Short n= 0.150 P2= 3.13"			
	0.6	27	0.0090	0.76		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	1.2	107	0.0090) 1.53		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	1.4	148	0.0075	5 1.76		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	70	205	Total						

7.0 305 Total

Subcatchment E18: TO DCB-D

Summary for Subcatchment E19: TO DCB-E

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.33 cfs @ 12.11 hrs, Volume= 0.026 af, Depth= 3.27" Routed to Reach DCB-E : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

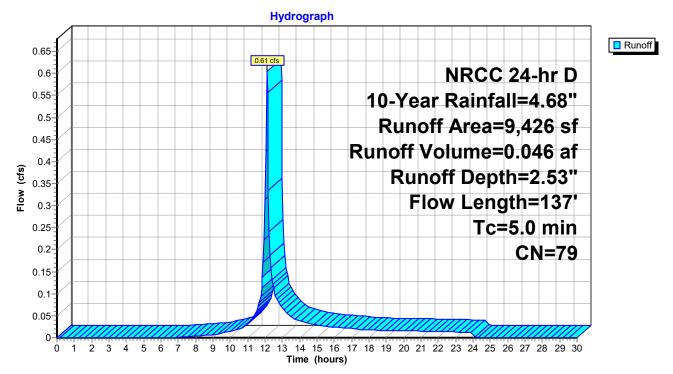
_	A	rea (sf)	CN	N Description						
		742	39	39 >75% Grass cover, Good, HSG A						
_		3,385	98 Paved parking, HSG A							
		4,127	87	Weighted A	verage					
		742		17.98% Pe	rvious Area					
		3,385		82.02% Imj	pervious Ar	ea				
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
	1.0	50	0.0090	0.86		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	1.1	127	0.0090	1.93		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	04	477	T-1-1							

2.1 177 Total, Increased to minimum Tc = 5.0 min

Subcatchment E19: TO DCB-E

Summary for Subcatchment E20: TO DP#3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.61 cfs @ 12.12 hrs, Volume= 0.046 af, Depth= 2.53" Routed to Reach DP3 : CATCHBASIN (FIRE STATION)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

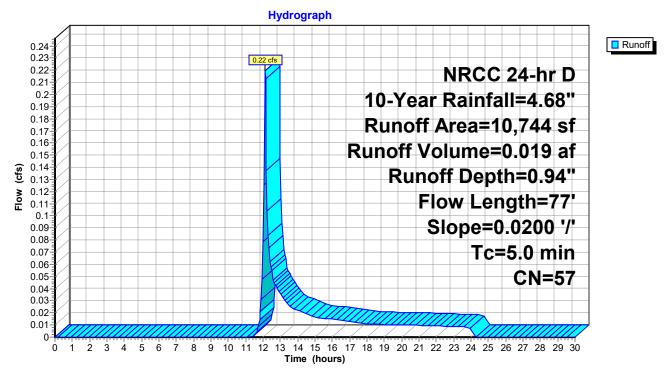
_	A	rea (sf)	CN	Description		
3,009 39 >75% Grass cover, Good, HSG A						
6,417 98 Paved parking, HSG A						
9,426 79 Weighted Average						
		3,009		31.92% Pe	rvious Area	
		6,417		68.08% Im	pervious Are	ea
	т.	Laurath	01		0	Description
	Tc (min)		Slope			Description
-	(min)	(feet)	(ft/ft	//	(cfs)	
	0.3	18	0.0300) 1.14		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.6	26	0.1300	0.27		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.1	6	0.0150	0.69		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.6	87	0.0150) 2.49		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	26	107	Total	Increased		$T_0 = 5.0 \text{ min}$

2.6 137 Total, Increased to minimum Tc = 5.0 min

Subcatchment E20: TO DP#3

Summary for Subcatchment E21: TO EX DCB

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.22 cfs @ 12.13 hrs, Volume= 0.019 af, Depth= 0.94" Routed to Reach EX DCB : EX DCB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

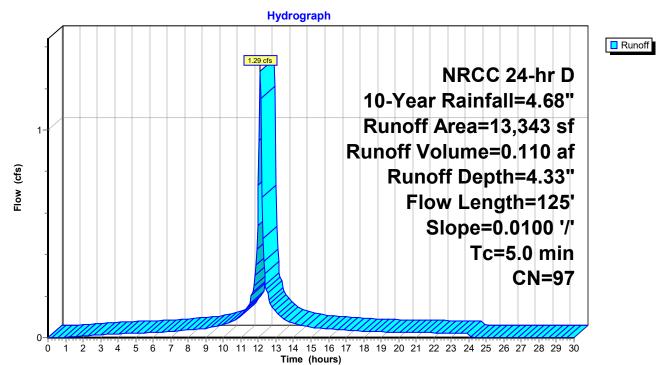
_	A	rea (sf)	CN	Description							
	7,522 39 >75% Grass cover, Good, HSG A										
_		3,222	98	98 Paved parking, HSG A							
		10,744	744 57 Weighted Average								
		7,522		70.01% Pe	rvious Area						
		3,222		29.99% Im	pervious Ar	ea					
	Tc	Length	Slope		Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.6	43	0.0200	1.15		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	1.2	7	0.0200	0.10		Sheet Flow,					
						Grass: Short n= 0.150 P2= 3.13"					
	0.2	27	0.0200	2.28		Shallow Concentrated Flow,					
_						Unpaved Kv= 16.1 fps					
	0.0	77	T . 4 . 1								

2.0 77 Total, Increased to minimum Tc = 5.0 min

Subcatchment E21: TO EX DCB

Summary for Subcatchment E22: TO YD-A

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.29 cfs @ 12.11 hrs, Volume= 0.110 af, Depth= 4.33" Routed to Reach YDA : (new Reach)

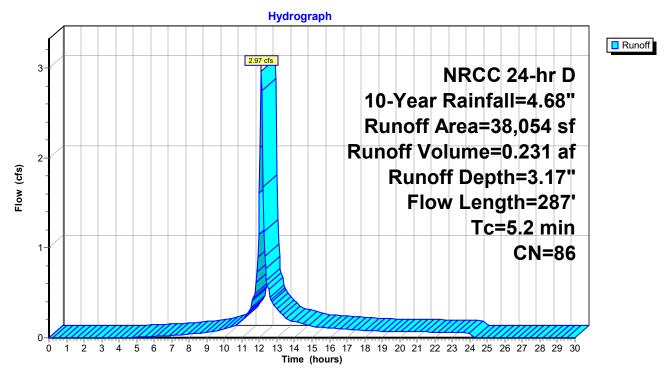
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description						
		7,866	98 Paved parking, HSG A							
_		5,477 96 Gravel surface, HSG A								
	13,343 97 Weighted Average									
		5,477		41.05% Pe	rvious Area					
		7,866		58.95% Im	pervious Ar	ea				
	Tc	Length	Slope	•	• •	Description				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	0.9	50	0.0100	0.90		Sheet Flow, GRAVEL				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.8	75	0.0100) 1.61		Shallow Concentrated Flow, GRAVEL				
_						Unpaved Kv= 16.1 fps				
	17	125	Total	Incroacod	o minimum	$T_{c} = 50$ min				

1.7 125 Total, Increased to minimum Tc = 5.0 min

Subcatchment E22: TO YD-A

Summary for Subcatchment E23: TO DCB-F/G


[49] Hint: Tc<2dt may require smaller dt

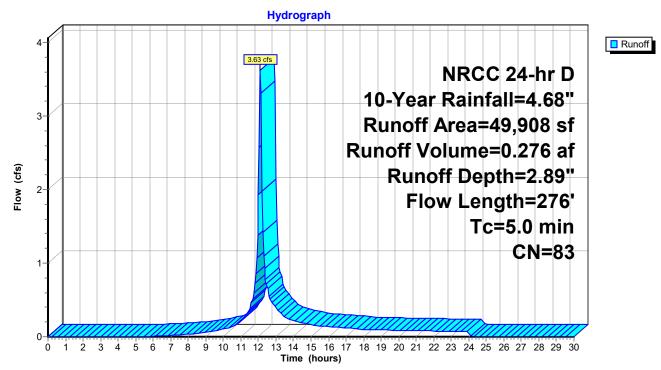
Runoff = 2.97 cfs @ 12.12 hrs, Volume= 0.231 af, Depth= 3.17" Routed to Reach DCB-F : (new Reach)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

	Area (sf) CN Description							
	7,964 39 >75% Grass cover, Good, HSG A							
29,865 98 Paved parking, HSG A								
225 96 Gravel surface, HSG A								
	38,054 86 Weighted Average							
	8,189		21.52% Pe	rvious Area				
	29,865		78.48% Imp	pervious Are	ea			
Tc	Length	Slope			Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.6	21	0.0800	0.21		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.8	29	0.0050	0.61		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
2.8	237	0.0050	1.44		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
5.2	287	Total						

Subcatchment E23: TO DCB-F/G

Summary for Subcatchment E24: TO LOW POINT #2 (LP2)


[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.63 cfs @ 12.11 hrs, Volume= 0.276 af, Depth= 2.89" Routed to Reach LP2 : TO DMH-K1

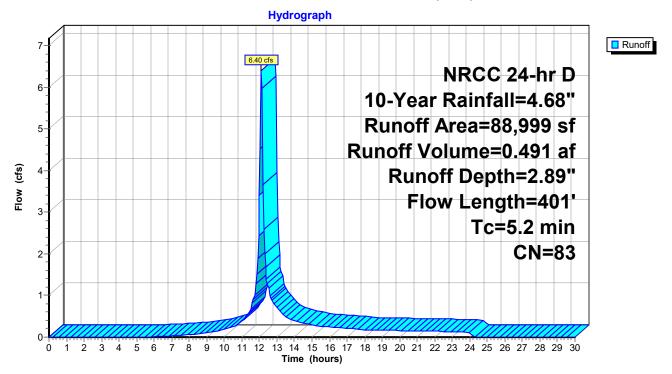
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

	Area (sf)	CN	Description					
	11,774 39 >75% Grass cover, Good, HSG A							
37,475 98 Paved parking, HSG A 659 48 Brush, Poor, HSG A								
								49,908
	12,433		24.91% Pe					
	37,475		75.09% Im	pervious Ar	ea			
Tc	0	Slope			Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
3.4	45	0.0600	0.22		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.1	5	0.0380	0.97		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
1.0	226	0.0380) 3.96		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
4 5	070	Tatal						

4.5 276 Total, Increased to minimum Tc = 5.0 min

Subcatchment E24: TO LOW POINT #2 (LP2)

Summary for Subcatchment E25: TO LOW POINT #3 (LP#3)


[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.40 cfs @ 12.12 hrs, Volume= 0.491 af, Depth= 2.89" Routed to Pond LP3 : OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

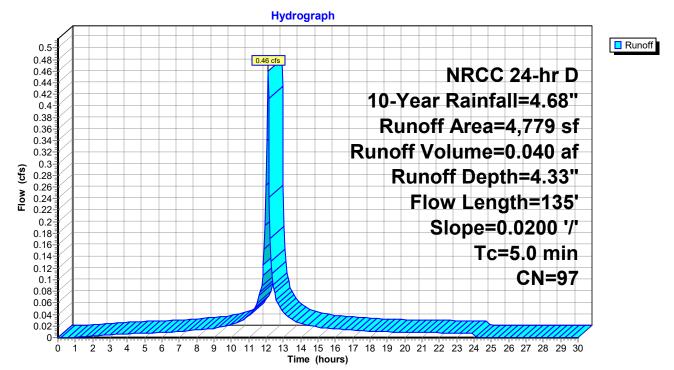
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

A	rea (sf)	CN	Description		
	22,346		>75% Grass cover, Good, HSG A		
	66,653	98	Paved park	ing, HSG A	
	88,999	83	Weighted A	verage	
	22,346		25.11% Pei	vious Area	
	66,653		74.89% Imp	pervious Are	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.7	75	0.1300	0.34		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.0	10	0.1300	5.80		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
1.5	316	0.0300	3.52		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
5.2	401	Total			

Subcatchment E25: TO LOW POINT #3 (LP#3)

Summary for Subcatchment E26: TO DCB-H

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.46 cfs @ 12.11 hrs, Volume= 0.040 af, Depth= 4.33" Routed to Reach DP5 : DCB-H

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

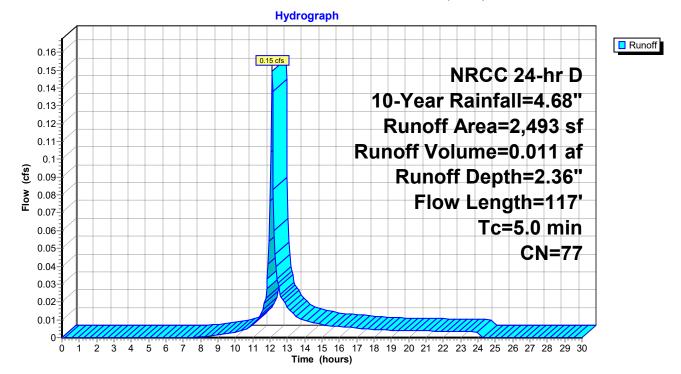
_	A	rea (sf)	CN	Description		
		1,787	98	Paved park	ing, HSG A	N Contraction of the second
_		2,992	96	Gravel surf	ace, HSG A	Α
		4,779	97	Weighted A	verage	
		2,992		62.61% Pe	rvious Area	
		1,787		37.39% Imj	pervious Ar	ea
	Tc	Length	Slope			Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	50	0.0200	1.18		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.5	85	0.0200	2.87		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	4.0	405	T ()			

1.2 135 Total, Increased to minimum Tc = 5.0 min

Subcatchment E26: TO DCB-H

Summary for Subcatchment e27: TO OFF SITE POINT (DP#6)

[49] Hint: Tc<2dt may require smaller dt

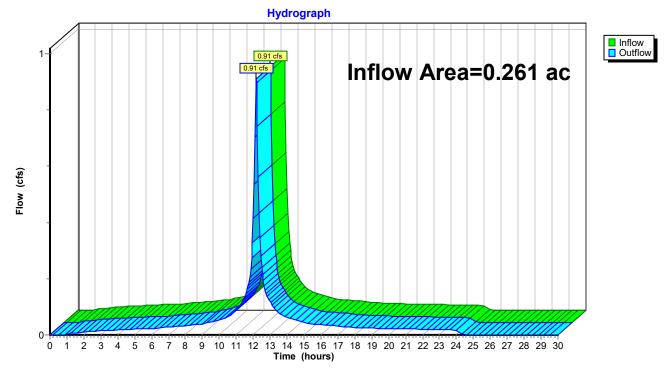

Runoff	=	0.15 cfs @	12.12 hrs,	Volume=	0.011 af,	Depth= 2.36"
Routed	I to Rea	ach DP#6 : ŌF	FSITE LOW	POINT		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description				
		907	39	39 >75% Grass cover, Good, HSG A				
_		1,586	98	Paved park	ing, HSG A			
		2,493	77	Weighted A	verage			
		907		36.38% Pe	rvious Area			
		1,586		63.62% Im	pervious Ar	ea		
	_		. .					
	Tc	Length	Slope	,		Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	4.1	75	0.100	0.30		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.13"		
	0.2	42	0.0300) 3.52		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	12	117	Total	Inoroood	to minimum	$T_{0} = 5.0 \text{ min}$		

4.3 117 Total, Increased to minimum Tc = 5.0 min

Subcatchment e27: TO OFF SITE POINT (DP#6)

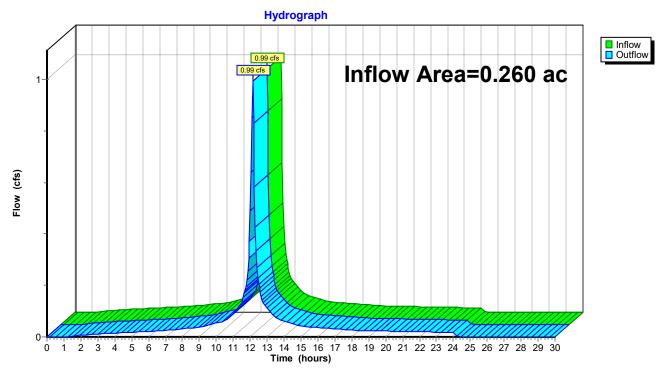


Summary for Reach DCB-A: TO DMH-D

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.261 ac, 80.04% Impervious, Inflow	w Depth = 4.44" for 10-Year event		
Inflow =	0.91 cfs @ 12.18 hrs, Volume=	0.097 af		
Outflow =	0.91 cfs @ 12.18 hrs, Volume=	0.097 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-D : TO DMH-C				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

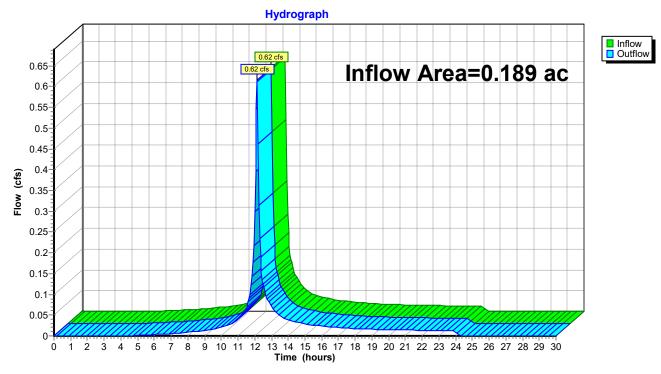

Reach DCB-A: TO DMH-D

Summary for Reach DCB-B: TO DMH-E

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.260 ac, 55.37% Impervious, Inflo	ow Depth = 4.33" for 10-Year event		
Inflow =	0.99 cfs @ 12.15 hrs, Volume=	0.094 af		
Outflow =	0.99 cfs @ 12.15 hrs, Volume=	0.094 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-E : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DCB-B: TO DMH-E

Summary for Reach DCB-C: TO TRUNKLINE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.189 ac, 70.42% Impervious, Inflow	w Depth = 3.17" for 10-Year event		
Inflow =	0.62 cfs @ 12.14 hrs, Volume=	0.050 af		
Outflow =	0.62 cfs @ 12.14 hrs, Volume=	0.050 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-E : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

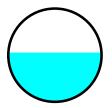
Reach DCB-C: TO TRUNKLINE

Summary for Reach DCB-D: TO DMH-A

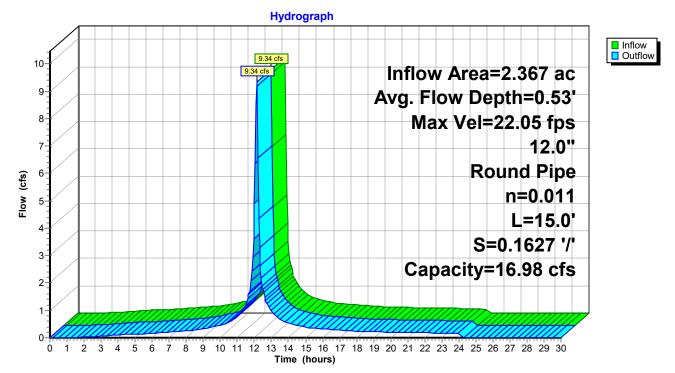
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 2.367 ac, 77.91% Impervious, Inflow Depth =
 4.14" for 10-Year event

 Inflow =
 9.34 cfs @
 12.13 hrs, Volume=
 0.817 af


 Outflow =
 9.34 cfs @
 12.13 hrs, Volume=
 0.817 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH-A : TO DMH-B
 To DMH-B
 0.817 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 22.05 fps, Min. Travel Time= 0.0 min Avg. Velocity = 8.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 6 cf @ 12.13 hrs Average Depth at Peak Storage= 0.53', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 16.98 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 15.0' Slope= 0.1627 '/' Inlet Invert= 469.11', Outlet Invert= 466.67'

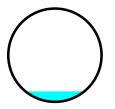
Reach DCB-D: TO DMH-A

Summary for Reach DCB-E: TO DMH-A

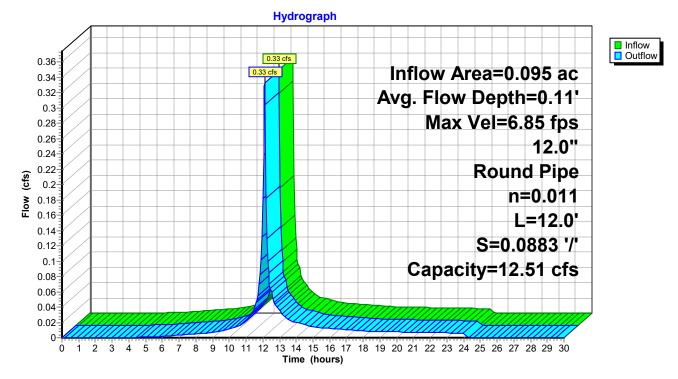
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.095 ac, 82.02% Impervious, Inflow Depth =
 3.27" for 10-Year event

 Inflow =
 0.33 cfs @
 12.11 hrs, Volume=
 0.026 af


 Outflow =
 0.33 cfs @
 12.11 hrs, Volume=
 0.026 af, Atten= 0%, Lag= 0.1 min

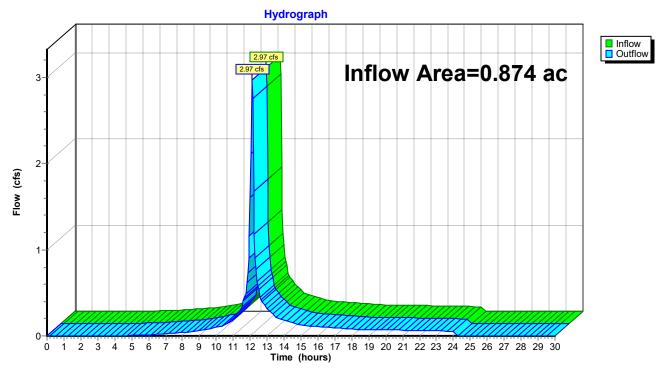
 Routed to Reach DMH-A : TO DMH-B
 To DMH-B
 0.026 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.85 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.42 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.11', Surface Width= 0.63' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 12.51 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 12.0' Slope= 0.0883 '/' Inlet Invert= 467.63', Outlet Invert= 466.57'

Reach DCB-E: TO DMH-A

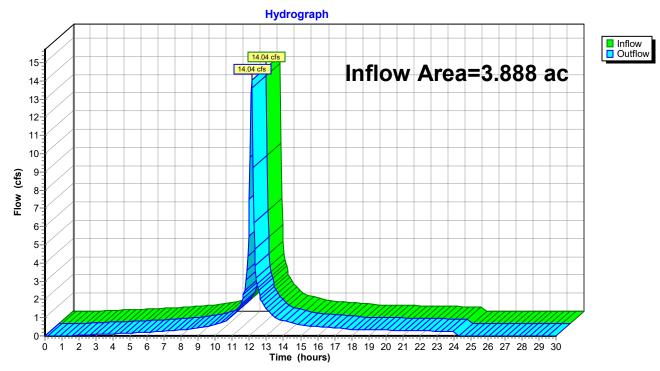


Summary for Reach DCB-F: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.874 ac, 78.48% Impervious, Inflow	Depth = 3.17" for 10-Year event		
Inflow =	2.97 cfs @ 12.12 hrs, Volume=	0.231 af		
Outflow =	2.97 cfs @ 12.12 hrs, Volume=	0.231 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-A : TO DMH-B				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

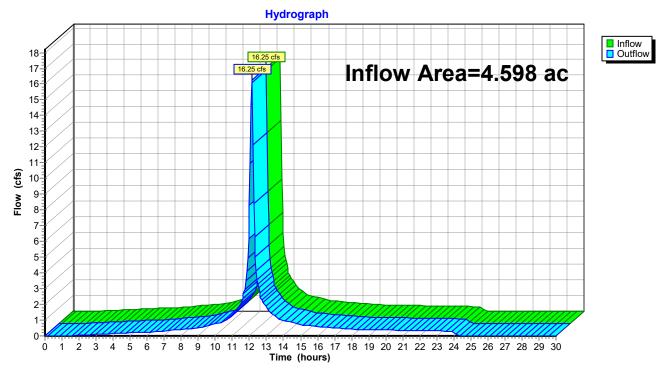

Reach DCB-F: (new Reach)

Summary for Reach DMH-A: TO DMH-B

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.888 ac, 73.60% Impervious, Infl	low Depth = 3.71" for 10-Year event		
Inflow =	14.04 cfs @ 12.13 hrs, Volume=	1.203 af		
Outflow =	14.04 cfs @ 12.13 hrs, Volume=	1.203 af, Atten= 0%, Lag= 0.0 min		
Routed to Pond DMH-B : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DMH-A: TO DMH-B

Summary for Reach DMH-C: TO DP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.598 ac, 72.81% Impervious, Inflo	w Depth = 3.77" for 10-Year event		
Inflow =	16.25 cfs @ 12.14 hrs, Volume=	1.443 af		
Outflow =	16.25 cfs @ 12.14 hrs, Volume=	1.443 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DP2 : MUNICIPAL SYSTEM				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

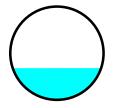
Reach DMH-C: TO DP#1

Summary for Reach DMH-D: TO DMH-C

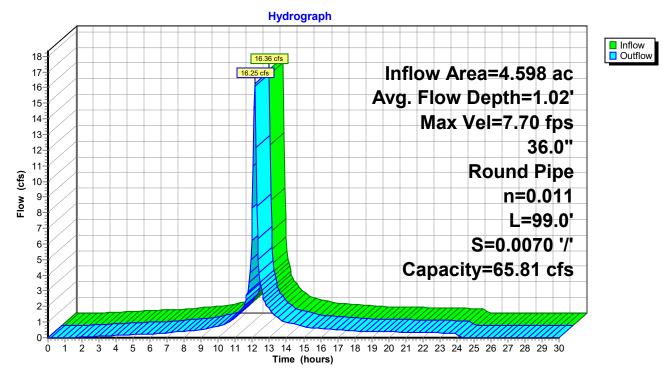
[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach DMH-E OUTLET depth by 0.67' @ 12.15 hrs
[79] Warning: Submerged Pond DMH-B Primary device # 1 INLET by 0.11'

 Inflow Area =
 4.598 ac, 72.81% Impervious, Inflow Depth =
 3.77" for 10-Year event

 Inflow =
 16.36 cfs @
 12.13 hrs, Volume=
 1.443 af


 Outflow =
 16.25 cfs @
 12.14 hrs, Volume=
 1.443 af, Atten= 1%, Lag= 0.3 min

 Routed to Reach DMH-C : TO DP#1
 TO DP#1
 1.443 af, Atten= 1%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.70 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.66 fps, Avg. Travel Time= 0.6 min

Peak Storage= 210 cf @ 12.14 hrs Average Depth at Peak Storage= 1.02', Surface Width= 2.84' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 65.81 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 99.0' Slope= 0.0070 '/' Inlet Invert= 455.90', Outlet Invert= 455.21'

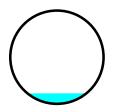
Reach DMH-D: TO DMH-C

Summary for Reach DMH-E: TO DMH-D

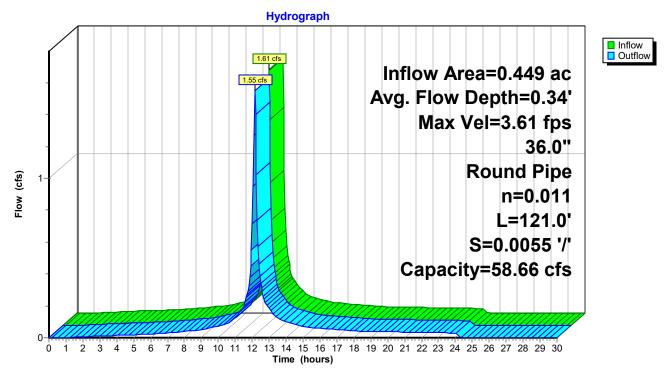
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH-F outlet invert by 0.34' @ 12.15 hrs

 Inflow Area =
 0.449 ac, 61.71% Impervious, Inflow Depth =
 3.84" for 10-Year event

 Inflow =
 1.61 cfs @
 12.14 hrs, Volume=
 0.144 af


 Outflow =
 1.55 cfs @
 12.16 hrs, Volume=
 0.144 af, Atten= 3%, Lag= 0.8 min

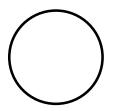
 Routed to Reach DMH-D : TO DMH-C
 TO DMH-C
 0.144 af, Atten= 3%, Lag= 0.8 min

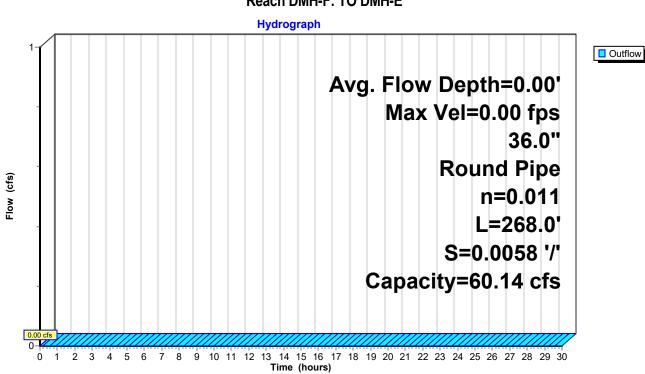

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.61 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.26 fps, Avg. Travel Time= 1.6 min

Peak Storage= 54 cf @ 12.15 hrs Average Depth at Peak Storage= 0.34', Surface Width= 1.90' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 58.66 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 121.0' Slope= 0.0055 '/' Inlet Invert= 456.57', Outlet Invert= 455.90'

Reach DMH-E: TO DMH-D




Summary for Reach DMH-F: TO DMH-E

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.14 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 268.0' Slope= 0.0058 '/' Inlet Invert= 458.13', Outlet Invert= 456.57'

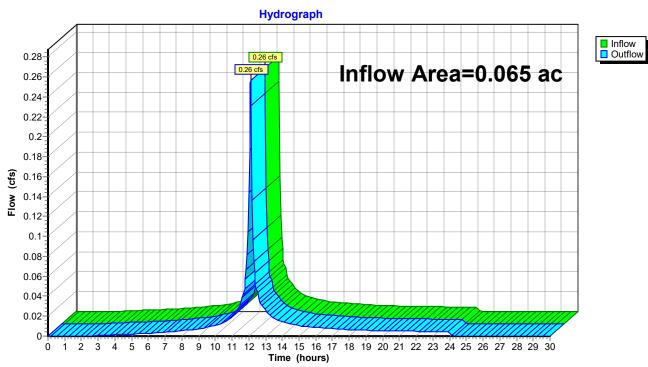
Reach DMH-F: TO DMH-E

Summary for Reach DP#6: OFFSITE LOW POINT

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.057 ac, 63.62% Impervious, Inflow I	Depth = 2.36" for 10-Year event
Inflow =	0.15 cfs @ 12.12 hrs, Volume=	0.011 af
Outflow =	0.15 cfs @ 12.12 hrs, Volume=	0.011 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

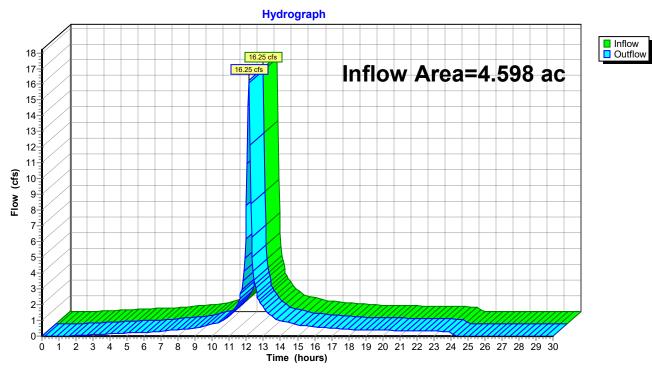

Reach DP#6: OFFSITE LOW POINT

Summary for Reach DP1: GUTTER POINT FRANKLIN (WEST)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.065 ac, 89.73% Impervious, Inflow D	epth = 3.78" for 10-Year event
Inflow =	0.26 cfs @ 12.11 hrs, Volume=	0.021 af
Outflow =	0.26 cfs @ 12.11 hrs, Volume=	0.021 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DP1: GUTTER POINT FRANKLIN (WEST)

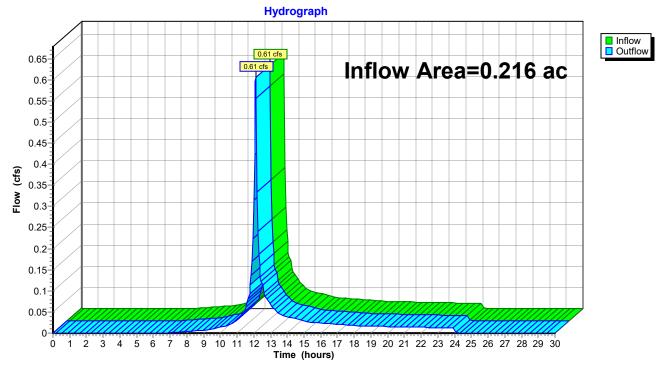
Summary for Reach DP2: MUNICIPAL SYSTEM

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.598 ac, 72.81% Impervious, Inflow	Depth = 3.77" for 10-Year event
Inflow =	16.25 cfs @ 12.14 hrs, Volume=	1.443 af
Outflow =	16.25 cfs @ 12.14 hrs, Volume=	1.443 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

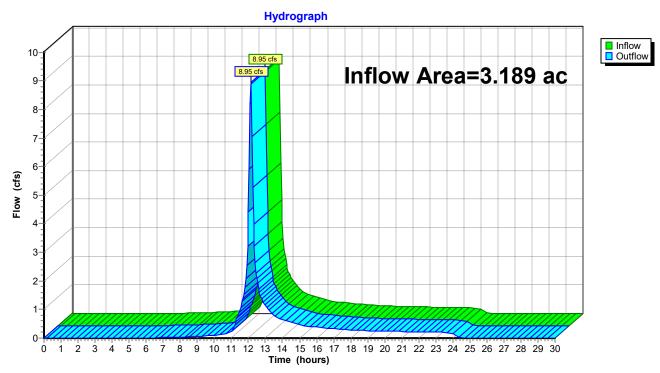
Reach DP2: MUNICIPAL SYSTEM


Summary for Reach DP3: CATCHBASIN (FIRE STATION)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.216 ac, 68.08% Impervious, Inflow I	Depth = 2.53" for 10-Year event
Inflow =	0.61 cfs @ 12.12 hrs, Volume=	0.046 af
Outflow =	0.61 cfs @ 12.12 hrs, Volume=	0.046 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

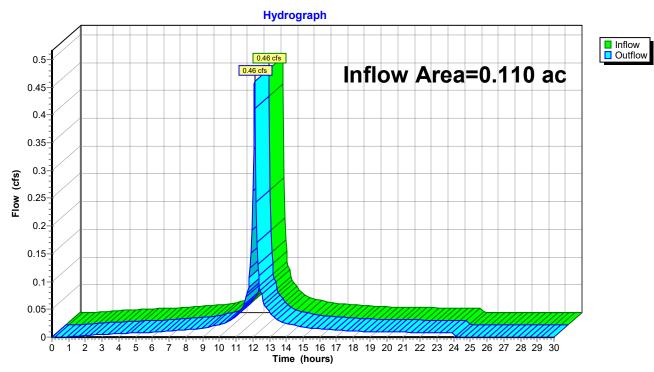


Summary for Reach DP4: DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.189 ac, 74.96% Impervious, Inflow D	epth = 2.70" for 10-Year event
Inflow =	8.95 cfs @ 12.14 hrs, Volume=	0.717 af
Outflow =	8.95 cfs @ 12.14 hrs, Volume=	0.717 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

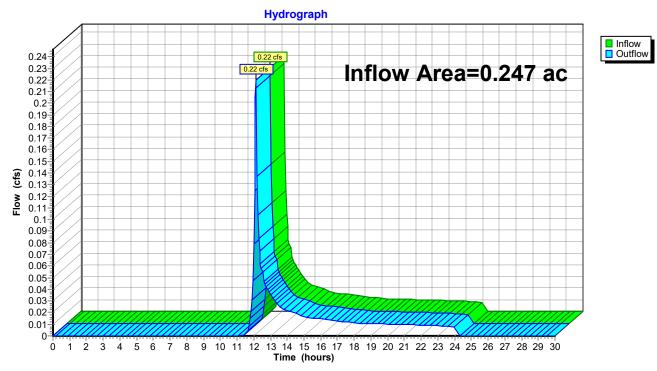

Reach DP4: DMH-K1

Summary for Reach DP5: DCB-H

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.110 ac, 37.39% Impervious, Inflow D	epth = 4.33" for 10-Year event
Inflow =	0.46 cfs @ 12.11 hrs, Volume=	0.040 af
Outflow =	0.46 cfs @ 12.11 hrs, Volume=	0.040 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

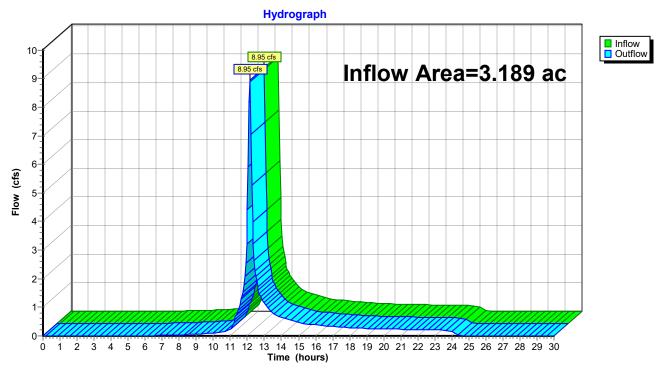

Reach DP5: DCB-H

Summary for Reach EX DCB: EX DCB

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.247 ac, 29.99% Impervious, Inflo	ow Depth = 0.94" for 10-Year event
Inflow =	0.22 cfs @ 12.13 hrs, Volume=	0.019 af
Outflow =	0.22 cfs @ 12.13 hrs, Volume=	0.019 af, Atten= 0%, Lag= 0.0 min
Routed to Rea	ch DMH-A : TO DMH-B	_

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

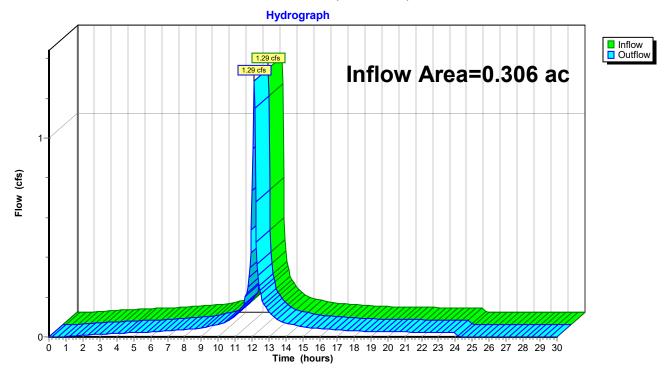

Reach EX DCB: EX DCB

Summary for Reach LP2: TO DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.189 ac, 74.96% Impervious, Inflow I	Depth = 2.70" for 10-Year event
Inflow =	8.95 cfs @ 12.14 hrs, Volume=	0.717 af
Outflow =	8.95 cfs @ 12.14 hrs, Volume=	0.717 af, Atten= 0%, Lag= 0.0 min
Routed to Read	ch DP4 : DMH-K1	-

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach LP2: TO DMH-K1

Summary for Reach YDA: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.306 ac, 58.95% Impervious, Int	flow Depth = 4.33" for 10-Year event
Inflow =	1.29 cfs @ 12.11 hrs, Volume=	0.110 af
Outflow =	1.29 cfs @ 12.11 hrs, Volume=	0.110 af, Atten= 0%, Lag= 0.0 min
Routed to Rea	ch DMH-A : TO DMH-B	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach YDA: (new Reach)

Summary for Pond DMH-B: TO DMH-D

[57] Hint: Peaked at 463.00' (Flood elevation advised)

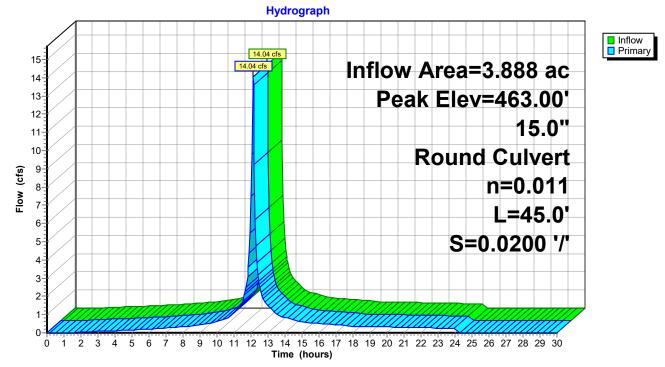
 Inflow Area =
 3.888 ac, 73.60% Impervious, Inflow Depth =
 3.71" for 10-Year event

 Inflow =
 14.04 cfs @
 12.13 hrs, Volume=
 1.203 af

 Outflow =
 14.04 cfs @
 12.13 hrs, Volume=
 1.203 af, Atten= 0%, Lag= 0.0 min

 Primary =
 14.04 cfs @
 12.13 hrs, Volume=
 1.203 af, Atten= 0%, Lag= 0.0 min

 Primary =
 14.04 cfs @
 12.13 hrs, Volume=
 1.203 af

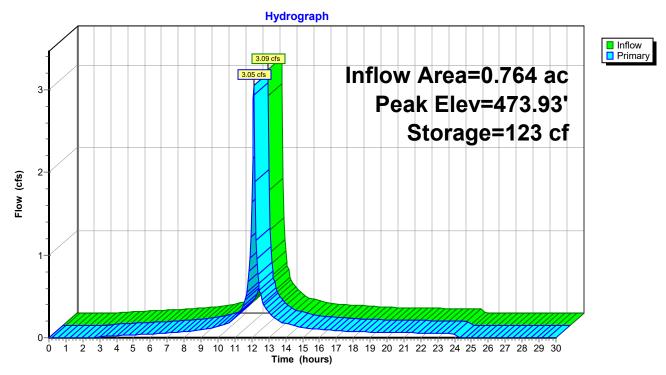

 Routed to Reach DMH-D : TO DMH-C
 1.203 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 463.00' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	456.80'	15.0" Round Culvert L= 45.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 456.80' / 455.90' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=13.46 cfs @ 12.13 hrs HW=462.62' (Free Discharge) 1=Culvert (Inlet Controls 13.46 cfs @ 10.97 fps)

Pond DMH-B: TO DMH-D



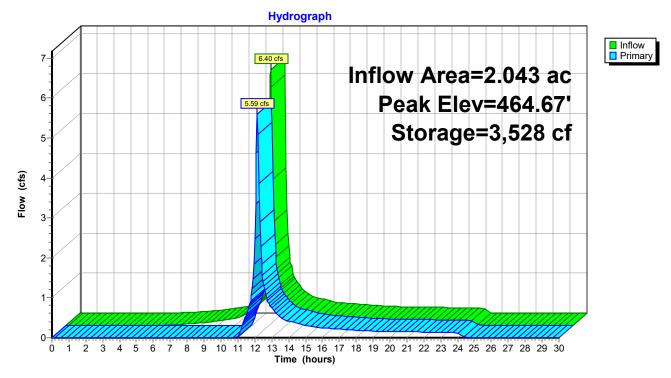
Summary for Pond LP1: TO DCB-D

Inflow Area = 0.764 ac, 43.34% Impervious, Inflow Depth = 3.99" for 10-Year event Inflow = 3.09 cfs @ 12.11 hrs, Volume= 0.254 af Outflow = 3.05 cfs @ 12.13 hrs, Volume= 0.254 af, Atten= 1%, Lag= 0.9 min Primary = 3.05 cfs @ 12.13 hrs, Volume= 0.254 af Routed to Reach DCB-D : TO DMH-A 0.254 af
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 473.93' @ 12.13 hrs Surf.Area= 1,261 sf Storage= 123 cf
Plug-Flow detention time= 2.5 min calculated for 0.253 af (100% of inflow) Center-of-Mass det. time= 1.7 min (784.6 - 782.9)
Volume Invert Avail.Storage Storage Description
#1 473.75' 231 cf Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet)
473.75 120 0 0
474.00 1,725 231 231
Device Routing Invert Outlet Devices
#1 Primary 473.80' 25.0' long x 25.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63
Primary OutFlow Max=2.91 cfs @ 12.13 hrs HW=473.92' (Free Discharge)

1=Broad-Crested Rectangular Weir (Weir Controls 2.91 cfs @ 0.94 fps)

Pond LP1: TO DCB-D

Summary for Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2


Inflow Area	a =	2.043 ac, 74.89% Impervious, Inflow Dept	h = 2.89" for 10-Year event
Inflow	=	6.40 cfs @ 12.12 hrs, Volume= 0.	491 af
Outflow	=	5.59 cfs @ 12.16 hrs, Volume= 0.	441 af, Atten= 13%, Lag= 2.4 min
Primary	=	5.59 cfs @ 12.16 hrs, Volume= 0.	441 af
Routed to Reach LP2 : TO DMH-K1			

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 464.67' @ 12.16 hrs Surf.Area= 9,410 sf Storage= 3,528 cf

Plug-Flow detention time= 88.5 min calculated for 0.440 af (90% of inflow) Center-of-Mass det. time= 35.1 min (870.7 - 835.5)

Volume	Inve	ert Avail.St	orage S	Storage De	escription	
#1	461.5	0' 16,0	070 cf C	Custom S	tage Data (Pr	rismatic) Listed below (Recalc)
Elevatior (feet		Surf.Area (sq-ft)	Inc.Sf (cubic-fe		Cum.Store (cubic-feet)	
461.50	0	133		0	0	
462.00	0	180		78	78	
463.00	0	269		225	303	
464.00	0	376		323	625	
464.50	0	5,887	1,	,566	2,191	
465.00	0	15,961	5,462		7,653	
465.50	0	17,706		,417	16,070	
Device	Routing	Invert	Outlet	Devices		
	0				0 1/1 Side7 v	20.0' breadth Broad-Crested Rectangular Weir
Head (feet) 0.20 0.40				(feet) 0.20	0.40 0.60	0.80 1.00 1.20 1.40 1.60 70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=5.47 cfs @ 12.16 hrs HW=464.67' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 5.47 cfs @ 1.10 fps)

Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E11: TO DP#1	Runoff Area=2,852 sf 89.73% Impervious Runoff Depth=4.95" Flow Length=98' Slope=0.0170 '/' Tc=5.0 min CN=92 Runoff=0.33 cfs 0.027 af
Subcatchment E12: TO DCB-A	Runoff Area=11,373 sf 80.04% Impervious Runoff Depth=5.64" Flow Length=209' Tc=10.9 min CN=98 Runoff=1.14 cfs 0.123 af
Subcatchment E14: TO DCB-B	Runoff Area=11,310 sf 55.37% Impervious Runoff Depth=5.52" Flow Length=171' Tc=8.1 min CN=97 Runoff=1.26 cfs 0.120 af
Subcatchment E15: TO DCB-C	Runoff Area=8,235 sf 70.42% Impervious Runoff Depth=4.30" Flow Length=161' Slope=0.0110 '/' Tc=7.0 min CN=86 Runoff=0.82 cfs 0.068 af
Subcatchment E16: TO LOW POINT	Runoff Area=33,282 sf 43.34% Impervious Runoff Depth=5.18" Flow Length=183' Tc=5.0 min CN=94 Runoff=3.95 cfs 0.330 af
Subcatchment E18: TO DCB-D	Runoff Area=69,813 sf 94.39% Impervious Runoff Depth=5.41" Flow Length=305' Tc=7.0 min CN=96 Runoff=7.98 cfs 0.722 af
Subcatchment E19: TO DCB-E	Runoff Area=4,127 sf 82.02% Impervious Runoff Depth=4.40" Flow Length=177' Slope=0.0090 '/' Tc=5.0 min CN=87 Runoff=0.44 cfs 0.035 af
Subcatchment E20: TO DP#3	Runoff Area=9,426 sf 68.08% Impervious Runoff Depth=3.57" Flow Length=137' Tc=5.0 min CN=79 Runoff=0.85 cfs 0.064 af
Subcatchment E21: TO EX DCB	Runoff Area=10,744 sf 29.99% Impervious Runoff Depth=1.60" Flow Length=77' Slope=0.0200 '/' Tc=5.0 min CN=57 Runoff=0.41 cfs 0.033 af
Subcatchment E22: TO YD-A	Runoff Area=13,343 sf 58.95% Impervious Runoff Depth=5.52" Flow Length=125' Slope=0.0100 '/' Tc=5.0 min CN=97 Runoff=1.62 cfs 0.141 af
Subcatchment E23: TO DCB-F/G	Runoff Area=38,054 sf 78.48% Impervious Runoff Depth=4.30" Flow Length=287' Tc=5.2 min CN=86 Runoff=3.97 cfs 0.313 af
Subcatchment E24: TO LOW POINT #2 (LP2)	Runoff Area=49,908 sf 75.09% Impervious Runoff Depth=3.98" Flow Length=276' Tc=5.0 min CN=83 Runoff=4.95 cfs 0.380 af
Subcatchment E25: TO LOW POINT #3 (LP#3)	Runoff Area=88,999 sf 74.89% Impervious Runoff Depth=3.98" Flow Length=401' Tc=5.2 min CN=83 Runoff=8.72 cfs 0.678 af
Subcatchment E26: TO DCB-H	Runoff Area=4,779 sf 37.39% Impervious Runoff Depth=5.52" Flow Length=135' Slope=0.0200 '/' Tc=5.0 min CN=97 Runoff=0.58 cfs 0.051 af
Subcatchment e27: TO OFF SITE POINT (DP#6)	Runoff Area=2,493 sf 63.62% Impervious Runoff Depth=3.37" Flow Length=117' Tc=5.0 min CN=77 Runoff=0.21 cfs 0.016 af
Reach DCB-A: TO DMH-D	Inflow=1.14 cfs 0.123 af

Outflow=1.14 cfs 0.123 af

Prepared by Hannigan Engineering Inc Printed 5/4/2023 HydroCAD® 10.20-21 sin 00840 @ 2022 HydroCAD Software Solutions LLC Page 113 Reach DCB-B: TO DMH-E Inflow=1.26 cfs 0.120 af Outflow=1.26 cfs 0.120 af Outflow=1.26 cfs 0.120 af Outflow=0.82 cfs 0.068 af Outflow=0.82 cfs 0.068 af I.2.0" Round Pipe n=0.011 Inflow=6.22 may be the solution of the solutis of the solution of the solution of the solut
Reach DCB-B: TO DMH-E Inflow=1.26 cfs 0.120 af Outflow=1.26 cfs 0.120 af Reach DCB-C: TO TRUNKLINE Inflow=0.82 cfs 0.068 af Outflow=0.82 cfs 0.068 af Reach DCB-D: TO DMH-A Avg. Flow Depth=0.62' Max Vel=23.30 fps Inflow=11.85 cfs 1.052 af 12.0" Round Pipe n=0.011 L=15.0' S=0.1627'/ Capacity=16.98 cfs Outflow=0.44 cfs 0.035 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0683 '/ Capacity=16.98 cfs Outflow=0.44 cfs 0.035 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af 0utflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Outflow=18.15 cfs 1.573 af Outflow=10.011 L=90' S=0.0070'/ Capacity=65.81 cfs Outflow=2.10 cfs 1.883 af 36.0" Round Pipe n=0.011 L=90' S=0.0070'/ Capacity=65.81 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=12.10' S=0.0055'/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=50.14 cfs 0.0070 af x24=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=50.61 cfs 0.0070 af x24=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.01' Ax Vel=3.89 fps Inflow=2.07 cfs 0.187 af Outflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af
Outflow=1.26 cfs 0.120 af Reach DCB-C: TO TRUNKLINE Inflow=0.82 cfs 0.068 af Reach DCB-D: TO DMH-A Avg. Flow Depth=0.62' Max Vel=23.30 fps Inflow=1.85 cfs 1.052 af Reach DCB-D: TO DMH-A Avg. Flow Depth=0.62' Max Vel=23.30 fps Inflow=0.82 cfs 0.0168 af Reach DCB-E: TO DMH-A Avg. Flow Depth=0.62' Max Vel=2.33.0 fps Inflow=1.85 cfs 1.052 af Reach DCB-F: (new Reach) Avg. Flow Depth=0.13' Max Vel=7.46 fps Inflow=0.44 cfs 0.035 af Reach DMH-A: TO DMH-B Inflow=0.911 L=12.0'' S=0.0883'/' Capacity=12.51 cfs Outflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Outflow=21.00 cfs 1.883 af Outflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=0.3'' Max Vel=8.26 fps Inflow=2.01 cfs 0.116 af Outflow=2.01 cfs 0.167 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.33' Max Vel=3.89 fps Inflow=2.01 cfs 0.183 af Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.167 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.167 af Avg.
Outflow=1.26 cfs 0.120 af Reach DCB-C: TO TRUNKLINE Inflow=0.82 cfs 0.068 af Reach DCB-D: TO DMH-A Avg. Flow Depth=0.62' Max Vel=23.30 fps Inflow=1.85 cfs 1.052 af Reach DCB-D: TO DMH-A Avg. Flow Depth=0.62' Max Vel=23.30 fps Inflow=0.82 cfs 0.0168 af Reach DCB-E: TO DMH-A Avg. Flow Depth=0.62' Max Vel=2.33.0 fps Inflow=1.85 cfs 1.052 af Reach DCB-F: (new Reach) Avg. Flow Depth=0.13' Max Vel=7.46 fps Inflow=0.44 cfs 0.035 af Reach DMH-A: TO DMH-B Inflow=0.911 L=12.0'' S=0.0883'/' Capacity=12.51 cfs Outflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Outflow=21.00 cfs 1.883 af Outflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=0.3'' Max Vel=8.26 fps Inflow=2.01 cfs 0.116 af Outflow=2.01 cfs 0.167 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.33' Max Vel=3.89 fps Inflow=2.01 cfs 0.183 af Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.167 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.167 af Avg.
Outflow=0.82 cfs 0.068 af Reach DCB-D: TO DMH-A Avg. Flow Depth=0.62' Max Vel=23.30 fps Inflow=11.85 cfs 1.052 af 12.0" Round Pipe n=0.011 L=15.0' S=0.1627 1' Capacity=16.98 cfs Outflow=11.85 cfs 1.052 af Reach DCB-E: TO DMH-A Avg. Flow Depth=0.13' Max Vel=7.46 fps Inflow=0.44 cfs 0.035 af Reach DCB-F: (new Reach) Inflow=0.011 L=12.0' S=0.0883 1' Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af Reach DCB-F: (new Reach) Inflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=18.15 cfs 1.573 af Reach DMH-C: TO DP#1 Inflow=18.15 cfs 1.573 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.10 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.03' Max Vel=5.81 cfs 0.011 or 5.188 af 36.0" Round Pipe n=0.011 L=90.0' S=0.0070 1' Capacity=56.81 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=12.0' S=0.055 1'' Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0056 1'' Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0056 1'' Capacity=58.66 cfs Outflow=0.00 cfs 0.000 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.03' Max Vel=3.89 fps Inflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 1'' Capacity=58.66 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.01 flow=0.01 flow=0.00 cfs 0.000 af
Outflow=0.82 cfs 0.068 af Reach DCB-D: TO DMH-A Avg. Flow Depth=0.62' Max Vel=23.30 fps Inflow=11.85 cfs 1.052 af 12.0" Round Pipe n=0.011 L=15.0' S=0.1627 1' Capacity=16.98 cfs Outflow=11.85 cfs 1.052 af Reach DCB-E: TO DMH-A Avg. Flow Depth=0.13' Max Vel=7.46 fps Inflow=0.44 cfs 0.035 af Reach DCB-F: (new Reach) Inflow=0.011 L=12.0' S=0.0883 1' Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af Reach DCB-F: (new Reach) Inflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=18.15 cfs 1.573 af Reach DMH-C: TO DP#1 Inflow=18.15 cfs 1.573 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.10 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.03' Max Vel=5.81 cfs 0.011 or 5.188 af 36.0" Round Pipe n=0.011 L=90.0' S=0.0070 1' Capacity=56.81 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=12.0' S=0.055 1'' Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0056 1'' Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0056 1'' Capacity=58.66 cfs Outflow=0.00 cfs 0.000 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.03' Max Vel=3.89 fps Inflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 1'' Capacity=58.66 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.01 flow=0.01 flow=0.00 cfs 0.000 af
Reach DCB-D: TO DMH-A Avg. Flow Depth=0.62' Max Vel=23.30 fps Inflow=11.85 cfs 1.052 af 12.0'' Round Pipe n=0.011 L=15.0' S=0.1627'/ Capacity=16.98 cfs Outflow=11.85 cfs 1.052 af 12.0'' Round Pipe n=0.011 L=12.0' S=0.0883'/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af 12.0'' Round Pipe n=0.011 L=12.0' S=0.0883'/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af Outflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Reach DCB-F: (new Reach) Reach DCB-F: (new Reach) Inflow=18.15 cfs 1.573 af Outflow=11.85 cfs 1.573 af Outflow=2.100 cfs 1.883 af Outflow=12.00 cfs 1.883 af Outflow=12.00 cfs 1.883 af Outflow=12.00 cfs 1.883 af Outflow=12.00 cfs 1.883 af 36.0'' Round Pipe n=0.011 L=99.0' S=0.0070'/ Capacity=65.81 cfs Outflow=2.01 cfs 0.187 af 36.0'' Round Pipe n=0.011 L=121.0' S=0.0055'/ Capacity=58.66 cfs Outflow=2.00 cfs 0.187 af 36.0'' Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=60.14 cfs 0.016 af Outflow=0.00' fps 36.0'' Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=60.14 cfs 0.016 of 0utflow=0.00' fps 36.0'' Round Pipe n=0.011 L=268.0' S=0.0058'/ Capacity=60.14 cfs 0.016 of 0utflow=0.01 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT
12.0" Round Pipe n=0.011 L=15.0' S=0.1627 '/ Capacity=16.98 cfs Outflow=11.85 cfs 1.052 af Reach DCB-E: TO DMH-A Avg. Flow Depth=0.13' Max Vel=7.46 fps Inflow=0.44 cfs 0.035 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af Reach DCB-F: (new Reach) Inflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=3.97 cfs 0.313 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.10 cfs 1.883 af Reach DMH-E: TO DMH-C Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=21.00 cfs 1.883 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=12.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.00 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.011 L=121.0' S=0.0055 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.03 cfs 0.027 af
12.0" Round Pipe n=0.011 L=15.0' S=0.1627 '/ Capacity=16.98 cfs Outflow=11.85 cfs 1.052 af Reach DCB-E: TO DMH-A Avg. Flow Depth=0.13' Max Vel=7.46 fps Inflow=0.44 cfs 0.035 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af Reach DCB-F: (new Reach) Inflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=3.97 cfs 0.313 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.10 cfs 1.883 af Reach DMH-E: TO DMH-C Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=21.00 cfs 1.883 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=12.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.00 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.011 L=121.0' S=0.0055 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.03 cfs 0.027 af
Reach DCB-E: TO DMH-A Avg. Flow Depth=0.13' Max Vel=7.46 fps Inflow=0.44 cfs 0.035 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af 12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af Outflow=3.97 cfs 0.313 af Outflow=18.15 cfs 1.573 af Outflow=10.00 cfs 1.883 af Outflow=10.00 cfs 1.883 af Outflow=21.00 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.10 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DMH-F: TO DMH-E Reach DP#6: OFFSITE LOW POINT Inflow Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT FRANKLIN (WEST)
12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af Reach DCB-F: (new Reach) Inflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=3.97 cfs 0.313 af Reach DMH-C: TO DP#1 Inflow=18.15 cfs 1.573 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=65.81 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=210.0' S=0.0055 '/ Capacity=65.81 cfs Outflow=0.00 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0055 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP#6: OFFSITE LOW POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
12.0" Round Pipe n=0.011 L=12.0' S=0.0883 '/ Capacity=12.51 cfs Outflow=0.44 cfs 0.035 af Reach DCB-F: (new Reach) Inflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=3.97 cfs 0.313 af Reach DMH-C: TO DP#1 Inflow=18.15 cfs 1.573 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=65.81 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=210.0' S=0.0055 '/ Capacity=65.81 cfs Outflow=0.00 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0055 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP#6: OFFSITE LOW POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
Reach DCB-F: (new Reach) Inflow=3.97 cfs 0.313 af Outflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=18.15 cfs 1.573 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af Reach DMH-E: TO DMH-C Avg. Flow Depth=0.011 a6.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=0.00 cfs 0.000 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.03' Kax Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=58.66 cfs Outflow=0.00 cfs 0.000 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.01' Kay Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.021 cfs 0.016 af Outflow=0.21 cfs 0.016 af Inflow
Outflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=18.15 cfs 1.573 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.10 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.00' fs Inflow=0.21 cfs 0.187 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af
Outflow=3.97 cfs 0.313 af Reach DMH-A: TO DMH-B Inflow=18.15 cfs 1.573 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.10 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.00 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=21.00 cfs 1.883 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.30' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
Cutflow=18.15 cfs 1.573 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.00 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.38' Max Vel=8.26 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=66.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
Cutflow=18.15 cfs 1.573 af Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.00 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.38' Max Vel=8.26 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=66.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
Reach DMH-C: TO DP#1 Inflow=21.00 cfs 1.883 af Outflow=21.00 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow
Note of the DMH-OF TO DMH-C Outflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
Note of the DMH-OF TO DMH-C Outflow=21.00 cfs 1.883 af Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
Reach DMH-D: TO DMH-C Avg. Flow Depth=1.17' Max Vel=8.26 fps Inflow=21.12 cfs 1.883 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/ Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/ Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/ Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0055 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=21.00 cfs 1.883 af Reach DMH-E: TO DMH-D Avg. Flow Depth=0.38' Max Vel=3.89 fps Inflow=2.07 cfs 0.187 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0055 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.33 cfs 0.027 af
36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=2.01 cfs 0.187 af Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.33 cfs 0.027 af
Reach DMH-F: TO DMH-E Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Inflow=0.23 cfs 0.027 af
36.0" Round Pipe n=0.011 L=268.0' S=0.0058 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Inflow=0.23 cfs 0.027 af
Reach DP#6: OFFSITE LOW POINT Inflow=0.21 cfs 0.016 af Outflow=0.21 cfs 0.016 af Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
Reach DP1: GUTTER POINT FRANKLIN (WEST) Outflow=0.21 cfs 0.016 af
Reach DP1: GUTTER POINT FRANKLIN (WEST) Inflow=0.33 cfs 0.027 af
Outflow=0.33 cts 0.027 at
Reach DP2: MUNICIPAL SYSTEM Inflow=21.00 cfs 1.883 af
Outflow=21.00 cfs 1.883 af
Reach DP3: CATCHBASIN (FIRE STATION) Inflow=0.85 cfs 0.064 af
Outflow=0.85 cfs 0.064 af
Reach DP4: DMH-K1 Inflow=12.28 cfs 1.007 af Outflow=12.28 cfs 1.007 af
Outilow-12.28 Cts 1.007 at
Reach DP5: DCB-H Inflow=0.58 cfs 0.051 af
Outflow=0.58 cfs 0.051 af
Reach EX DCB: EX DCB Inflow=0.41 cfs 0.033 af Outflow=0.41 cfs 0.033 af

NRCC 24-hr D 25-Year Rainfall=5.88"

3030-Pre-R1

Inflow=12.28 cfs 1.007 af Outflow=12.28 cfs 1.007 af

Inflow=1.62 cfs 0.141 af Outflow=1.62 cfs 0.141 af

Peak Elev=466.74' Inflow=18.15 cfs 1.573 af 15.0" Round Culvert n=0.011 L=45.0' S=0.0200 '/' Outflow=18.15 cfs 1.573 af

Peak Elev=473.95' Storage=153 cf Inflow=3.95 cfs 0.330 af Outflow=3.89 cfs 0.329 af

Reach YDA: (new Reach)

Reach LP2: TO DMH-K1

Pond DMH-B: TO DMH-D

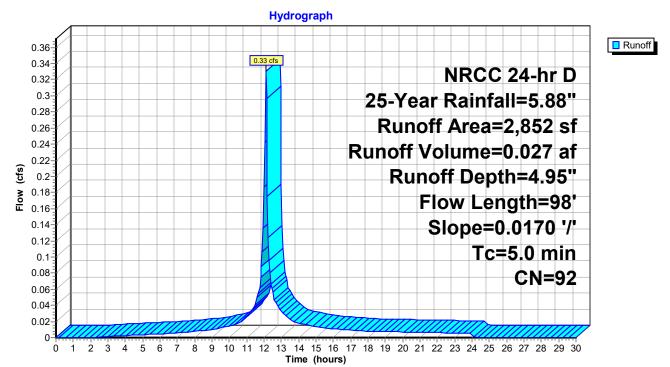
Pond LP1: TO DCB-D

Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS Peak Elev=464.71' Storage=3,920 cf Inflow=8.72 cfs 0.678 af Outflow=7.69 cfs 0.627 af

Total Runoff Area = 8.235 ac Runoff Volume = 3.099 af Average Runoff Depth = 4.52" 26.88% Pervious = 2.214 ac 73.12% Impervious = 6.022 ac

Summary for Subcatchment E11: TO DP#1

[49] Hint: Tc<2dt may require smaller dt

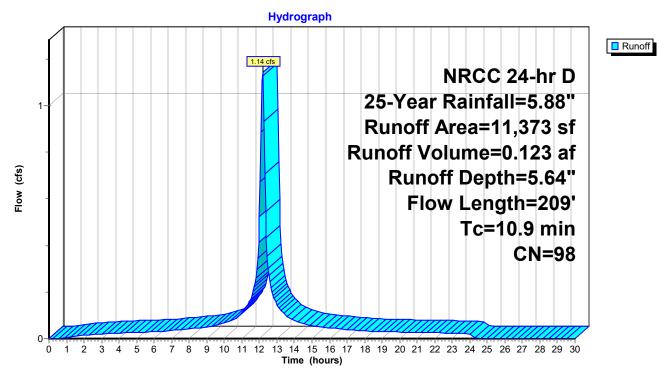

Runoff = 0.33 cfs @ 12.11 hrs, Volume= 0.027 af, Depth= 4.95" Routed to Reach DP1 : GUTTER POINT FRANKLIN (WEST)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

_	A	rea (sf)	CN	Description		
		293	39	>75% Gras	s cover, Go	bod, HSG A
_		2,559	98	Paved park	ing, HSG A	Α
		2,852	92	Weighted A	verage	
		293		10.27% Pe	rvious Area	
	2,559 89.73% Impervious Are					ea
	Tc	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.8	50	0.0170	1.11		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.3	48	0.0170	2.65		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
_		00	T . 4 . 1			

1.1 98 Total, Increased to minimum Tc = 5.0 min

Subcatchment E11: TO DP#1

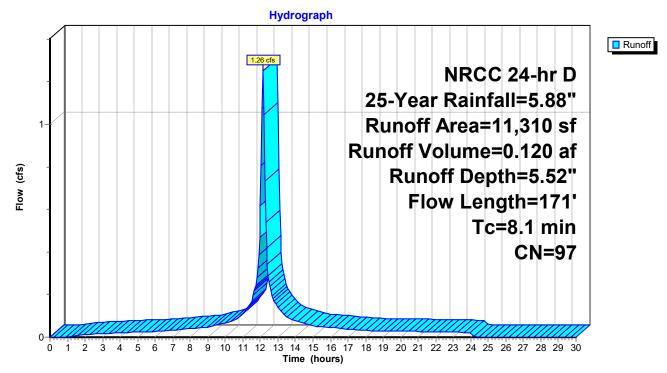

Summary for Subcatchment E12: TO DCB-A

Runoff = 1.14 cfs @ 12.18 hrs, Volume= 0.123 af, Depth= 5.64" Routed to Reach DCB-A : TO DMH-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

_	A	rea (sf)	CN	Description			
		9,103	98	Paved park	ing, HSG A		
_		2,270	96	Gravel surfa	ace, HSG A		
		11,373	98	Weighted A	verage		
2,270 19.96% Pervious Area							
		9,103		80.04% Imp	pervious Are	ea	
	Tc	Length	Slope	•	Capacity	Description	
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)		
	9.7	75	0.0120	0.13		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.13"	
	0.1	9	0.0120	1.76		Shallow Concentrated Flow, GRASS	
						Unpaved Kv= 16.1 fps	
	1.1	125	0.0080	1.82		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	10.9	209	Total				

Subcatchment E12: TO DCB-A


Summary for Subcatchment E14: TO DCB-B

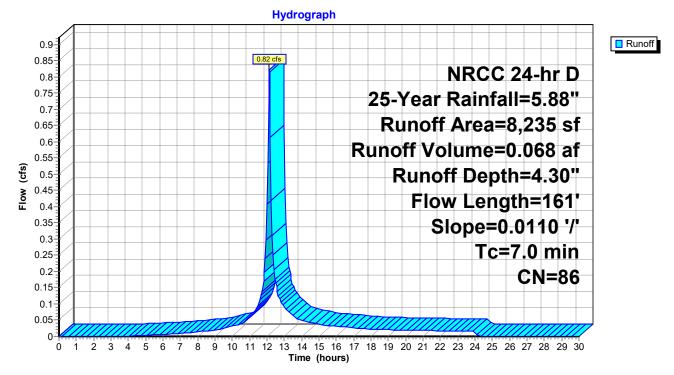
Runoff = 1.26 cfs @ 12.15 hrs, Volume= 0.120 af, Depth= 5.52" Routed to Reach DCB-B : TO DMH-E

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

_	A	rea (sf)	CN	Description		
		6,262	98	Paved park	ing, HSG A	
		5,048	96	Gravel surfa	ace, HSG A	Ι
		11,310	97	Weighted A	verage	
		5,048		44.63% Pe	rvious Area	
		6,262		55.37% Im	pervious Ar	ea
	Tc	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	7.0	50	0.0120	0.12		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	1.1	121	0.008) 1.82		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	8.1	171	Total			

Subcatchment E14: TO DCB-B

Summary for Subcatchment E15: TO DCB-C


Runoff = 0.82 cfs @ 12.14 hrs, Volume= 0.068 af, Depth= 4.30" Routed to Reach DCB-C : TO TRUNKLINE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

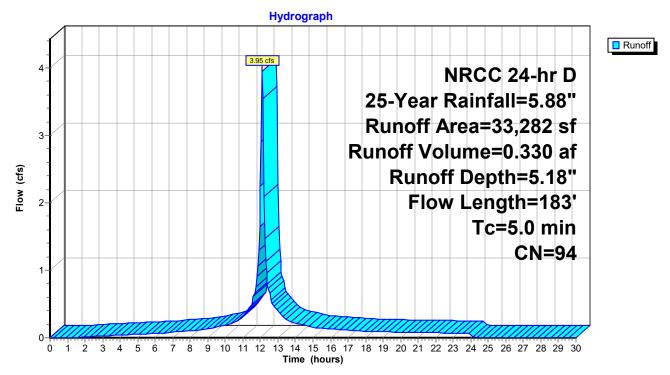
	Area (sf)	CN	Description		
	1,643	39	>75% Gras	s cover, Go	ood, HSG A
	5,799	98	Paved park	ing, HSG A	
	793	96	Gravel surfa	ace, HSG A	Ι
	8,235	86	Weighted A	verage	
	2,436		29.58% Pe	rvious Area	
	5,799		70.42% Imp	pervious Ar	ea
T	c Length	Slope	e Velocity	Capacity	Description
(min) (feet)	(ft/ft) (ft/sec)	(cfs)	
5.8	3 38	0.0110	0.11		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.3	3 12	0.0110	0.70		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
0.9	9 111	0.0110	2.13		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps

7.0 161 Total

Subcatchment E15: TO DCB-C

Summary for Subcatchment E16: TO LOW POINT

[49] Hint: Tc<2dt may require smaller dt


Runoff = 3.95 cfs @ 12.11 hrs, Volume= 0.330 af, Depth= 5.18" Routed to Pond LP1 : TO DCB-D

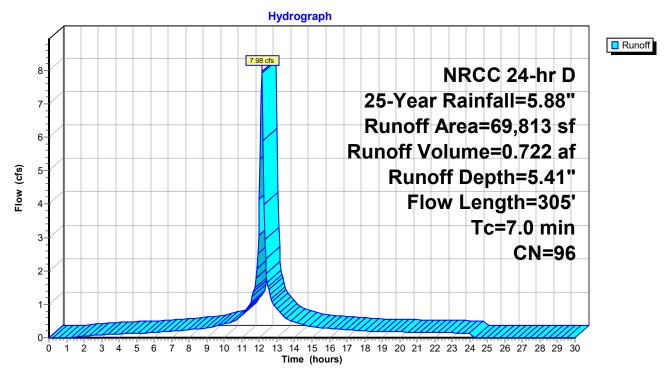
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

A	Area (sf)	CN	Description				
	1,882	39	>75% Gras	s cover, Go	bod, HSG A		
	14,426	98	Paved park	ing, HSG A	N Contraction of the second seco		
	16,974	96	Gravel surf	ace, HSG A	λ		
33,282 94 Weighted Average							
18,856 56.66% Pervious Area							
	14,426		43.34% Im	pervious Ar	ea		
_				. .			
Tc	0	Slope		Capacity	Description		
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
1.6	21	0.0800	0.21		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.13"		
0.9	29	0.0040	0.56		Sheet Flow, GRAVEL		
					Smooth surfaces n= 0.011 P2= 3.13"		
2.2	133	0.0040) 1.02		Shallow Concentrated Flow,		
					Unpaved Kv= 16.1 fps		
47	400	T ()					

4.7 183 Total, Increased to minimum Tc = 5.0 min

Subcatchment E16: TO LOW POINT

Summary for Subcatchment E18: TO DCB-D


Runoff = 7.98 cfs @ 12.14 hrs, Volume= 0.722 af, Depth= 5.41" Routed to Reach DCB-D : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

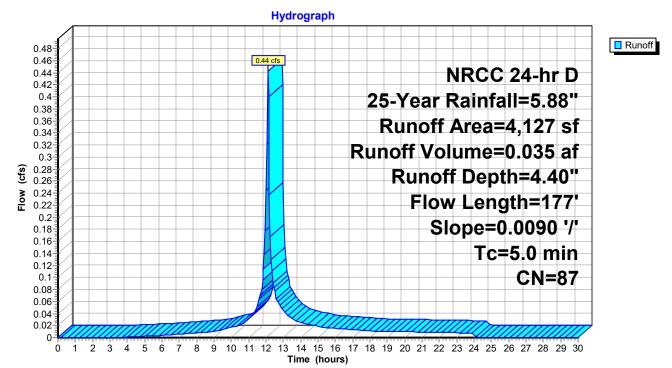
	A	rea (sf)	CN	Description		
		2,530	39	>75% Gras	s cover, Go	ood, HSG A
		65,894	98	Paved park	ing, HSG A	
_		1,389	96	Gravel surfa	ace, HSG A	1
		69,813	96	Weighted A	verage	
		3,919		5.61% Perv	vious Area	
		65,894		94.39% Imp	pervious Are	ea
	-		0		o	
	TC	Length	Slope	•	Capacity	Description
-	(min)	(feet)	(ft/ft		(cfs)	
	3.8	23	0.0120	0.10		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.6	27	0.0090	0.76		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.2	107	0.0090) 1.53		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	1.4	148	0.0075	5 1.76		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	70	205	Total			

7.0 305 Total

Subcatchment E18: TO DCB-D

Summary for Subcatchment E19: TO DCB-E

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.44 cfs @ 12.11 hrs, Volume= 0.035 af, Depth= 4.40" Routed to Reach DCB-E : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

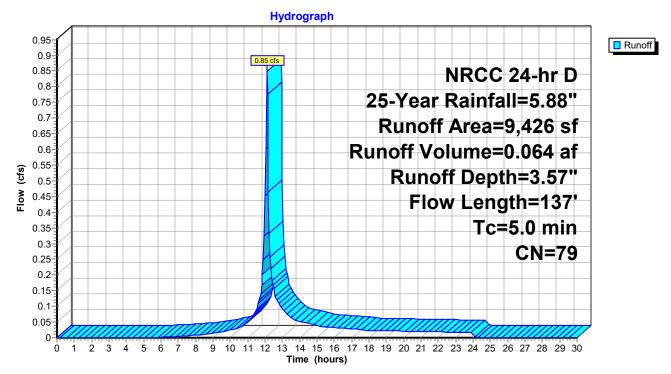
_	A	rea (sf)	CN	Description					
		742	39	>75% Gras	s cover, Go	od, HSG A			
_		3,385	98	Paved park	ing, HSG A				
		4,127	87	Weighted A	verage				
	742 17.98% Pervious Area								
	3,385 82.02% Impervious Area								
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	1.0	50	0.0090	0.86		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	1.1	127	0.0090) 1.93		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	2.1	177	Total	Inorogood	la minimum				

2.1 177 Total, Increased to minimum Tc = 5.0 min

Subcatchment E19: TO DCB-E

Summary for Subcatchment E20: TO DP#3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.85 cfs @ 12.11 hrs, Volume= 0.064 af, Depth= 3.57" Routed to Reach DP3 : CATCHBASIN (FIRE STATION)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

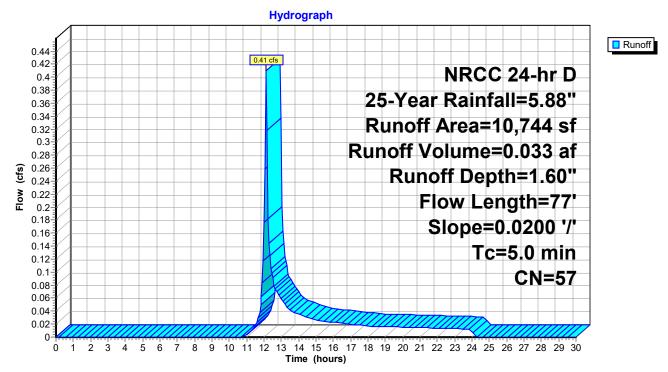
_	A	rea (sf)	CN	Description		
		3,009	39	>75% Gras	s cover, Go	ood, HSG A
_		6,417	98	Paved park	ing, HSG A	
		9,426	79	Weighted A	verage	
		3,009		31.92% Pe	rvious Area	
		6,417		68.08% Im	pervious Ar	ea
	Та	Longth	Clone	Volocity	Consoitu	Description
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
_	0.3	18	0.0300	//	(013)	Sheet Flow.
	0.0	10	0.0000	, 1.14		Smooth surfaces $n=0.011$ P2= 3.13"
	1.6	26	0.1300	0.27		Sheet Flow.
				•••=•		Grass: Short n= 0.150 P2= 3.13"
	0.1	6	0.0150	0.69		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.6	87	0.0150) 2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	26	107	Total	Inoropod	la minimum	$T_{0} = 5.0 \text{ min}$

2.6 137 Total, Increased to minimum Tc = 5.0 min

Subcatchment E20: TO DP#3

Summary for Subcatchment E21: TO EX DCB

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.41 cfs @ 12.12 hrs, Volume= 0.033 af, Depth= 1.60" Routed to Reach EX DCB : EX DCB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

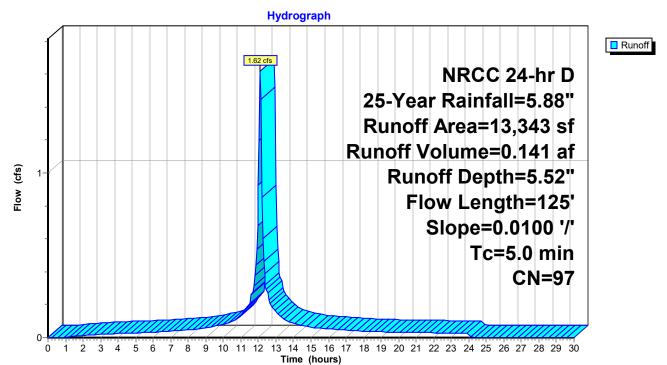
_	A	rea (sf)	CN	Description		
		7,522	39	>75% Gras	s cover, Go	bod, HSG A
		3,222	98	Paved park	ing, HSG A	
		10,744	57	Weighted A	verage	
		7,522		70.01% Pe	rvious Area	
		3,222		29.99% Im	pervious Ar	ea
	Tc	Length	Slope			Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.6	43	0.0200	1.15		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.2	7	0.0200	0.10		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	27	0.0200	2.28		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	0.0	77	T ()			T 60 '

2.0 77 Total, Increased to minimum Tc = 5.0 min

Subcatchment E21: TO EX DCB

Summary for Subcatchment E22: TO YD-A

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.62 cfs @ 12.11 hrs, Volume= 0.141 af, Depth= 5.52" Routed to Reach YDA : (new Reach)

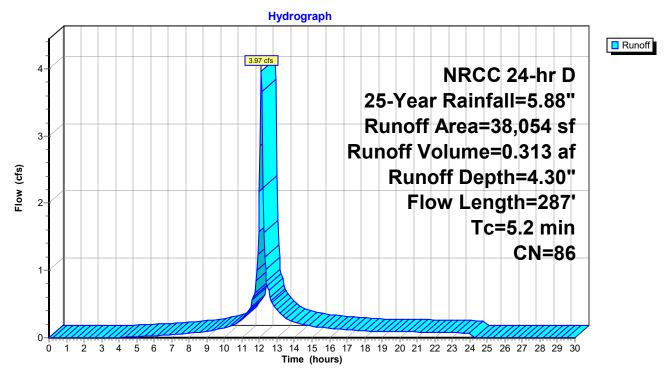
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

_	A	rea (sf)	CN	Description		
7,866 98 Paved parking, HSG A						N Contraction of the second
5,477 96 Gravel surface, HSG A						Α
13,343 97 Weighted Average						
5,477 41.05% Pervious Area						
	7,866 58.95% Impervious Area					ea
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	0.9	50	0.0100	0.90		Sheet Flow, GRAVEL
						Smooth surfaces n= 0.011 P2= 3.13"
	0.8	75	0.0100) 1.61		Shallow Concentrated Flow, GRAVEL
_						Unpaved Kv= 16.1 fps
	17	125	Total	Increased	o minimum	

1.7 125 Total, Increased to minimum Tc = 5.0 min

Subcatchment E22: TO YD-A

Summary for Subcatchment E23: TO DCB-F/G


[49] Hint: Tc<2dt may require smaller dt

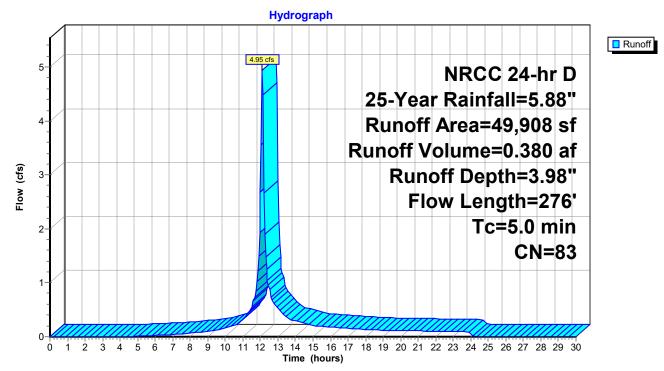
Runoff = 3.97 cfs @ 12.12 hrs, Volume= 0.313 af, Depth= 4.30" Routed to Reach DCB-F : (new Reach)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

A	rea (sf)	CN Description					
7,964 39 >75% Grass cover, Good, HSG A							
	29,865						
	225	96	Gravel surfa	ace, HSG A			
38,054 86 Weighted Average							
8,189 21.52% Pervious Area							
29,865 78.48% Impervious Area							
Tc	0	Slope			Description		
(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)			
1.6	21	0.0800	0.21		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.13"		
0.8	29	0.0050	0.61		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 3.13"		
2.8	237	0.0050) 1.44		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
5.2	287	Total					

Subcatchment E23: TO DCB-F/G

Summary for Subcatchment E24: TO LOW POINT #2 (LP2)


[49] Hint: Tc<2dt may require smaller dt

Runoff = 4.95 cfs @ 12.11 hrs, Volume= 0.380 af, Depth= 3.98" Routed to Reach LP2 : TO DMH-K1

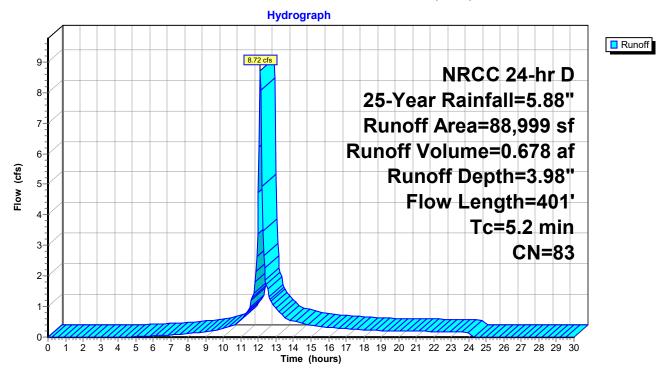
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

	A	rea (sf)	CN	Description		
11,774 39 >75% Grass cover, Good, HSG A						ood, HSG A
37,475 98 Paved parking, HSG A						
		659	48	Brush, Poo	r, ĤSG A	
49,908 83 Weighted Average						
12,433 24.91% Pervious Area						
37,475 75.09% Impervious Area					ea	
	Тс	Length	Slop			Description
(n	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	3.4	45	0.060	0.22		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.1	5	0.038	0.97		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.0	226	0.038) 3.96		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	4 -	070	T ()			

4.5 276 Total, Increased to minimum Tc = 5.0 min

Subcatchment E24: TO LOW POINT #2 (LP2)

Summary for Subcatchment E25: TO LOW POINT #3 (LP#3)


[49] Hint: Tc<2dt may require smaller dt

Runoff = 8.72 cfs @ 12.12 hrs, Volume= 0.678 af, Depth= 3.98" Routed to Pond LP3 : OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

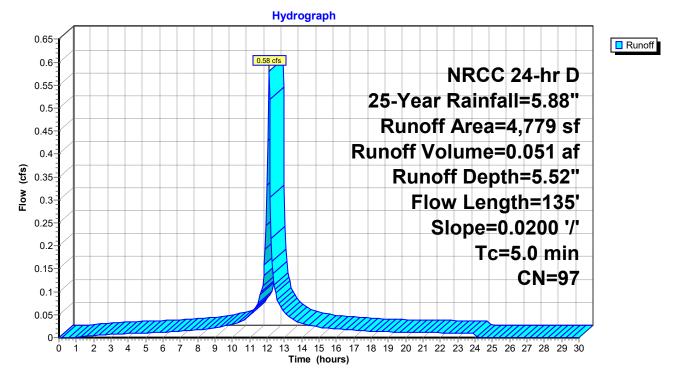
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

A	rea (sf)	CN	Description				
	22,346 39 >75% Grass cover, Good, HSG A						
	66,653 98 Paved parking, HSG A						
	88,999 83 Weighted Average						
	22,346 25.11% Pervious Area						
	66,653 74.89% Impervious Area						
_		<u>.</u>		a 1/			
	Length	Slope			Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
3.7	75	0.1300	0.34		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.13"		
0.0	10	0.1300	5.80		Shallow Concentrated Flow,		
					Unpaved Kv= 16.1 fps		
1.5	316	0.0300	3.52		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
5.2	401	Total					

Subcatchment E25: TO LOW POINT #3 (LP#3)

Summary for Subcatchment E26: TO DCB-H

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.58 cfs @ 12.11 hrs, Volume= 0.051 af, Depth= 5.52" Routed to Reach DP5 : DCB-H

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

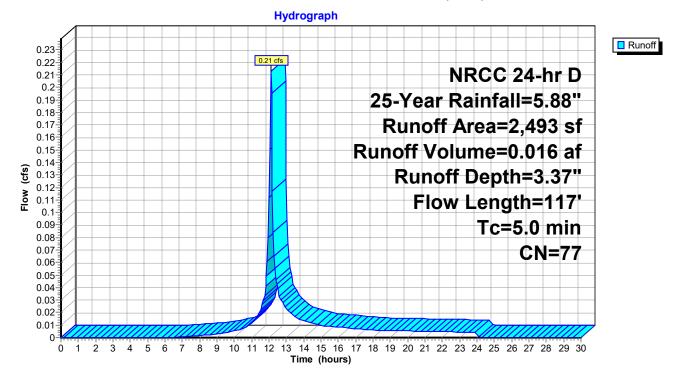
_	Area (sf) CN Description					
1,787 98 Paved parking, HSG A						Α
2,992 96 Gravel surface, HSG A						
4,779 97 Weighted Average						
		2,992	6	62.61% Pe	rvious Area	
	1,787 37.39% Impervious Area					
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.7	50	0.0200	1.18		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.5	85	0.0200	2.87		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	4.0	405	— · ·			T = 5 0 1

1.2 135 Total, Increased to minimum Tc = 5.0 min

Subcatchment E26: TO DCB-H

Summary for Subcatchment e27: TO OFF SITE POINT (DP#6)

[49] Hint: Tc<2dt may require smaller dt

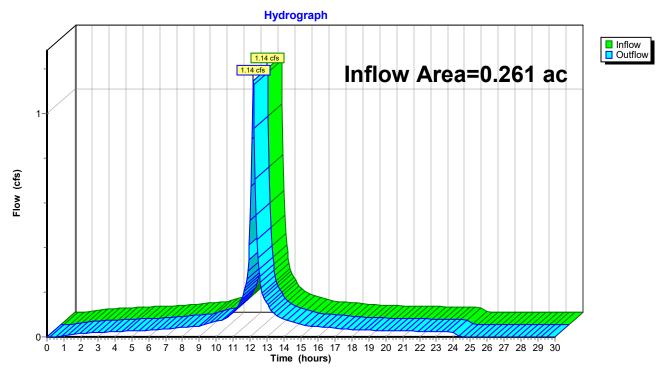

Runoff	=	0.21 cfs @	12.12 hrs,	Volume=	0.016 af,	Depth= 3.37"
Routed	to Rea	ich DP#6 : ŌF	FSITE LOW	/ POINT		-

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

_	A	rea (sf)	CN	Description		
		907	39	>75% Gras	s cover, Go	ood, HSG A
_		1,586	98	Paved park	ing, HSG A	
		2,493	77	Weighted A	verage	
		907		36.38% Pe	rvious Area	
		1,586		63.62% Im	pervious Ar	ea
	Tc	Length	Slope	,		Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	4.1	75	0.100	0.30		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	42	0.030) 3.52		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	13	117	Total	Inoroacod	to minimum	$T_0 = 5.0 \text{ min}$

4.3 117 Total, Increased to minimum Tc = 5.0 min

Subcatchment e27: TO OFF SITE POINT (DP#6)

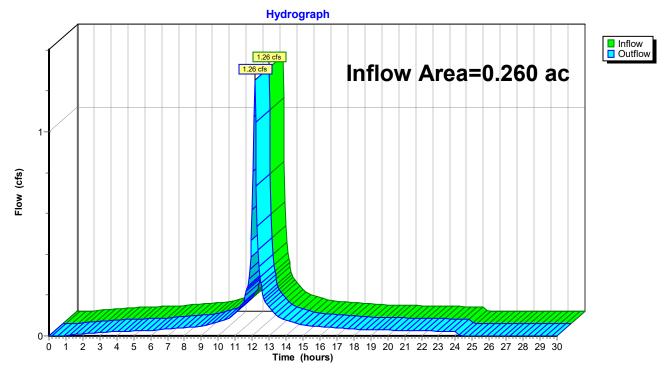


Summary for Reach DCB-A: TO DMH-D

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.261 ac, 80.04% Impervious, Inflow	w Depth = 5.64"	for 25-Year event		
Inflow =	1.14 cfs @ 12.18 hrs, Volume=	0.123 af			
Outflow =	1.14 cfs @ 12.18 hrs, Volume=	0.123 af, Atte	en= 0%, Lag= 0.0 min		
Routed to Reach DMH-D : TO DMH-C					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

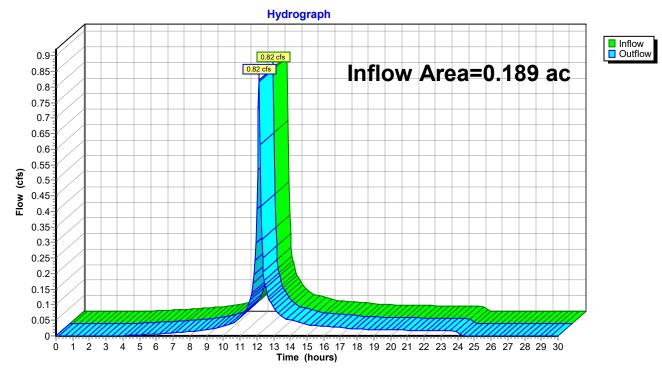

Reach DCB-A: TO DMH-D

Summary for Reach DCB-B: TO DMH-E

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.260 ac, 55.37% Impervious, In	flow Depth = 5.52"	for 25-Year event	
Inflow =	1.26 cfs @ 12.15 hrs, Volume=	0.120 af		
Outflow =	1.26 cfs @ 12.15 hrs, Volume=	0.120 af, Atte	en= 0%, Lag= 0.0 min	
Routed to Reach DMH-E : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DCB-B: TO DMH-E

Summary for Reach DCB-C: TO TRUNKLINE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.189 ac, 70.42% Impervious, Inflo	w Depth = 4.30"	for 25-Year event	
Inflow =	0.82 cfs @ 12.14 hrs, Volume=	0.068 af		
Outflow =	0.82 cfs @ 12.14 hrs, Volume=	0.068 af, Atte	en= 0%, Lag= 0.0 min	
Routed to Reach DMH-E : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

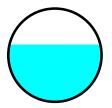
Reach DCB-C: TO TRUNKLINE

Summary for Reach DCB-D: TO DMH-A

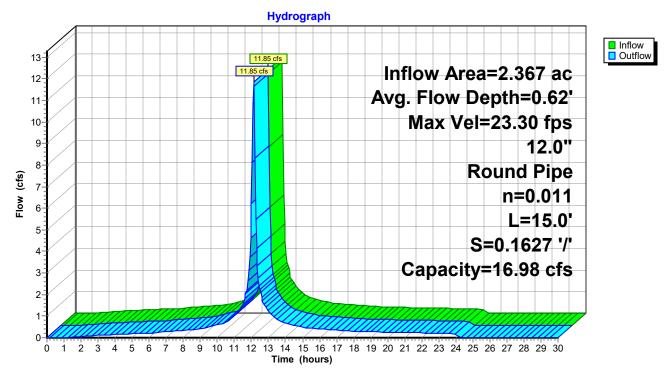
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 2.367 ac, 77.91% Impervious, Inflow Depth =
 5.33" for 25-Year event

 Inflow =
 11.85 cfs @
 12.13 hrs, Volume=
 1.052 af


 Outflow =
 11.85 cfs @
 12.13 hrs, Volume=
 1.052 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH-A : TO DMH-B
 5.30
 1.052 af, Atten= 0%, Lag= 0.0 min

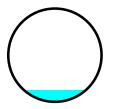

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 23.30 fps, Min. Travel Time= 0.0 min Avg. Velocity = 8.62 fps, Avg. Travel Time= 0.0 min

Peak Storage= 8 cf @ 12.13 hrs Average Depth at Peak Storage= 0.62', Surface Width= 0.97' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 16.98 cfs

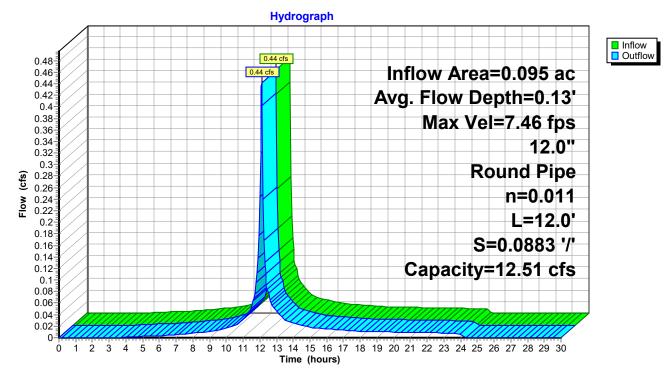
12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 15.0' Slope= 0.1627 '/' Inlet Invert= 469.11', Outlet Invert= 466.67'

Reach DCB-D: TO DMH-A

Summary for Reach DCB-E: TO DMH-A


[52] Hint: Inlet/Outlet conditions not evaluated

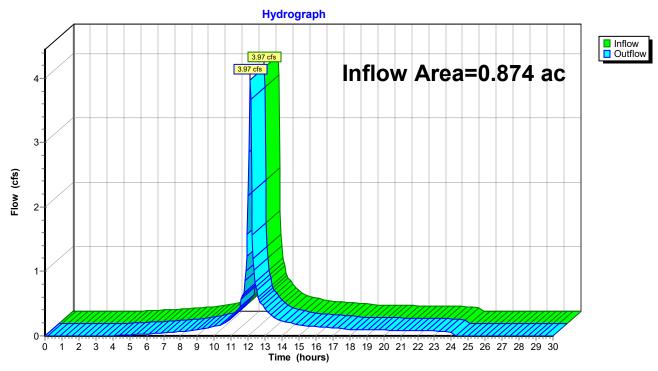
Inflow Area = 0.095 ac, 82.02% Impervious, Inflow Depth = 4.40" for 25-Year event Inflow = 0.44 cfs @ 12.11 hrs, Volume= 0.035 af Outflow = 0.44 cfs @ 12.11 hrs, Volume= 0.035 af, Atten= 0%, Lag= 0.1 min Routed to Reach DMH-A : TO DMH-B


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.46 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.59 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.13', Surface Width= 0.67' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 12.51 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 12.0' Slope= 0.0883 '/' Inlet Invert= 467.63', Outlet Invert= 466.57'

Reach DCB-E: TO DMH-A

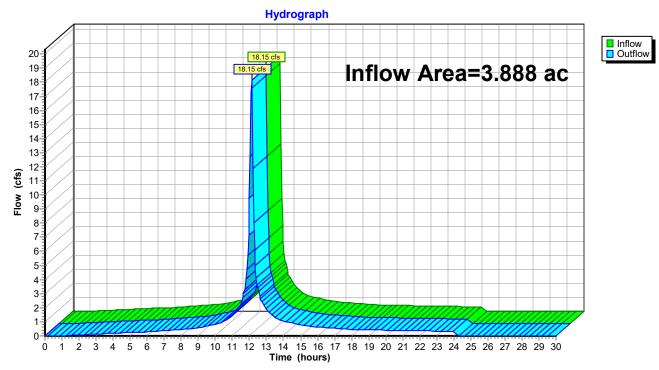


Summary for Reach DCB-F: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.874 ac, 78.48% Impervious, Infl	ow Depth = 4.30" for 25-Year event		
Inflow =	3.97 cfs @ 12.12 hrs, Volume=	0.313 af		
Outflow =	3.97 cfs @ 12.12 hrs, Volume=	0.313 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-A : TO DMH-B				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

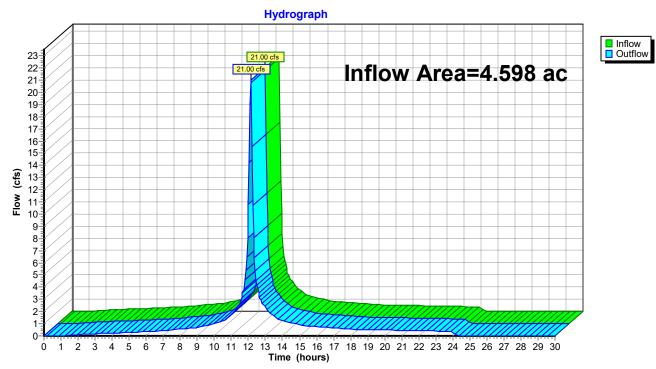

Reach DCB-F: (new Reach)

Summary for Reach DMH-A: TO DMH-B

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.888 ac, 73.60% Impervious, Infle	ow Depth = 4.86" for 25-Year event		
Inflow =	18.15 cfs @ 12.13 hrs, Volume=	1.573 af		
Outflow =	18.15 cfs @ 12.13 hrs, Volume=	1.573 af, Atten= 0%, Lag= 0.0 min		
Routed to Pond DMH-B : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DMH-A: TO DMH-B

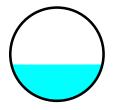
Summary for Reach DMH-C: TO DP#1

[40] Hint: Not Described (Outflow=Inflow)

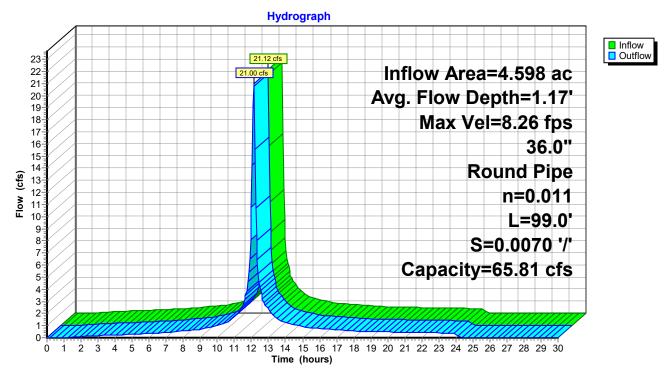
Inflow Area =	4.598 ac, 72.81% Impervious, Inflow	Depth = 4.91" for 25-Year event		
Inflow =	21.00 cfs @ 12.14 hrs, Volume=	1.883 af		
Outflow =	21.00 cfs @ 12.14 hrs, Volume=	1.883 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DP2 : MUNICIPAL SYSTEM				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DMH-C: TO DP#1


Summary for Reach DMH-D: TO DMH-C

[52] Hint: Inlet/Outlet conditions not evaluated
[63] Warning: Exceeded Reach DMH-E INLET depth by 0.11' @ 12.15 hrs
[79] Warning: Submerged Pond DMH-B Primary device # 1 INLET by 0.26'
Inflow Area = 4.598 ac, 72.81% Impervious, Inflow Depth = 4.91" for 25-Year event
Inflow = 21.12 cfs @ 12.13 hrs, Volume= 1.883 af
Outflow = 21.00 cfs @ 12.14 hrs, Volume= 1.883 af, Atten= 1%, Lag= 0.3 min
Routed to Reach DMH-C : TO DP#1

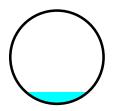

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.26 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.89 fps, Avg. Travel Time= 0.6 min

Peak Storage= 253 cf @ 12.14 hrs Average Depth at Peak Storage= 1.17', Surface Width= 2.93' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 65.81 cfs

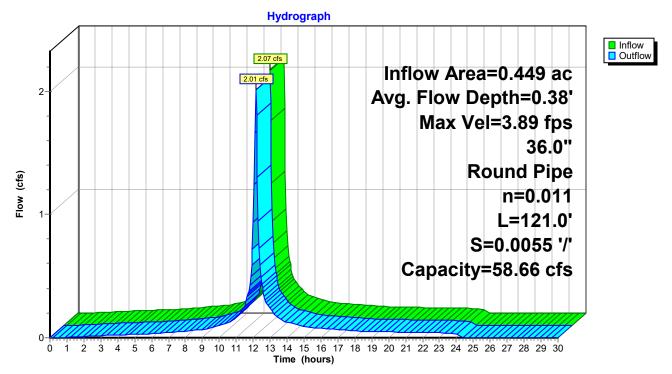
36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 99.0' Slope= 0.0070 '/' Inlet Invert= 455.90', Outlet Invert= 455.21'

Reach DMH-D: TO DMH-C

Summary for Reach DMH-E: TO DMH-D


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH-F outlet invert by 0.38' @ 12.15 hrs

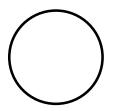
Inflow Area = 0.449 ac, 61.71% Impervious, Inflow Depth = 5.01" for 25-Year event Inflow = 2.07 cfs @ 12.14 hrs, Volume= 0.187 af Outflow = 2.01 cfs @ 12.16 hrs, Volume= 0.187 af, Atten= 3%, Lag= 0.7 min Routed to Reach DMH-D : TO DMH-C

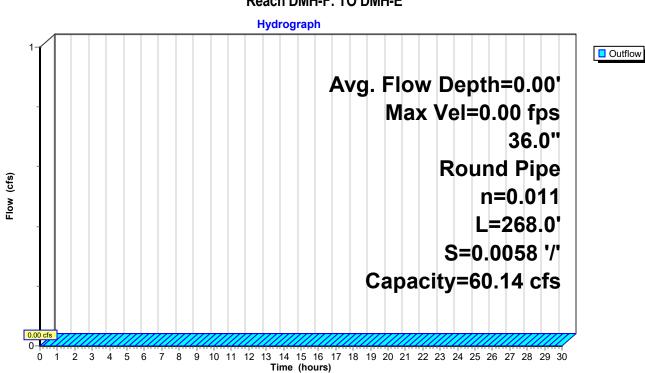

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.89 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 1.5 min

Peak Storage= 64 cf @ 12.15 hrs Average Depth at Peak Storage= 0.38', Surface Width= 2.01' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 58.66 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 121.0' Slope= 0.0055 '/' Inlet Invert= 456.57', Outlet Invert= 455.90'

Reach DMH-E: TO DMH-D




Summary for Reach DMH-F: TO DMH-E

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.14 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 268.0' Slope= 0.0058 '/' Inlet Invert= 458.13', Outlet Invert= 456.57'

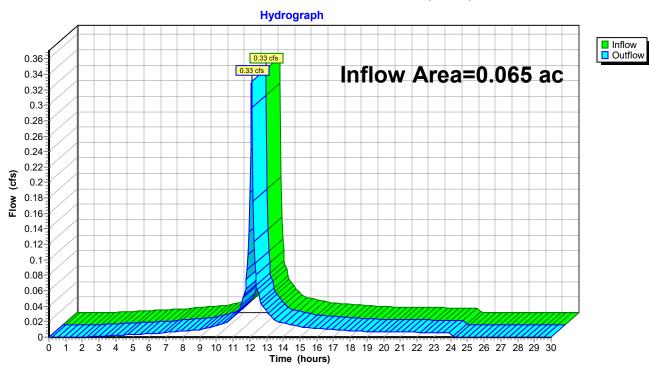
Reach DMH-F: TO DMH-E

Summary for Reach DP#6: OFFSITE LOW POINT

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.057 ac, 63.62% Impervious, Inflow	Depth = 3.37" for 25-Year event	
Inflow =	0.21 cfs @ 12.12 hrs, Volume=	0.016 af	
Outflow =	0.21 cfs @ 12.12 hrs, Volume=	0.016 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

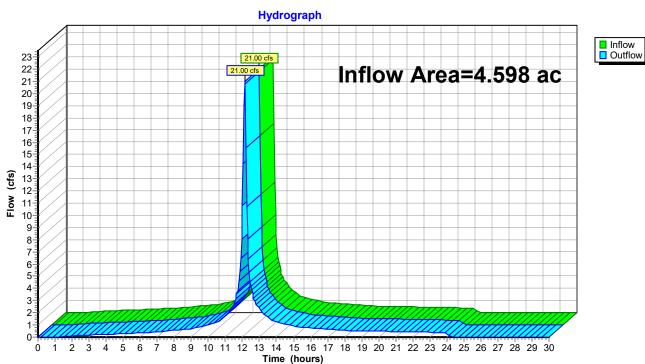

Reach DP#6: OFFSITE LOW POINT Hydrograph Inflow Outflow 0.21 cfs 0.23 0.21 cfs Inflow Area=0.057 ac 0.22-0.21 0.2 0.19-0.18 0.17 0.16-0.15-0.14 (s) 0.14 0.13 0.12-0.11-Flow 0.1 0.09 0.08-0.07 0.06-0.05-0.04-0.03 0.02-0.01 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Time (hours)

Summary for Reach DP1: GUTTER POINT FRANKLIN (WEST)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.065 ac, 89.73% Impervious, Inflow Dept	th = 4.95" for 25-Year event
Inflow =	0.33 cfs @ 12.11 hrs, Volume= 0	.027 af
Outflow =	0.33 cfs @ 12.11 hrs, Volume= 0	.027 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DP1: GUTTER POINT FRANKLIN (WEST)

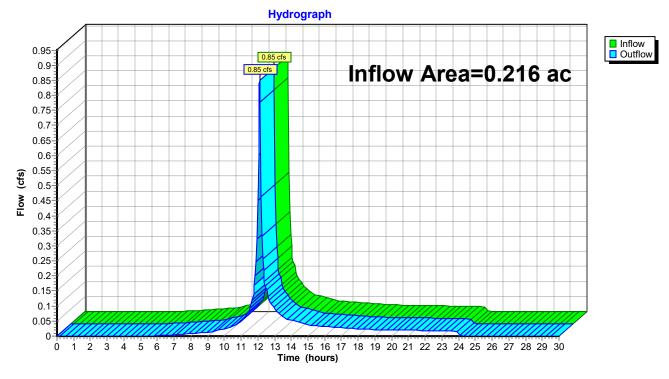
Summary for Reach DP2: MUNICIPAL SYSTEM

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.598 ac, 72.81% Impervious, Inflow Depth = 4.91" for 25-Year event
Inflow =	21.00 cfs @ 12.14 hrs, Volume= 1.883 af
Outflow =	21.00 cfs @ 12.14 hrs, Volume= 1.883 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

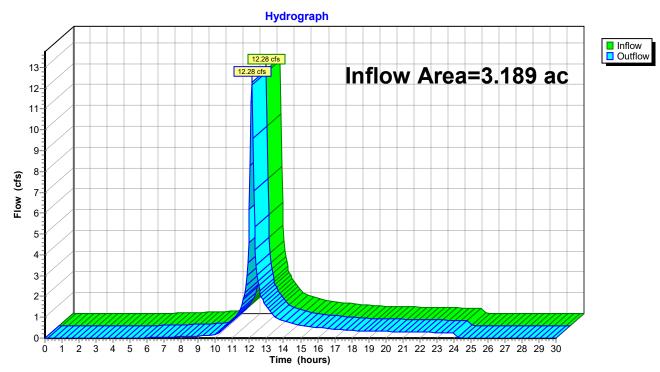
Reach DP2: MUNICIPAL SYSTEM


Summary for Reach DP3: CATCHBASIN (FIRE STATION)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.216 ac, 68.08% Impervious, Inflov	w Depth = 3.57"	for 25-Year event
Inflow =	0.85 cfs @ 12.11 hrs, Volume=	0.064 af	
Outflow =	0.85 cfs @ 12.11 hrs, Volume=	0.064 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

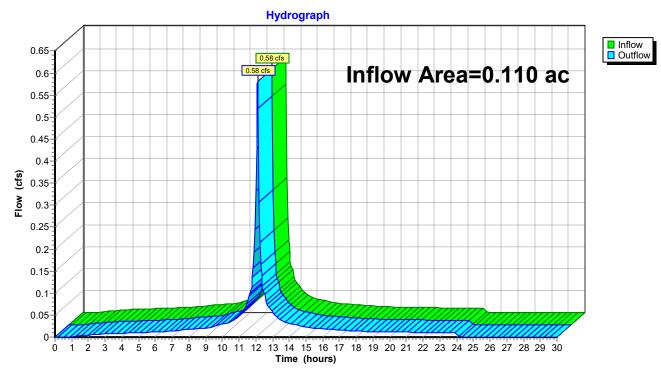


Summary for Reach DP4: DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.189 ac, 74.96% Impervious, Inflow	/ Depth = 3.79"	for 25-Year event
Inflow =	12.28 cfs @ 12.14 hrs, Volume=	1.007 af	
Outflow =	12.28 cfs @ 12.14 hrs, Volume=	1.007 af, Atter	n= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

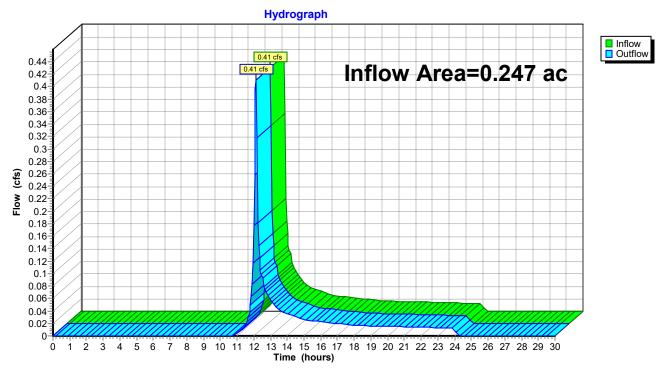

Reach DP4: DMH-K1

Summary for Reach DP5: DCB-H

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.110 ac, 37.39% Impervious, Inflow D	Depth = 5.52" for 25-Year event
Inflow =	0.58 cfs @ 12.11 hrs, Volume=	0.051 af
Outflow =	0.58 cfs @ 12.11 hrs, Volume=	0.051 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

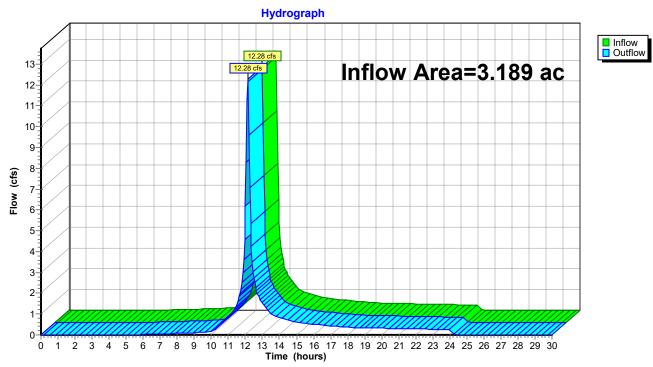

Reach DP5: DCB-H

Summary for Reach EX DCB: EX DCB

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.247 ac, 29.99% Impervious, Inflov	w Depth = 1.60"	for 25-Year event
Inflow =	0.41 cfs @ 12.12 hrs, Volume=	0.033 af	
Outflow =	0.41 cfs @ 12.12 hrs, Volume=	0.033 af, Atte	en= 0%, Lag= 0.0 min
Routed to R	each DMH-A : TO DMH-B		-

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

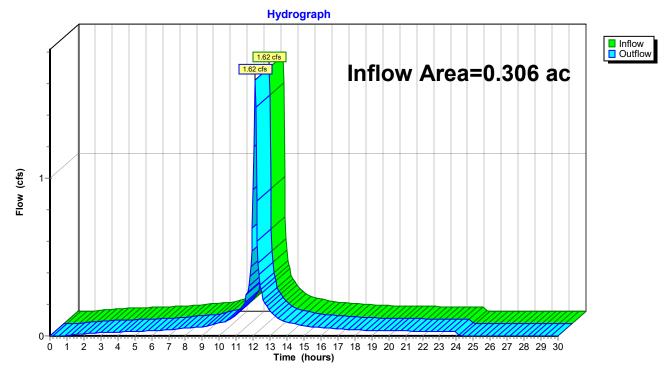

Reach EX DCB: EX DCB

Summary for Reach LP2: TO DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.189 ac, 74.96% Impervious, Inflow I	Depth = 3.79" for 25-Y	ear event			
Inflow =	12.28 cfs @ 12.14 hrs, Volume=	1.007 af				
Outflow =	12.28 cfs @ 12.14 hrs, Volume=	1.007 af, Atten= 0%, L	.ag= 0.0 min			
Routed to Reach DP4 : DMH-K1						

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach LP2: TO DMH-K1

Summary for Reach YDA: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.306 ac, 58.95% Impervious, Inf	low Depth = 5.52" for 25-Year event
Inflow =	1.62 cfs @ 12.11 hrs, Volume=	0.141 af
Outflow =	1.62 cfs @ 12.11 hrs, Volume=	0.141 af, Atten= 0%, Lag= 0.0 min
Routed to Read	ch DMH-A : TO DMH-B	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach YDA: (new Reach)

Summary for Pond DMH-B: TO DMH-D

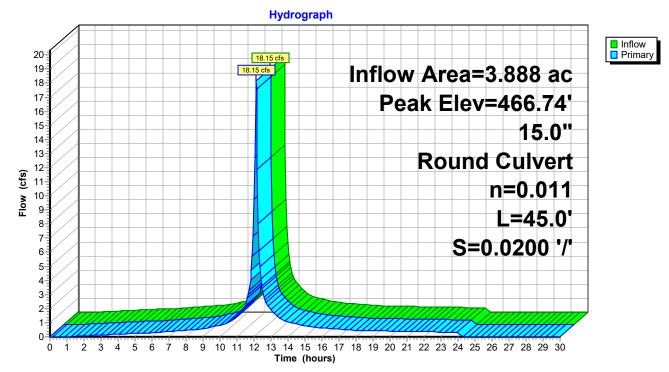
[57] Hint: Peaked at 466.74' (Flood elevation advised)

 Inflow Area =
 3.888 ac, 73.60% Impervious, Inflow Depth =
 4.86"
 for 25-Year event

 Inflow =
 18.15 cfs @
 12.13 hrs, Volume=
 1.573 af

 Outflow =
 18.15 cfs @
 12.13 hrs, Volume=
 1.573 af, Atten= 0%, Lag= 0.0 min

 Primary =
 18.15 cfs @
 12.13 hrs, Volume=
 1.573 af

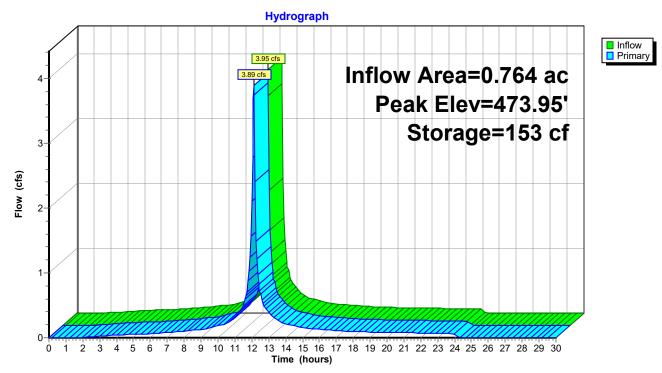

 Routed to Reach DMH-D : TO DMH-C
 1.573 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 466.74' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	456.80'	15.0" Round Culvert L= 45.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 456.80' / 455.90' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=17.40 cfs @ 12.13 hrs HW=466.10' (Free Discharge) 1=Culvert (Inlet Controls 17.40 cfs @ 14.18 fps)

Pond DMH-B: TO DMH-D



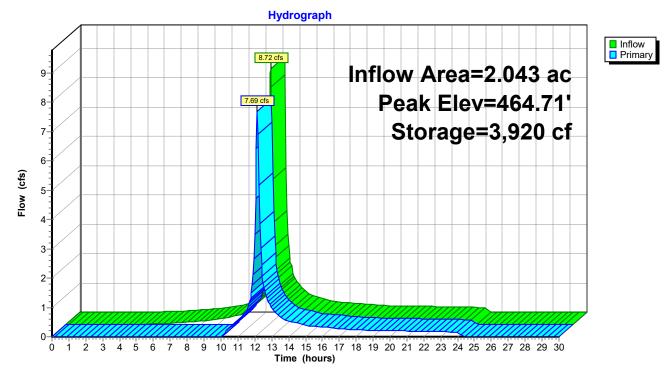
Summary for Pond LP1: TO DCB-D

Inflow Area = 0.764 ac, 43.34% Impervious, Inflow Depth = 5.18" for 25-Year event Inflow = 3.95 cfs @ 12.11 hrs, Volume= 0.330 af Outflow = 3.89 cfs @ 12.13 hrs, Volume= 0.329 af, Atten= 1%, Lag= 0.9 min Primary = 3.89 cfs @ 12.13 hrs, Volume= 0.329 af Routed to Reach DCB-D : TO DMH-A 0.329 af					
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 473.95' @ 12.13 hrs Surf.Area= 1,406 sf Storage= 153 cf					
Plug-Flow detention time= 2.2 min calculated for 0.329 af (100% of inflow) Center-of-Mass det. time= 1.5 min (776.4 - 775.0)					
Volume Invert Avail.Storage Storage Description					
#1 473.75' 231 cf Custom Stage Data (Prismatic) Listed below (Recalc)					
Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (cubic-feet)					
473.75 120 0 0					
474.00 1,725 231 231					
Device Routing Invert Outlet Devices					
#1 Primary 473.80' 25.0' long x 25.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63					
Primary OutFlow Max=3.72 cfs @ 12.13 hrs HW=473.95' (Free Discharge)					

1=Broad-Crested Rectangular Weir (Weir Controls 3.72 cfs @ 1.02 fps)

Pond LP1: TO DCB-D

Summary for Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2


Inflow Area =	2.043 ac, 74.89% Impervious, Inflow Deptl	h = 3.98" for 25-Year event
Inflow =	8.72 cfs @ 12.12 hrs, Volume= 0.0	678 af
Outflow =	7.69 cfs @ 12.16 hrs, Volume= 0.0	627 af, Atten= 12%, Lag= 2.4 min
Primary =	7.69 cfs @ 12.16 hrs, Volume= 0.0	627 af
Routed to Re	each LP2 : TO DMH-K1	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 464.71' @ 12.16 hrs Surf.Area= 10,214 sf Storage= 3,920 cf

Plug-Flow detention time= 71.5 min calculated for 0.626 af (92% of inflow) Center-of-Mass det. time= 30.8 min (854.4 - 823.7)

Volume	Inve	ert Avail.S	torage S	Storage	Description	
#1	461.5	50' 16,	070 cf 🕻	Custom	Stage Data (Pr	rismatic) Listed below (Recalc)
Elevatio	et)	Surf.Area (sq-ft)	Inc.S (cubic-t	feet)	Cum.Store (cubic-feet)	
461.5		133		0	0	
462.0		180		78	78	
463.0	00	269		225	303	
464.0	00	376		323	625	
464.5	50	5,887	1	,566	2,191	
465.0	00	15,961	5	,462	7,653	
465.5	50	17,706	8	,417	16,070	
Device #1	Routing Primary	Inver 464.50)' 27.0' I Head	(feet) 0	10.0 '/' SideZ x 0.20 0.40 0.60	20.0' breadth Broad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60
			Coet.	(English	1) 2.68 2.70 2.	70 2.64 2.63 2.64 2.64 2.63

Primary OutFlow Max=7.56 cfs @ 12.16 hrs HW=464.71' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 7.56 cfs @ 1.22 fps)

Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

3030-Pre-R1 Prepared by Hannigan Engineering Inc HydroCAD® 10.20-2f s/n 00840 © 2022 HydroCAD Software Solutions LLC

NRCC 24-hr D 100-Year Rainfall=8.34" Printed 5/4/2023 Page 164

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment E11: TO DP#1	Runoff Area=2,852 sf 89.73% Impervious Runoff Depth=7.38" Flow Length=98' Slope=0.0170 '/' Tc=5.0 min CN=92 Runoff=0.48 cfs 0.040 af
Subcatchment E12: TO DCB-A	Runoff Area=11,373 sf 80.04% Impervious Runoff Depth=8.10" Flow Length=209' Tc=10.9 min CN=98 Runoff=1.63 cfs 0.176 af
Subcatchment E14: TO DCB-B	Runoff Area=11,310 sf 55.37% Impervious Runoff Depth=7.98" Flow Length=171' Tc=8.1 min CN=97 Runoff=1.79 cfs 0.173 af
Subcatchment E15: TO DCB-C	Runoff Area=8,235 sf 70.42% Impervious Runoff Depth=6.66" Flow Length=161' Slope=0.0110 '/' Tc=7.0 min CN=86 Runoff=1.24 cfs 0.105 af
Subcatchment E16: TO LOW POINT	Runoff Area=33,282 sf 43.34% Impervious Runoff Depth=7.62" Flow Length=183' Tc=5.0 min CN=94 Runoff=5.69 cfs 0.485 af
Subcatchment E18: TO DCB-D	Runoff Area=69,813 sf 94.39% Impervious Runoff Depth=7.86" Flow Length=305' Tc=7.0 min CN=96 Runoff=11.40 cfs 1.050 af
Subcatchment E19: TO DCB-E	Runoff Area=4,127 sf 82.02% Impervious Runoff Depth=6.78" Flow Length=177' Slope=0.0090 '/' Tc=5.0 min CN=87 Runoff=0.66 cfs 0.054 af
Subcatchment E20: TO DP#3	Runoff Area=9,426 sf 68.08% Impervious Runoff Depth=5.83" Flow Length=137' Tc=5.0 min CN=79 Runoff=1.36 cfs 0.105 af
Subcatchment E21: TO EX DCB	Runoff Area=10,744 sf 29.99% Impervious Runoff Depth=3.25" Flow Length=77' Slope=0.0200 '/' Tc=5.0 min CN=57 Runoff=0.88 cfs 0.067 af
Subcatchment E22: TO YD-A	Runoff Area=13,343 sf 58.95% Impervious Runoff Depth=7.98" Flow Length=125' Slope=0.0100 '/' Tc=5.0 min CN=97 Runoff=2.31 cfs 0.204 af
Subcatchment E23: TO DCB-F/G	Runoff Area=38,054 sf 78.48% Impervious Runoff Depth=6.66" Flow Length=287' Tc=5.2 min CN=86 Runoff=6.00 cfs 0.485 af
Subcatchment E24: TO LOW POINT #2 (LP2)	Runoff Area=49,908 sf 75.09% Impervious Runoff Depth=6.30" Flow Length=276' Tc=5.0 min CN=83 Runoff=7.65 cfs 0.602 af
Subcatchment E25: TO LOW POINT #3 (LP#3)	Runoff Area=88,999 sf 74.89% Impervious Runoff Depth=6.30" Flow Length=401' Tc=5.2 min CN=83 Runoff=13.49 cfs 1.073 af
Subcatchment E26: TO DCB-H	Runoff Area=4,779 sf 37.39% Impervious Runoff Depth=7.98" Flow Length=135' Slope=0.0200 '/' Tc=5.0 min CN=97 Runoff=0.83 cfs 0.073 af
Subcatchment e27: TO OFF SITE POINT (DP#6)	Runoff Area=2,493 sf 63.62% Impervious Runoff Depth=5.59" Flow Length=117' Tc=5.0 min CN=77 Runoff=0.35 cfs 0.027 af
Reach DCB-A: TO DMH-D	Inflow=1.63 cfs 0.176 af

Outflow=1.63 cfs 0.176 af

3030-Pre-R1	lu -	NRCC 24-hr D 100-Year Rainfall=8.34"
Prepared by Hannigan Engineering HydroCAD® 10.20-2f s/n 00840 © 2022		.C Printed 5/4/2023 .C Page 165
Reach DCB-B: TO DMH-E		Inflow=1.79 cfs 0.173 af
		Outflow=1.79 cfs 0.173 af
Reach DCB-C: TO TRUNKLINE		Inflow=1.24 cfs 0.105 af
		Outflow=1.24 cfs 0.105 af
Reach DCB-D: TO DMH-A		Avg. Flow Depth=0.81' Max Vel=24.65 fps Inflow=16.98 cfs 1.535 af
	12.0 Round Pipe n=0.011	L=15.0' S=0.1627 '/' Capacity=16.98 cfs Outflow=16.97 cfs 1.535 af
Reach DCB-E: TO DMH-A		Avg. Flow Depth=0.16' Max Vel=8.43 fps Inflow=0.66 cfs 0.054 af
	12.0" Round Pipe n=0.011	L=12.0' S=0.0883 '/' Capacity=12.51 cfs Outflow=0.66 cfs 0.054 af
Reach DCB-F: (new Reach)		Inflow=6.00 cfs 0.485 af Outflow=6.00 cfs 0.485 af
		Outilow-0.00 CIS 0.403 al
Reach DMH-A: TO DMH-B		Inflow=26.59 cfs 2.344 af
		Outflow=26.59 cfs 2.344 af
Reach DMH-C: TO DP#1		Inflow=30.75 cfs 2.797 af
Reach DMH-C: TO DP#1		Outflow=30.75 cfs 2.797 af
Reach DMH-D: TO DMH-C		Avg. Flow Depth=1.45' Max Vel=9.13 fps Inflow=30.91 cfs 2.797 af
	36.0" Round Pipe n=0.011	L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=30.75 cfs 2.797 af
Reach DMH-E: TO DMH-D		Avg. Flow Depth=0.46' Max Vel=4.36 fps Inflow=3.03 cfs 0.278 af
	36.0" Round Pipe n=0.011	L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=2.95 cfs 0.278 af
Reach DMH-F: TO DMH-E	36.0" Round Pine n=0.011	Avg. Flow Depth=0.00' Max Vel=0.00 fps L=268.0' S=0.0058 '/' Capacity=60.14 cfs Outflow=0.00 cfs 0.000 af
		2-200.0 3-0.00007 Capacity=00.14 cis Cutilow=0.00 cis 0.000 al
Reach DP#6: OFFSITE LOW POINT		Inflow=0.35 cfs 0.027 af
		Outflow=0.35 cfs 0.027 af
Reach DP1: GUTTER POINT FRANK		Inflow=0.48 cfs 0.040 af
		Outflow=0.48 cfs 0.040 af
Reach DP2: MUNICIPAL SYSTEM		Inflow=30.75 cfs 2.797 af
		Outflow=30.75 cfs 2.797 af
Reach DP3: CATCHBASIN (FIRE ST	ATION)	Inflow=1.36 cfs 0.105 af
· ·	,	Outflow=1.36 cfs 0.105 af
Deach DD4: DMU 1/4		Inflow=19.13 cfs 1.625 af
Reach DP4: DMH-K1		Outflow=19.13 cfs 1.625 af
Reach DP5: DCB-H		Inflow=0.83 cfs 0.073 af
		Outflow=0.83 cfs 0.073 af
Reach EX DCB: EX DCB		Inflow=0.88 cfs 0.067 af
		Outflow=0.88 cfs 0.067 af

NRCC 24-hr D 100-Year Rainfall=8.34"

3030-Pre-R1

Inflow=19.13 cfs 1.625 af Outflow=19.13 cfs 1.625 af

Inflow=2.31 cfs 0.204 af Outflow=2.31 cfs 0.204 af

Peak Elev=477.41' Inflow=26.59 cfs 2.344 af 15.0" Round Culvert n=0.011 L=45.0' S=0.0200 '/' Outflow=26.59 cfs 2.344 af

Peak Elev=473.99' Storage=216 cf Inflow=5.69 cfs 0.485 af Outflow=5.60 cfs 0.485 af

Reach LP2: TO DMH-K1

Reach YDA: (new Reach)

Pond DMH-B: TO DMH-D

Pond LP1: TO DCB-D

Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS Peak Elev=464.79' Storage=4,691 cf Inflow=13.49 cfs 1.073 af Outflow=12.01 cfs 1.023 af

Total Runoff Area = 8.235 ac Runoff Volume = 4.717 af Average Runoff Depth = 6.87" 26.88% Pervious = 2.214 ac 73.12% Impervious = 6.022 ac

Summary for Subcatchment E11: TO DP#1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.48 cfs @ 12.11 hrs, Volume= 0.040 af, Depth= 7.38" Routed to Reach DP1 : GUTTER POINT FRANKLIN (WEST)

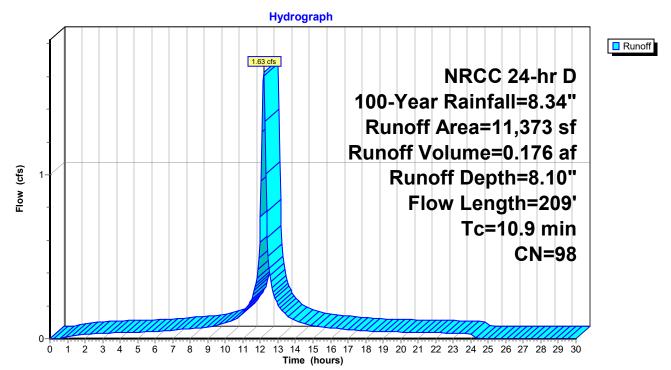
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

_	A	rea (sf)	CN	Description					
	293 39 >75% Grass cover, Good, HSG A								
_	2,559 98 Paved parking, HSG A								
	2,852 92 Weighted Average								
		293		10.27% Pe	rvious Area				
	2,559 89.73% Impervious Area					ea			
	Tc	Length	Slope	,		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.8	50	0.0170	1.11		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.3	48	0.0170	2.65		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
		00	T ()			T 60 '			

1.1 98 Total, Increased to minimum Tc = 5.0 min

Subcatchment E11: TO DP#1

Summary for Subcatchment E12: TO DCB-A

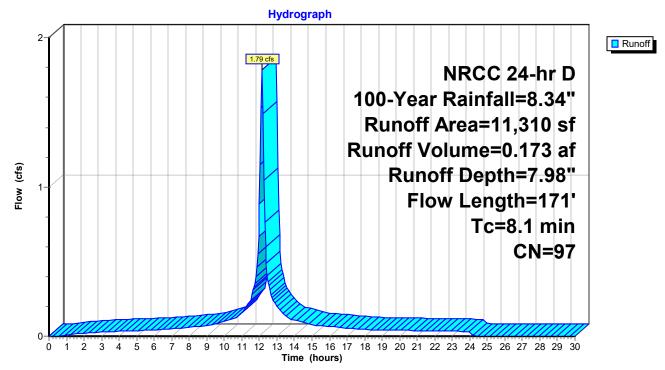

Runoff = 1.63 cfs @ 12.18 hrs, Volume= 0.176 af, Depth= 8.10" Routed to Reach DCB-A : TO DMH-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

_	A	rea (sf)	CN	Description						
	9,103 98 Paved parking, HSG A									
_		2,270 96 Gravel surface, HSG A								
		11,373 98 Weighted Average								
2,270 19.96% Pervious Area										
	9,103 80.04% Impervious Area									
	_									
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	9.7	75	0.0120	0.13		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.13"				
	0.1	9	0.0120	1.76		Shallow Concentrated Flow, GRASS				
						Unpaved Kv= 16.1 fps				
	1.1	125	0.0080	1.82		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	40.0	000	T-4-1							

10.9 209 Total

Subcatchment E12: TO DCB-A


Summary for Subcatchment E14: TO DCB-B

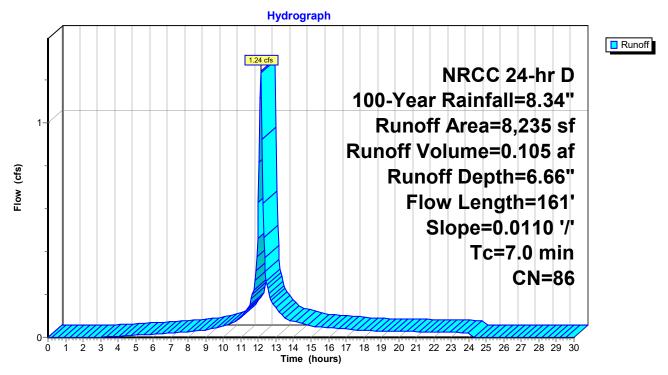
Runoff = 1.79 cfs @ 12.15 hrs, Volume= 0.173 af, Depth= 7.98" Routed to Reach DCB-B : TO DMH-E

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

A	rea (sf)	CN	Description						
	6,262 98 Paved parking, HSG A								
	5,048 96 Gravel surface, HSG A								
	11,310 97 Weighted Average								
	5,048 44.63% Pervious Area								
	6,262 55.37% Impervious Area								
Tc	Length	Slope	 Velocity 	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
7.0	50	0.0120	0.12		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.13"				
1.1	121	0.0080	1.82		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
8.1	171	Total							

Subcatchment E14: TO DCB-B

Summary for Subcatchment E15: TO DCB-C


Runoff = 1.24 cfs @ 12.14 hrs, Volume= 0.105 af, Depth= 6.66" Routed to Reach DCB-C : TO TRUNKLINE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

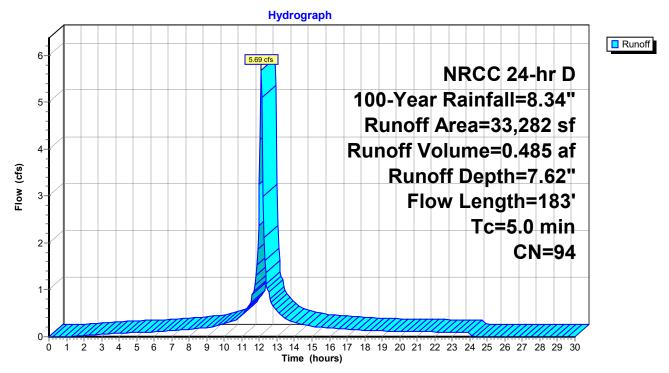
Α	vrea (sf)	CN	Description		
	1,643	39	>75% Gras	s cover, Go	bod, HSG A
	5,799	98	Paved park	ing, HSG A	N Contraction of the second
	793	96	Gravel surfa	ace, HSG A	A
	8,235	86	Weighted A	verage	
	2,436		29.58% Pe	rvious Area	
	5,799		70.42% Im	pervious Are	ea
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
5.8	38	0.0110	0.11		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.3	12	0.0110	0.70		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
0.9	111	0.0110	2.13		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps

7.0 161 Total

Subcatchment E15: TO DCB-C

Summary for Subcatchment E16: TO LOW POINT

[49] Hint: Tc<2dt may require smaller dt


Runoff = 5.69 cfs @ 12.11 hrs, Volume= 0.485 af, Depth= 7.62" Routed to Pond LP1 : TO DCB-D

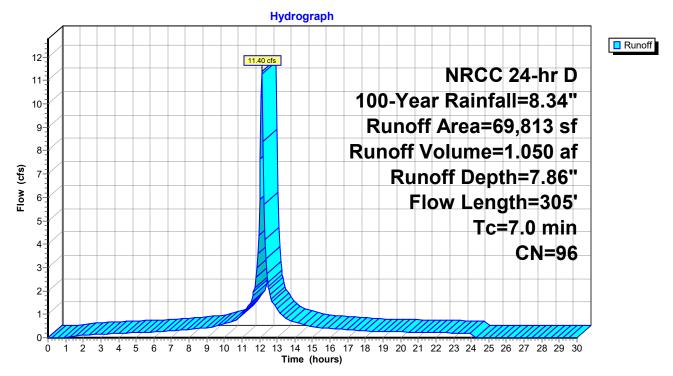
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

	Area (sf)	CN	Description					
	1,882	I,882 39 >75% Grass cover, Good, HSG A						
	14,426	98	Paved park	ing, HSG A	N Contraction of the second			
	16,974	96	Gravel surf	ace, HSG A	λ			
	33,282	94	Weighted A	verage				
	18,856		56.66% Pe	rvious Area				
	14,426		43.34% Im	pervious Ar	ea			
To	: Length	Slope			Description			
(min)) (feet)	(ft/ft) (ft/sec)	(cfs)				
1.6	5 21	0.0800	0.21		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.9) 29	0.0040	0.56		Sheet Flow, GRAVEL			
					Smooth surfaces n= 0.011 P2= 3.13"			
2.2	2 133	0.0040) 1.02		Shallow Concentrated Flow,			
					Unpaved Kv= 16.1 fps			
4 -	7 400	T-1-1	les anno a stadi					

4.7 183 Total, Increased to minimum Tc = 5.0 min

Subcatchment E16: TO LOW POINT

Summary for Subcatchment E18: TO DCB-D


Runoff = 11.40 cfs @ 12.14 hrs, Volume= 1.050 af, Depth= 7.86" Routed to Reach DCB-D : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

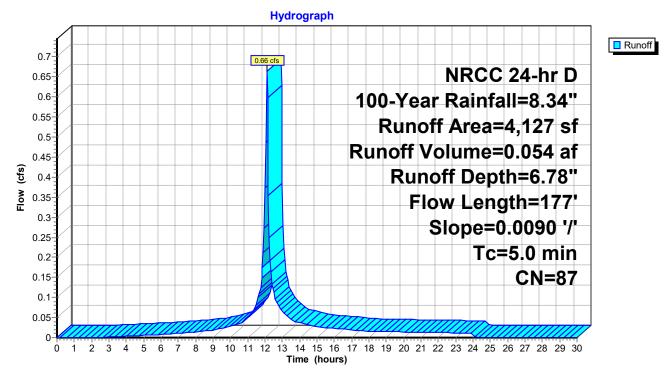
_	Area (sf) CN Description							
	2,530 39 >75% Grass cover, Good, HSG A							
		65,894		Paved park				
		1,389	96	Gravel surfa	ace, HSG A			
		69,813	96	Weighted A	verage			
		3,919		5.61% Perv				
		65,894		94.39% Imp	pervious Are	ea		
	Tc	Length	Slope	e Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft		(cfs)			
	3.8	23	0.0120	0.10		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.13"		
	0.6	27	0.0090	0.76		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	1.2	107	0.0090) 1.53		Shallow Concentrated Flow,		
						Unpaved Kv= 16.1 fps		
	1.4	148	0.0075	5 1.76		Shallow Concentrated Flow,		
	7.0	205	Tatal			Paved Kv= 20.3 fps		

7.0 305 Total

Subcatchment E18: TO DCB-D

Summary for Subcatchment E19: TO DCB-E

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.66 cfs @ 12.11 hrs, Volume= 0.054 af, Depth= 6.78" Routed to Reach DCB-E : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

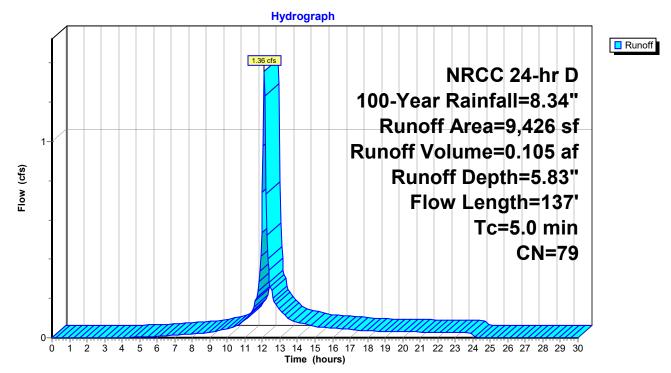
_	A	rea (sf)	CN	Description							
		742	39	9 >75% Grass cover, Good, HSG A							
_		3,385	98	Paved park	ting, HSG A						
	4,127 87 Weighted Average										
		742		17.98% Pe	rvious Area						
		3,385		82.02% Im	pervious Ar	ea					
	Tc	Length	Slope	,	Capacity	Description					
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)						
	1.0	50	0.0090	0.86		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	1.1	127	0.0090	1.93		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	0.4	477	Tatal	lin ana a a a d		$T_{0} = \Gamma Q$ min					

2.1 177 Total, Increased to minimum Tc = 5.0 min

Subcatchment E19: TO DCB-E

Summary for Subcatchment E20: TO DP#3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.36 cfs @ 12.11 hrs, Volume= 0.105 af, Depth= 5.83" Routed to Reach DP3 : CATCHBASIN (FIRE STATION)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

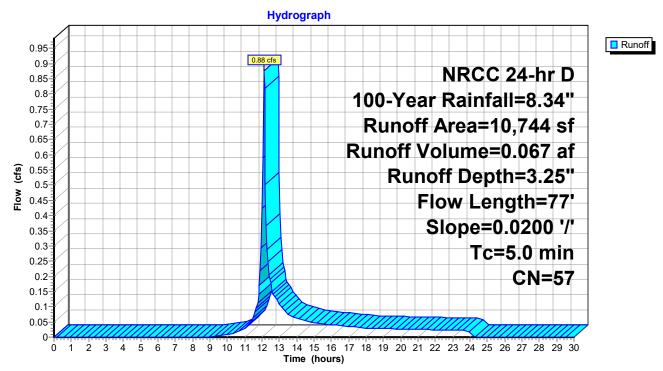
_	A	rea (sf)	CN	Description					
		3,009	39	>75% Gras	ood, HSG A				
_		6,417 98 Paved parking, HSG A							
		9,426	79	Weighted A	verage				
		3,009		31.92% Pe	rvious Area				
		6,417		68.08% Im	pervious Ar	ea			
	_		.						
	TC	Length	Slope			Description			
_	(min)	(feet)	(ft/ft	//	(cfs)				
	0.3	18	0.0300) 1.14		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	1.6	26	0.1300) 0.27		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.13"			
	0.1	6	0.0150	0.69		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.6	87	0.0150) 2.49		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	26	107	Tatal	Increased		$T_{0} = F_{0} min$			

2.6 137 Total, Increased to minimum Tc = 5.0 min

Subcatchment E20: TO DP#3

Summary for Subcatchment E21: TO EX DCB

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.88 cfs @ 12.12 hrs, Volume= 0.067 af, Depth= 3.25" Routed to Reach EX DCB : EX DCB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

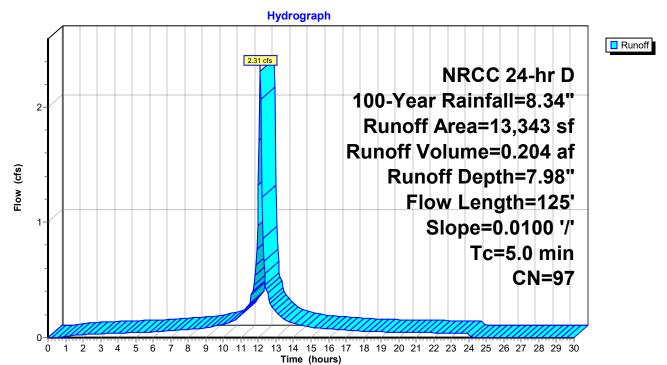
_	A	rea (sf)	CN	Description						
		7,522	39	>75% Grass cover, Good, HSG A						
_		3,222	98	Paved park	ing, HSG A	A				
	10,744 57 Weighted Average									
		7,522		70.01% Pe	rvious Area	l				
		3,222		29.99% Imj	pervious Ar	ea				
	_									
	Tc	Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.6	43	0.0200	1.15		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	1.2	7	0.0200	0.10		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.13"				
	0.2	27	0.0200	2.28		Shallow Concentrated Flow,				
_						Unpaved Kv= 16.1 fps				
	~ ~					T F A B				

2.0 77 Total, Increased to minimum Tc = 5.0 min

Subcatchment E21: TO EX DCB

Summary for Subcatchment E22: TO YD-A

[49] Hint: Tc<2dt may require smaller dt


Runoff = 2.31 cfs @ 12.11 hrs, Volume= 0.204 af, Depth= 7.98" Routed to Reach YDA : (new Reach)

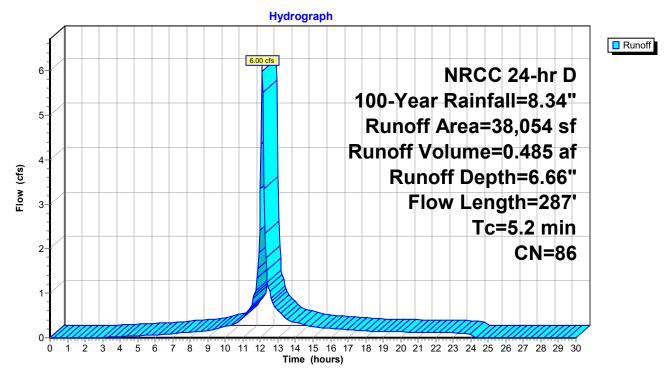
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

_	A	rea (sf)	CN	Description							
		7,866	98	98 Paved parking, HSG A							
_		5,477	96	Gravel surface	ace, HSG A	A					
		13,343	97	Weighted A	verage						
		5,477		41.05% Pe	rvious Area						
		7,866		58.95% Im	pervious Ar	ea					
	Tc	Length	Slope	e Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	0.9	50	0.0100	0.90		Sheet Flow, GRAVEL					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.8	75	0.0100) 1.61		Shallow Concentrated Flow, GRAVEL					
_						Unpaved Kv= 16.1 fps					
_	17	125	Total	Incroacod	to minimum	$T_{c} = 50$ min					

1.7 125 Total, Increased to minimum Tc = 5.0 min

Subcatchment E22: TO YD-A

Summary for Subcatchment E23: TO DCB-F/G


[49] Hint: Tc<2dt may require smaller dt

Runoff = 6.00 cfs @ 12.11 hrs, Volume= 0.485 af, Depth= 6.66" Routed to Reach DCB-F : (new Reach)

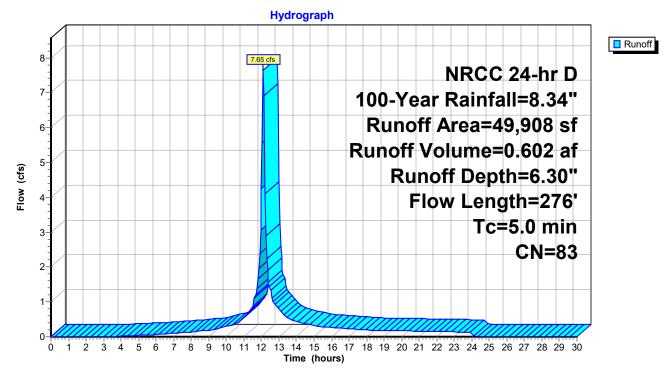
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

Area	a (sf)	CN	Description					
7	7,964 39 >75% Grass cover, Good, HSG A							
29	,865	98	Paved park	ing, HSG A				
	225	96	Gravel surfa	ace, HSG A				
38	,054	86	Weighted A	verage				
8	,189		21.52% Pei	rvious Area				
29	,865		78.48% Imp	pervious Ar	ea			
	ength	Slope			Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.6	21	0.0800	0.21		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.8	29	0.0050	0.61		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
2.8	237	0.0050	1.44		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
5.2	287	Total						

Subcatchment E23: TO DCB-F/G

Summary for Subcatchment E24: TO LOW POINT #2 (LP2)

[49] Hint: Tc<2dt may require smaller dt


Runoff = 7.65 cfs @ 12.11 hrs, Volume= 0.602 af, Depth= 6.30" Routed to Reach LP2 : TO DMH-K1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

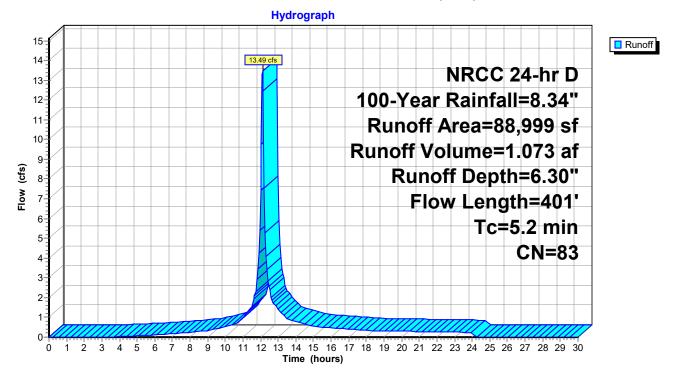
A	Area (sf)	CN	Description					
	11,774	74 39 >75% Grass cover, Good, HSG A						
	37,475	98	Paved park	ing, HSG A				
	659	48	Brush, Poo	r, ĤSG A				
	49,908	83	Weighted A	verage				
	12,433		24.91% Pe	rvious Area				
	37,475		75.09% Im	pervious Ar	ea			
Tc	Length	Slope			Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
3.4	45	0.0600	0.22		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.1	5	0.0380	0.97		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
1.0	226	0.0380	3.96		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
4 -	070	T . 4 . 1						

4.5 276 Total, Increased to minimum Tc = 5.0 min

NRCC 24-hr D 100-Year Rainfall=8.34"

Subcatchment E24: TO LOW POINT #2 (LP2)

Summary for Subcatchment E25: TO LOW POINT #3 (LP#3)


[49] Hint: Tc<2dt may require smaller dt

Runoff = 13.49 cfs @ 12.12 hrs, Volume= 1.073 af, Depth= 6.30" Routed to Pond LP3 : OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

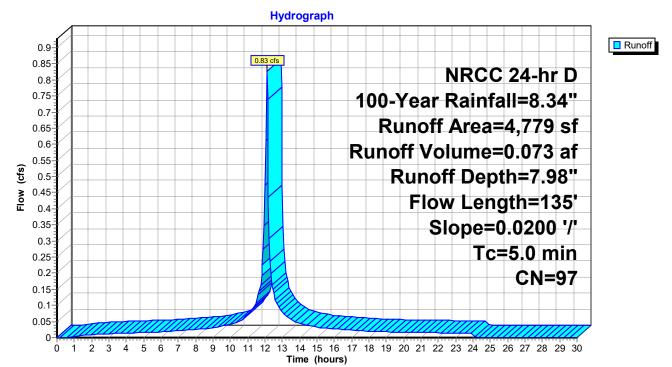
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

A	rea (sf)	CN	Description					
	22,346	,346 39 >75% Grass cover, Good, HSG A						
	66,653	98	Paved park	ing, HSG A				
	88,999	83	Weighted A	verage				
	22,346		25.11% Pe	vious Area				
	66,653		74.89% Imp	pervious Are	ea			
_		<u>.</u>		a				
	Length	Slope	•	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
3.7	75	0.1300	0.34		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.0	10	0.1300	5.80		Shallow Concentrated Flow,			
					Unpaved Kv= 16.1 fps			
1.5	316	0.0300	3.52		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
5.2	401	Total						

Subcatchment E25: TO LOW POINT #3 (LP#3)

Summary for Subcatchment E26: TO DCB-H

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.83 cfs @ 12.11 hrs, Volume= 0.073 af, Depth= 7.98" Routed to Reach DP5 : DCB-H

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

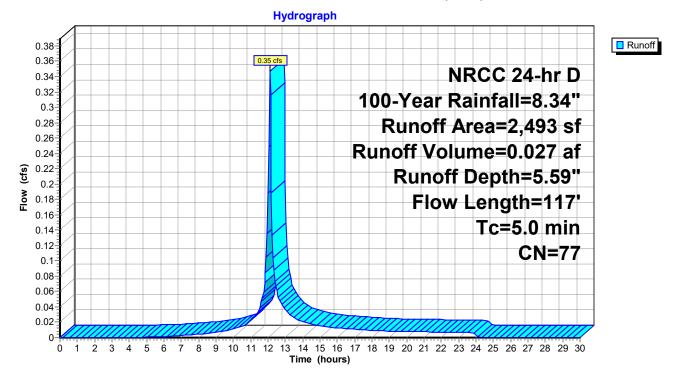
_	A	rea (sf)	CN	Description					
	1,787 98 Paved parking, HSG A								
_	A								
		4,779	97	Weighted A	verage				
		2,992		62.61% Pe	rvious Area				
		1,787		37.39% Imj	pervious Ar	ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.7	50	0.0200	1.18		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.5	85	0.0200	2.87		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	4.0	405	T ()			T 60 :			

1.2 135 Total, Increased to minimum Tc = 5.0 min

Subcatchment E26: TO DCB-H

Summary for Subcatchment e27: TO OFF SITE POINT (DP#6)

[49] Hint: Tc<2dt may require smaller dt

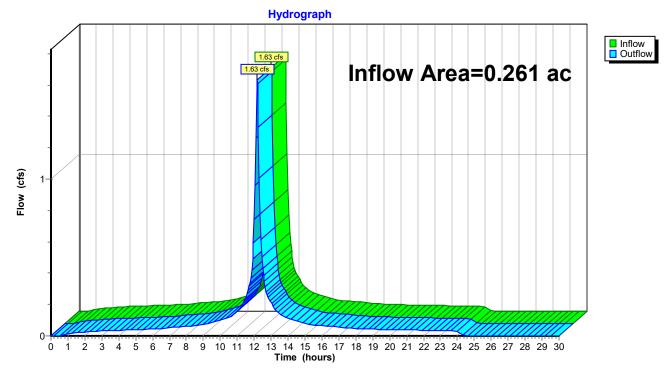

Runoff	=	0.35 cfs @	12.11 hrs, Vo	olume=	0.027 af,	Depth= 5.59"
Routed	to Re	ach DP#6 : OFF	SITE LOW F	POINT		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

_	A	rea (sf)	CN	Description		
		907	39	>75% Gras	s cover, Go	bod, HSG A
_		1,586	98	Paved park	ing, HSG A	
		2,493	77	Weighted A	verage	
		907		36.38% Pe	rvious Area	
		1,586		63.62% Im	pervious Ar	ea
	Tc	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	4.1	75	0.100	0.30		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	42	0.0300) 3.52		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	12	117	Total	Inoroacod	to minimum	$T_0 = 5.0 \text{ min}$

4.3 117 Total, Increased to minimum Tc = 5.0 min

Subcatchment e27: TO OFF SITE POINT (DP#6)

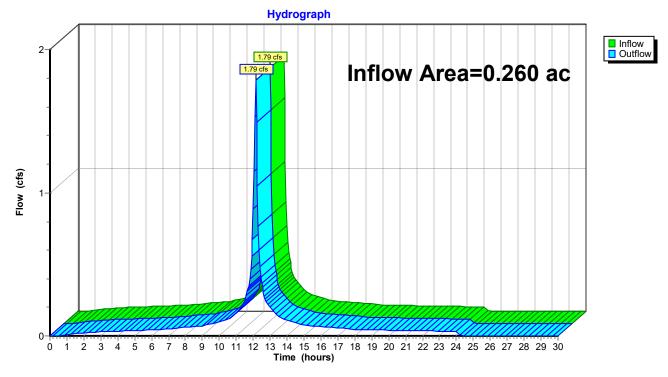


Summary for Reach DCB-A: TO DMH-D

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.261 ac, 80.04% Impervious, Inflow I	Depth = 8.10" for 100-Year event			
Inflow =	1.63 cfs @ 12.18 hrs, Volume=	0.176 af			
Outflow =	1.63 cfs @ 12.18 hrs, Volume=	0.176 af, Atten= 0%, Lag= 0.0 min			
Routed to Reach DMH-D : TO DMH-C					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

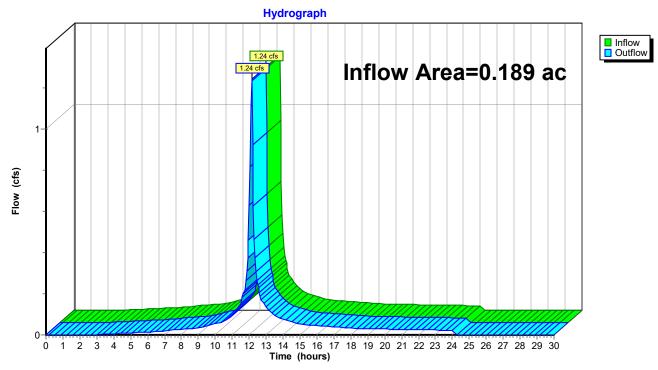

Reach DCB-A: TO DMH-D

Summary for Reach DCB-B: TO DMH-E

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.260 ac, 55.37% Impervious, Ir	nflow Depth = 7.98" for 100-Year event			
Inflow =	1.79 cfs @ 12.15 hrs, Volume=	0.173 af			
Outflow =	1.79 cfs @ 12.15 hrs, Volume=	0.173 af, Atten= 0%, Lag= 0.0 min			
Routed to Reach DMH-E : TO DMH-D					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DCB-B: TO DMH-E

Summary for Reach DCB-C: TO TRUNKLINE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.189 ac, 70.42% Impervious, Inflov	w Depth = 6.66" for 100-Year event			
Inflow =	1.24 cfs @ 12.14 hrs, Volume=	0.105 af			
Outflow =	1.24 cfs @ 12.14 hrs, Volume=	0.105 af, Atten= 0%, Lag= 0.0 min			
Routed to Reach DMH-E : TO DMH-D					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

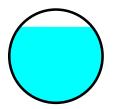
Reach DCB-C: TO TRUNKLINE

Summary for Reach DCB-D: TO DMH-A

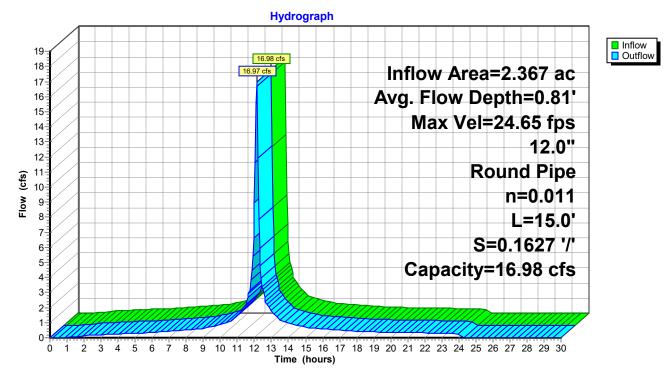
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 2.367 ac, 77.91% Impervious, Inflow Depth =
 7.78" for 100-Year event

 Inflow =
 16.98 cfs @
 12.13 hrs, Volume=
 1.535 af


 Outflow =
 16.97 cfs @
 12.13 hrs, Volume=
 1.535 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH-A : TO DMH-B
 To DMH-B
 1.535 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 24.65 fps, Min. Travel Time= 0.0 min Avg. Velocity = 9.66 fps, Avg. Travel Time= 0.0 min

Peak Storage= 10 cf @ 12.14 hrs Average Depth at Peak Storage= 0.81', Surface Width= 0.78' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 16.98 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 15.0' Slope= 0.1627 '/' Inlet Invert= 469.11', Outlet Invert= 466.67'

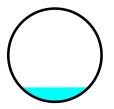
Reach DCB-D: TO DMH-A

Summary for Reach DCB-E: TO DMH-A

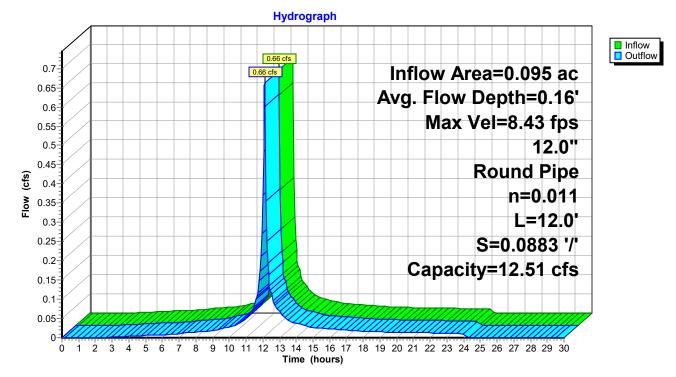
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.095 ac, 82.02% Impervious, Inflow Depth =
 6.78" for 100-Year event

 Inflow =
 0.66 cfs @
 12.11 hrs, Volume=
 0.054 af


 Outflow =
 0.66 cfs @
 12.11 hrs, Volume=
 0.054 af, Atten= 0%, Lag= 0.0 min

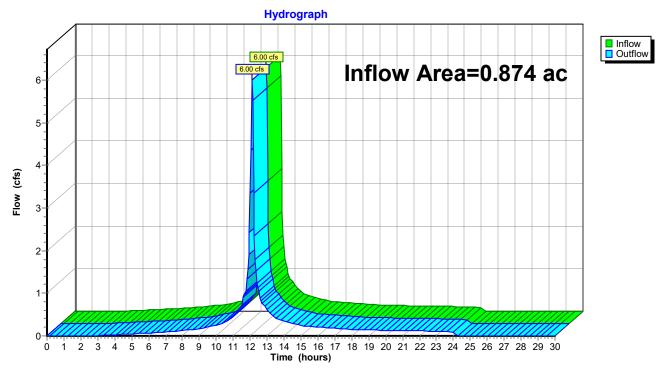
 Routed to Reach DMH-A : TO DMH-B
 0.054 af, Atten= 0%, Lag= 0.0 min
 0.054 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.43 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.91 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.16', Surface Width= 0.73' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 12.51 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 12.0' Slope= 0.0883 '/' Inlet Invert= 467.63', Outlet Invert= 466.57'

Reach DCB-E: TO DMH-A

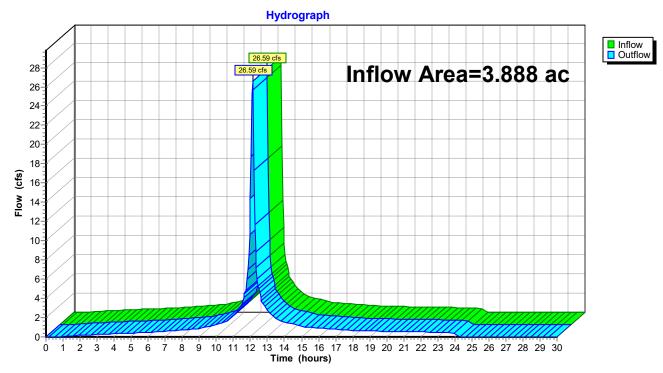


Summary for Reach DCB-F: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.874 ac, 78.48% Impervious, Inflo	w Depth = 6.66"	for 100-Year event		
Inflow =	6.00 cfs @ 12.11 hrs, Volume=	0.485 af			
Outflow =	6.00 cfs @ 12.11 hrs, Volume=	0.485 af, Atte	en= 0%, Lag= 0.0 min		
Routed to Reach DMH-A : TO DMH-B					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

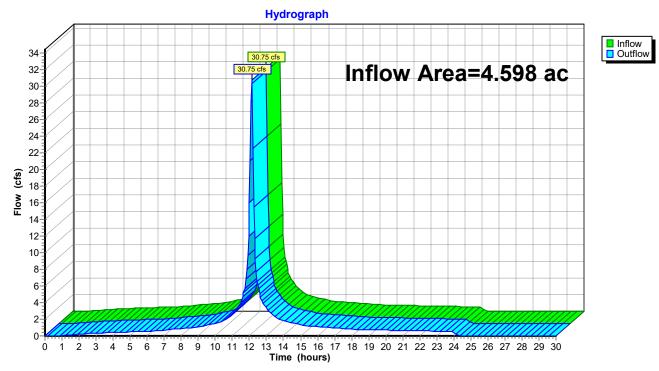

Reach DCB-F: (new Reach)

Summary for Reach DMH-A: TO DMH-B

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.888 ac, 73.60% Impervious, Inflov	w Depth = 7.23" for 100-Year event		
Inflow =	26.59 cfs @ 12.13 hrs, Volume=	2.344 af		
Outflow =	26.59 cfs @ 12.13 hrs, Volume=	2.344 af, Atten= 0%, Lag= 0.0 min		
Routed to Pond DMH-B : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DMH-A: TO DMH-B

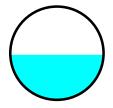
Summary for Reach DMH-C: TO DP#1

[40] Hint: Not Described (Outflow=Inflow)

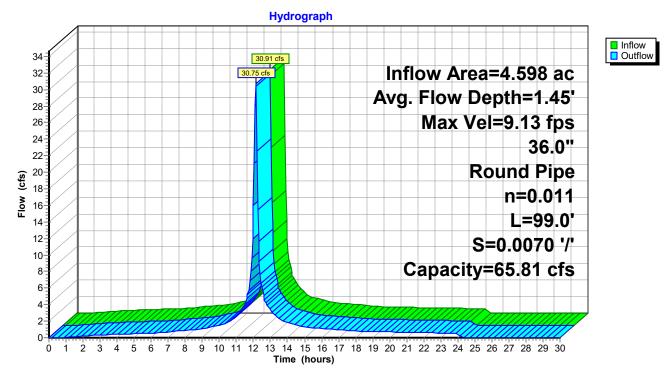
Inflow Area =	4.598 ac, 72.81% Impervious, Inflow D	Depth = 7.30" for 100-Year event		
Inflow =	30.75 cfs @ 12.14 hrs, Volume=	2.797 af		
Outflow =	30.75 cfs @ 12.14 hrs, Volume=	2.797 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DP2 : MUNICIPAL SYSTEM				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DMH-C: TO DP#1


Summary for Reach DMH-D: TO DMH-C

[52] Hint: Inlet/Outlet conditions not evaluated
[63] Warning: Exceeded Reach DMH-E INLET depth by 0.30' @ 12.15 hrs
[79] Warning: Submerged Pond DMH-B Primary device # 1 INLET by 0.53'
Inflow Area = 4.598 ac, 72.81% Impervious, Inflow Depth = 7.30" for 100-Year event
Inflow = 30.91 cfs @ 12.13 hrs, Volume= 2.797 af
Outflow = 30.75 cfs @ 12.14 hrs, Volume= 2.797 af, Atten= 1%, Lag= 0.3 min
Routed to Reach DMH-C : TO DP#1

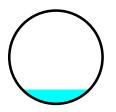

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 9.13 fps, Min. Travel Time= 0.2 min Avg. Velocity = 3.26 fps, Avg. Travel Time= 0.5 min

Peak Storage= 335 cf @ 12.13 hrs Average Depth at Peak Storage= 1.45', Surface Width= 3.00' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 65.81 cfs

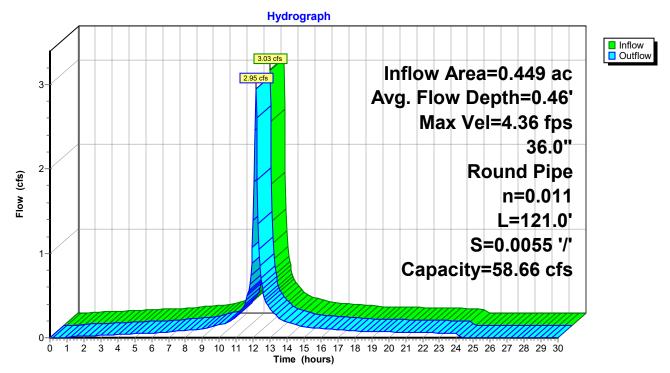
36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 99.0' Slope= 0.0070 '/' Inlet Invert= 455.90', Outlet Invert= 455.21'

Reach DMH-D: TO DMH-C

Summary for Reach DMH-E: TO DMH-D


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH-F outlet invert by 0.46' @ 12.15 hrs

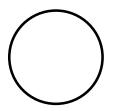
Inflow Area =0.449 ac, 61.71% Impervious, Inflow Depth =7.42" for 100-Year eventInflow =3.03 cfs @12.14 hrs, Volume=0.278 afOutflow =2.95 cfs @12.15 hrs, Volume=0.278 af, Atten= 3%, Lag= 0.6 minRouted to Reach DMH-D : TO DMH-CTO DMH-C

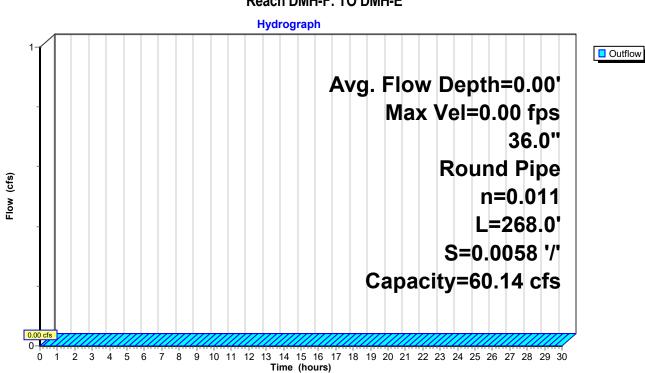

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.36 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.53 fps, Avg. Travel Time= 1.3 min

Peak Storage= 84 cf @ 12.15 hrs Average Depth at Peak Storage= 0.46', Surface Width= 2.17' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 58.66 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 121.0' Slope= 0.0055 '/' Inlet Invert= 456.57', Outlet Invert= 455.90'

Reach DMH-E: TO DMH-D

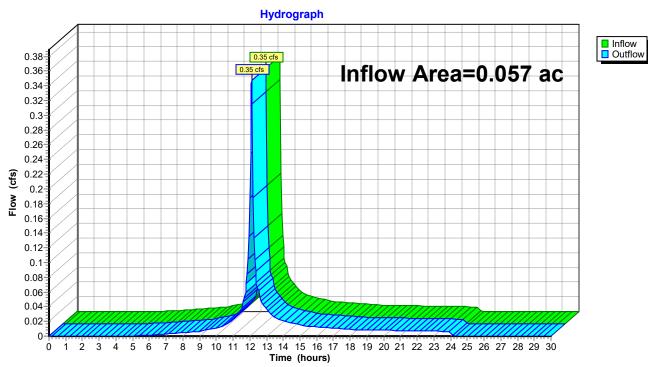



Summary for Reach DMH-F: TO DMH-E

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.14 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 268.0' Slope= 0.0058 '/' Inlet Invert= 458.13', Outlet Invert= 456.57'


Reach DMH-F: TO DMH-E

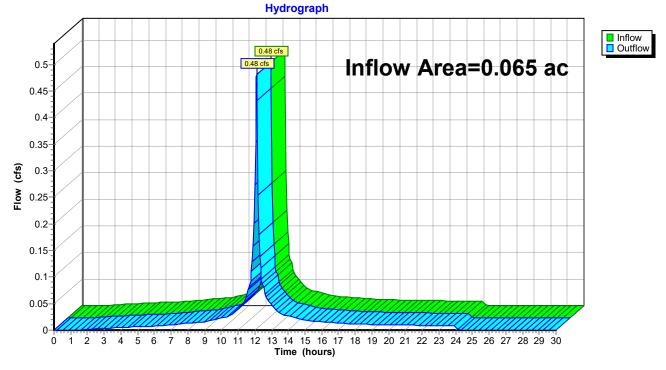
Summary for Reach DP#6: OFFSITE LOW POINT

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.057 ac, 63.62% Impervious, Inflow D	Pepth = 5.59" for 100-Year event
Inflow =	0.35 cfs @ 12.11 hrs, Volume=	0.027 af
Outflow =	0.35 cfs @ 12.11 hrs, Volume=	0.027 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

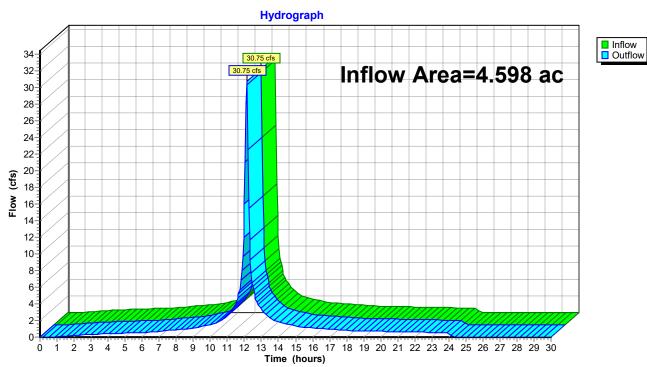
Reach DP#6: OFFSITE LOW POINT


Summary for Reach DP1: GUTTER POINT FRANKLIN (WEST)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.065 ac, 89.73% Impervious, Inflow De	epth = 7.38" for 100-Year event
Inflow =	0.48 cfs @ 12.11 hrs, Volume=	0.040 af
Outflow =	0.48 cfs @ 12.11 hrs, Volume=	0.040 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs



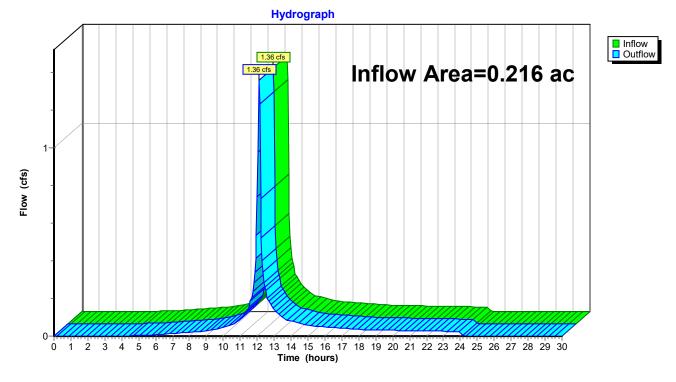
Summary for Reach DP2: MUNICIPAL SYSTEM

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	4.598 ac, 72.81% Impervious, Inflow I	Depth = 7.30" for 100-Year event
Inflow =	30.75 cfs @ 12.14 hrs, Volume=	2.797 af
Outflow =	30.75 cfs @ 12.14 hrs, Volume=	2.797 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

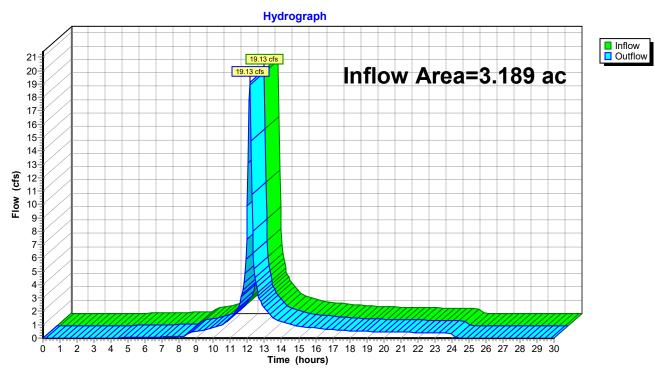
Reach DP2: MUNICIPAL SYSTEM


Summary for Reach DP3: CATCHBASIN (FIRE STATION)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.216 ac, 68.08% Impervious, Inflow I	Depth = 5.83" for 100-Year event
Inflow =	1.36 cfs @ 12.11 hrs, Volume=	0.105 af
Outflow =	1.36 cfs @ 12.11 hrs, Volume=	0.105 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

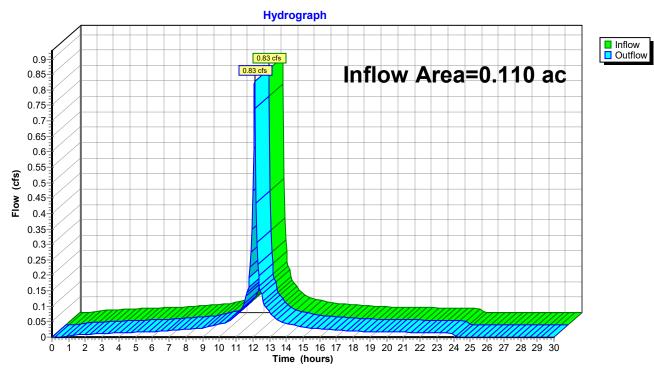


Summary for Reach DP4: DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.189 ac, 74.96% Impervious, Inflow	Depth = 6.11" for 100-Year event
Inflow =	19.13 cfs @ 12.14 hrs, Volume=	1.625 af
Outflow =	19.13 cfs @ 12.14 hrs, Volume=	1.625 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

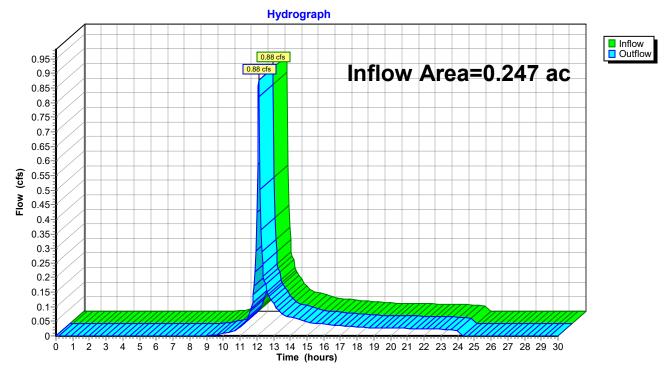

Reach DP4: DMH-K1

Summary for Reach DP5: DCB-H

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.110 ac, 37.39% Impervious, Inflow D	epth = 7.98" for 100-Year event
Inflow =	0.83 cfs @ 12.11 hrs, Volume=	0.073 af
Outflow =	0.83 cfs @ 12.11 hrs, Volume=	0.073 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

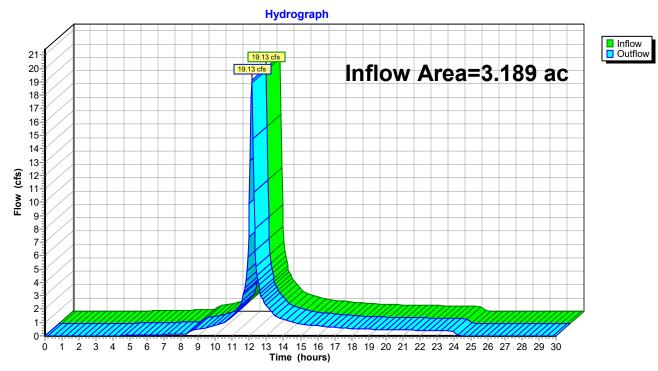

Reach DP5: DCB-H

Summary for Reach EX DCB: EX DCB

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.247 ac, 29.99% Impervious, Ir	nflow Depth = 3.25"	for 100-Year event
Inflow =	0.88 cfs @ 12.12 hrs, Volume=	0.067 af	
Outflow =	0.88 cfs @ 12.12 hrs, Volume=	0.067 af, Atte	n= 0%, Lag= 0.0 min
Routed to Rea	ch DMH-A : TO DMH-B		

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

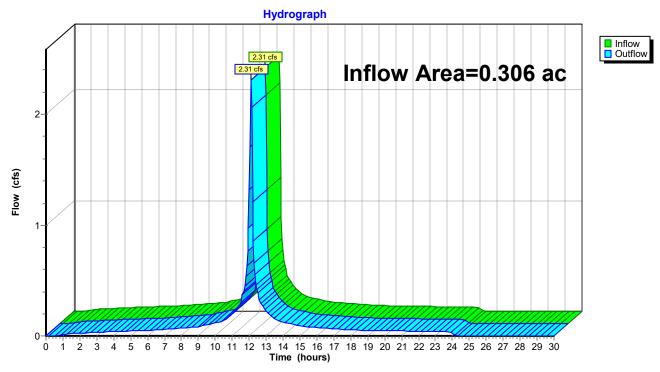

Reach EX DCB: EX DCB

Summary for Reach LP2: TO DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.189 ac, 74.96% Impervious, Inflow	Depth = 6.11" for 100-Year event
Inflow =	19.13 cfs @ 12.14 hrs, Volume=	1.625 af
Outflow =	19.13 cfs @ 12.14 hrs, Volume=	1.625 af, Atten= 0%, Lag= 0.0 min
Routed to Rea	ach DP4 : DMH-K1	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach LP2: TO DMH-K1

Summary for Reach YDA: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.306 ac, 58.95% Impervious,	Inflow Depth = 7.98" for 100-Year event
Inflow =	2.31 cfs @ 12.11 hrs, Volume	= 0.204 af
Outflow =	2.31 cfs @ 12.11 hrs, Volume=	= 0.204 af, Atten= 0%, Lag= 0.0 min
Routed to Rea	ch DMH-A : TO DMH-B	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach YDA: (new Reach)

Summary for Pond DMH-B: TO DMH-D

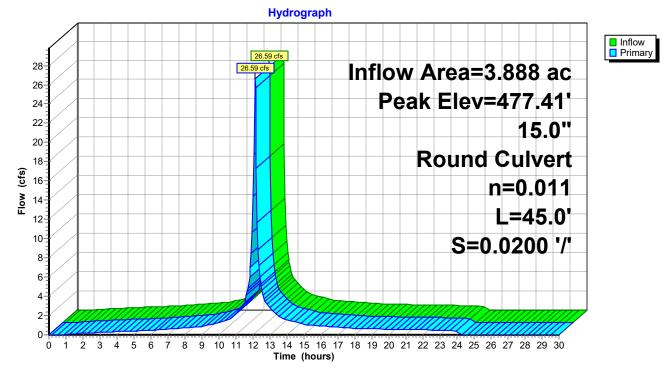
[57] Hint: Peaked at 477.41' (Flood elevation advised)

 Inflow Area =
 3.888 ac, 73.60% Impervious, Inflow Depth =
 7.23" for 100-Year event

 Inflow =
 26.59 cfs @
 12.13 hrs, Volume=
 2.344 af

 Outflow =
 26.59 cfs @
 12.13 hrs, Volume=
 2.344 af

 Primary =
 26.59 cfs @
 12.13 hrs, Volume=
 2.344 af

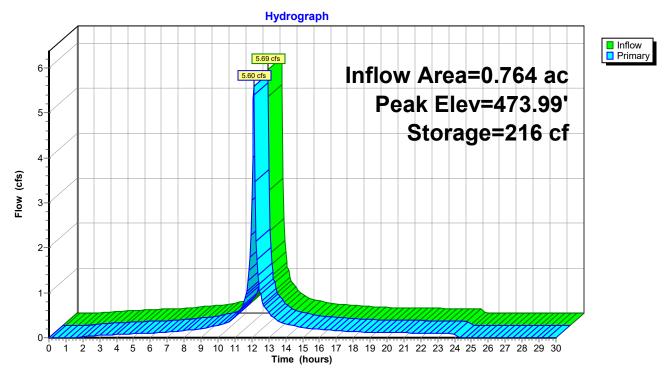

 Routed to Reach DMH-D : TO DMH-C
 2.344 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 477.41' @ 12.13 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	456.80'	15.0" Round Culvert L= 45.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 456.80' / 455.90' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=25.50 cfs @ 12.13 hrs HW=476.05' (Free Discharge) 1=Culvert (Inlet Controls 25.50 cfs @ 20.78 fps)

Pond DMH-B: TO DMH-D



Summary for Pond LP1: TO DCB-D

Inflow Area = 0.764 ac, 43.34% Impervious, Inflow Depth = 7.62" for 100-Year event Inflow = 5.69 cfs @ 12.11 hrs, Volume= 0.485 af Outflow = 5.60 cfs @ 12.13 hrs, Volume= 0.485 af, Atten= 2%, Lag= 1.0 min Primary = 5.60 cfs @ 12.13 hrs, Volume= 0.485 af Routed to Reach DCB-D : TO DMH-A								
Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 473.99' @ 12.13 hrs Surf.Area= 1,671 sf Storage= 216 cf								
Plug-Flow detention time= 1.7 min calculated for 0.484 af (100% of inflow) Center-of-Mass det. time= 1.2 min (765.6 - 764.3)								
Volume Invert Avail.Storage Storage Description								
#1 473.75' 231 cf Custom Stage Data (Prismatic) Listed below (Recalc)								
Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (cubic-feet)								
473.75 120 0 0								
474.00 1,725 231 231								
Device Routing Invert Outlet Devices								
#1 Primary 473.80' 25.0' long x 25.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63								
Primary OutFlow Max=5.35 cfs @ 12.13 hrs HW=473.99' (Free Discharge)								

1=Broad-Crested Rectangular Weir (Weir Controls 5.35 cfs @ 1.15 fps)

Pond LP1: TO DCB-D

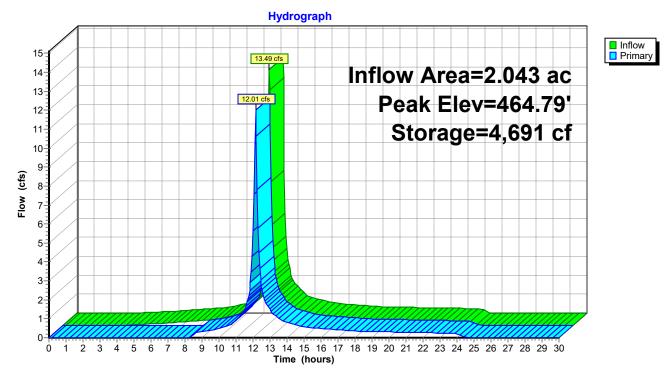
Summary for Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

 Inflow Area =
 2.043 ac, 74.89% Impervious, Inflow Depth =
 6.30" for 100-Year event

 Inflow =
 13.49 cfs @
 12.12 hrs, Volume=
 1.073 af

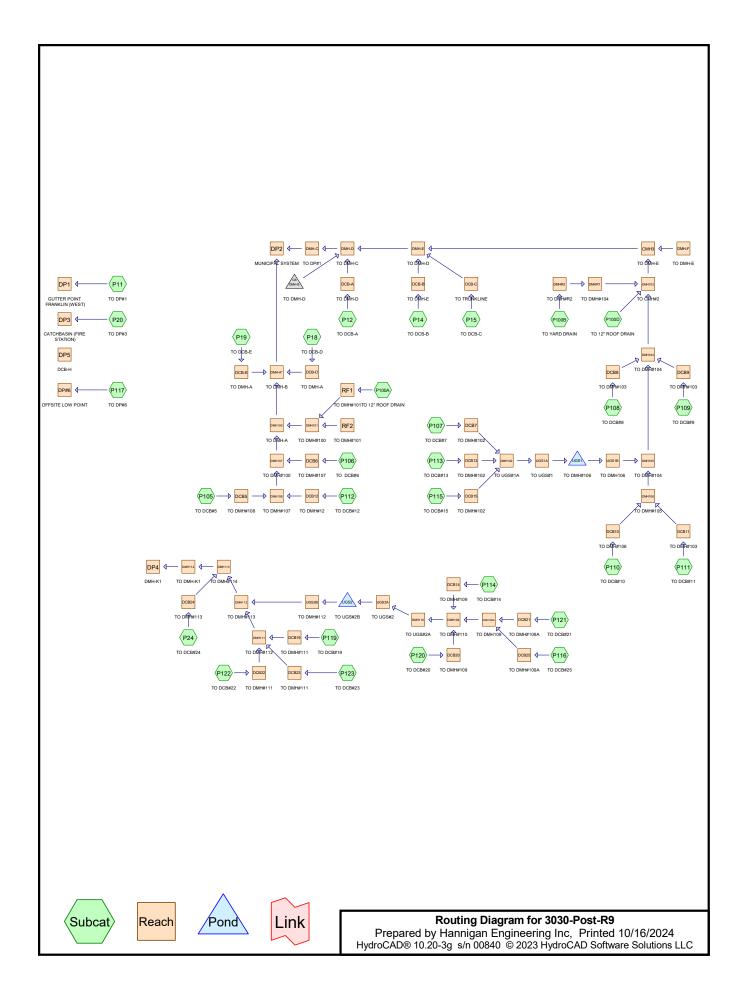
 Outflow =
 12.01 cfs @
 12.15 hrs, Volume=
 1.023 af, Atten= 11%, Lag= 2.3 min

 Primary =
 12.01 cfs @
 12.15 hrs, Volume=
 1.023 af


 Routed to Reach LP2 : TO DMH-K1
 1.023 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 464.79' @ 12.15 hrs Surf.Area= 11,636 sf Storage= 4,691 cf

Plug-Flow detention time= 52.6 min calculated for 1.021 af (95% of inflow) Center-of-Mass det. time= 25.3 min (832.3 - 807.0)


Inve	ert Avail.St	orage	Storage	Description	
461.5	50' 16,	070 cf	Custon	n Stage Data (Pr	ismatic) Listed below (Recalc)
on et)	Surf.Area (sq-ft)			Cum.Store (cubic-feet)	
50	133		0	0	
00	180		78	78	
00	269		225	303	
00	376		323	625	
50	5,887		1,566	2,191	
00	15,961		5,462	7,653	
50	17,706		8,417	16,070	
Routing	Inver	t Outle	et Device	S	
Primary	464.50	' 27.0	'long +	10.0 '/' SideZ x	20.0' breadth Broad-Crested Rectangular Weir
		Head	d (feet) (0.20 0.40 0.60	0.80 1.00 1.20 1.40 1.60
		Coet	f. (Englis	h) 2.68 2.70 2.1	70 2.64 2.63 2.64 2.64 2.63
			. •	-	
	461.5 on 50 50 00 00 50 50 80 Routing	461.50' 16,0 on Surf.Area st) (sq-ft) 50 133 00 180 00 269 00 376 50 5,887 00 15,961 50 17,706 Routing	461.50' 16,070 cf on Surf.Area Inc. st) (sq-ft) (cubin 50 133 00 00 180 00 00 269 00 00 376 50 50 5,887 00 00 15,961 50 50 17,706 17,706 Routing Invert Outh Primary 464.50' 27.0 Hear Hear Hear	461.50' 16,070 cf Custor on Surf.Area Inc.Store ott (sq-ft) (cubic-feet) 50 133 0 50 180 78 50 269 225 50 376 323 50 5,887 1,566 50 15,961 5,462 50 17,706 8,417 Routing Invert Outlet Device Primary 464.50' 27.0' long +	461.50' 16,070 cf Custom Stage Data (Pr on Surf.Area Inc.Store Cum.Store otic (sq-ft) (cubic-feet) (cubic-feet) 50 133 0 0 50 133 0 0 50 133 0 0 50 133 0 0 50 133 0 0 50 133 0 0 00 180 78 78 50 269 225 303 50 5,887 1,566 2,191 50 15,961 5,462 7,653 50 17,706 8,417 16,070 Routing Invert Outlet Devices Primary 464.50' 27.0' long + 10.0 '/' SideZ x Head (feet) 0.20 0.40 0.60

Primary OutFlow Max=11.89 cfs @ 12.15 hrs HW=464.78' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 11.89 cfs @ 1.40 fps)

Pond LP3: OLD LOADING BAY, FLOODS AND DIRECTED TOWARDS LP2

2.2 POST DEVELOPMENT CALCULATIONS

Project Notes

Rainfall events imported from "Atlas-14-Rain.txt" for 449 MA Worcester North

Rainfall Events Listing (selected events)

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2-Year	NRCC 24-hr	D	Default	24.00	1	3.13	2
2	10-Year	NRCC 24-hr	D	Default	24.00	1	4.68	2
3	25-Year	NRCC 24-hr	D	Default	24.00	1	5.88	2
4	100-Year	NRCC 24-hr	D	Default	24.00	1	8.34	2

Area Listing (all nodes)

Area Cl		CN	Description
	(acres)		(subcatchment-numbers)
	0.739	77	1/8 acre lots, 65% imp, HSG A (P100B)
	2.134	39	>75% Grass cover, Good, HSG A (P105, P106, P107, P108, P109, P11, P110, P111, P112, P113, P114, P115,
			P116, P117, P119, P12, P120, P121, P122, P123, P14, P15, P18, P19, P20, P24)
	5.361	98	Paved parking, HSG A (P100A, P100D, P105, P106, P107, P108, P109, P11, P110, P111, P112, P113, P114,
			P115, P116, P117, P119, P12, P120, P121, P122, P123, P14, P15, P18, P19, P20, P24)
	8.235	81	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
8.235	HSG A	P100A, P100B, P100D, P105, P106, P107, P108, P109, P11, P110, P111, P112, P113, P114, P115, P116,
		P117, P119, P12, P120, P121, P122, P123, P14, P15, P18, P19, P20, P24
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
0.000	Other	
8.235		TOTAL AREA

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.739	0.000	0.000	0.000	0.000	0.739	1/8 acre lots, 65% imp	P100B
2.134	0.000	0.000	0.000	0.000	2.134	>75% Grass cover, Good	P105, P106, P107, P108, P109, P11, P110, P111, P112, P113, P114, P115, P116, P117, P119, P12, P120, P121, P122, P123, P14, P15, P18, P19, P20, P24
5.361	0.000	0.000	0.000	0.000	5.361	Paved parking	P100A, P100D, P105, P106, P107, P108, P109, P11, P110, P111, P112, P113, P114, P115, P116, P117, P119, P12, P120, P121, P122, P123, P14, P15, P18, P19, P20, P24
8.235	0.000	0.000	0.000	0.000	8.235	TOTAL AREA	

Ground Covers (all nodes)

3030-Post-R9

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC Printed 10/16/2024 Page 7

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill	Node
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)	Name
1	CMH3	457.71	456.57	196.0	0.0058	0.011	0.0	36.0	0.0	TO DMH-E
2	DCB-D	468.00	467.50	15.0	0.0333	0.010	0.0	8.0	0.0	TO DMH-A
3	DCB-E	468.00	467.50	16.0	0.0313	0.010	0.0	8.0	0.0	TO DMH-A
4	DCB10	470.30	470.10	7.0	0.0286	0.010	0.0	8.0	0.0	TO DMH#106
5	DCB11	470.30	470.10	15.0	0.0133	0.010	0.0	8.0	0.0	TO DMH#103
6	DCB12	467.80	467.50	28.0	0.0107	0.010	0.0	8.0	0.0	TO DMH#12
7	DCB13	467.90	467.70	5.0	0.0400	0.013	0.0	12.0	0.0	TO DMH#102
8	DCB14	467.10	466.40	19.0	0.0368	0.013	0.0	12.0	0.0	TO DMH#109
9	DCB15	467.00	466.30	70.0	0.0100	0.013	0.0	12.0	0.0	TO DMH#102
10	DCB19	463.80	463.60	5.0	0.0400	0.013	0.0	12.0	0.0	TO DMH#111
11	DCB20	466.50	466.40	9.0	0.0111	0.013	0.0	12.0	0.0	TO DMH#109
12	DCB21	467.10	467.00	5.0	0.0200	0.013	0.0	8.0	0.0	TO DMH#109A
13	DCB22	464.20	463.60	20.0	0.0300	0.013	0.0	12.0	0.0	TO DMH#111
14	DCB23	466.70	463.60	250.0	0.0124	0.013	0.0	12.0	0.0	TO DMH#111
15	DCB24	460.50	460.30	9.0	0.0222	0.013	0.0	12.0	0.0	TO DMH#113
16	DCB25	467.50	467.00	29.0	0.0172	0.010	0.0	8.0	0.0	TO DMH#109A
17	DCB5	468.20	468.00	7.0	0.0286	0.010	0.0	8.0	0.0	TO DMH#108
18	DCB6	469.80	466.90	46.0	0.0630	0.010	0.0	8.0	0.0	TO DMH#107
19	DCB7	468.40	466.70	54.0	0.0315	0.013	0.0	12.0	0.0	TO DMH#102
20	DCB8	470.00	469.80	4.0	0.0500	0.010	0.0	8.0	0.0	TO DMH#103
21	DCB9	470.00	469.80	12.0	0.0167	0.010	0.0	8.0	0.0	TO DMH#103
22	DMH-A*	463.70	459.50	267.0	0.0157	0.011	0.0	24.0	0.0	TO DMH-B
23	DMH-D	455.90	455.21	99.0	0.0070	0.011	0.0	36.0	0.0	TO DMH-C
24	DMH-E	456.57	455.90	121.0	0.0055	0.011	0.0	36.0	0.0	TO DMH-D
25	DMH-F	458.13	457.71	72.0	0.0058	0.011	0.0	36.0	0.0	TO DMH-E
26	DMH100	465.20	463.80	70.0	0.0200	0.011	0.0	18.0	0.0	TO DMH-A
27	DMH101	465.40	465.30	5.0	0.0200	0.011	0.0	15.0	0.0	TO DMH#100
28	DMH102	466.10	466.00	5.0	0.0200	0.013	0.0	15.0	0.0	TO UGS#1A
29	DMH103	464.10	462.00	154.0	0.0136	0.011	0.0	18.0	0.0	TO CMH#2
30	DMH104	465.40	464.20	120.0	0.0100	0.011	0.0	15.0	0.0	TO DMH#104
31	DMH105	467.30	465.50	187.0	0.0096	0.011	0.0	15.0	0.0	TO DMH#104
32	DMH106	470.00	468.80	57.0	0.0211	0.011	0.0	12.0	0.0	TO DMH#105
33	DMH107	466.70	465.30	78.0	0.0179	0.011	0.0	12.0	0.0	TO DMH#100
34	DMH108	467.40	466.90	45.0	0.0111	0.011	0.0	12.0	0.0	TO DMH#107
35	DMH109	466.20	466.00	5.0	0.0400	0.013	0.0	12.0	0.0	TO DMH#110
36	DMH109A	466.90	466.40	35.0	0.0143	0.013	0.0	12.0	0.0	TO DMH109
37	DMH110	465.75	465.00	24.0	0.0313	0.013	0.0	12.0	0.0	TO UGS#2A
38	DMH111	463.50	462.00	66.0	0.0227	0.013	0.0	12.0	0.0	TO DMH#112
39	DMH112	460.20	459.80	35.0	0.0114	0.013	0.0	18.0	0.0	TO DMH#113
40	DMH113	459.70	459.25	28.0	0.0161	0.013	0.0	18.0	0.0	TO DMH#114
41	DMH114	459.00	458.75	8.0	0.0313	0.013	0.0	18.0	0.0	TO DMH-K1
42	DMHR1	467.00	465.00	94.0	0.0213	0.012	0.0	12.0	0.0	TO DMH#104
43	DMHR2	468.40	467.10	131.0	0.0099	0.010	0.0	12.0	0.0	TO DMH#R2

Pipe Listing (all nodes) (continued)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)	Node Name
44	RF1	466.20	465.70	24.0	0.0208	0.012	0.0	12.0	0.0	TO DMH#101
45	RF2	466.20	465.70	24.0	0.0208	0.012	0.0	10.0	0.0	TO DMH#101
46	UGS1B	467.60	467.40	17.0	0.0118	0.011	0.0	12.0	0.0	TO DMH106
47	UGS2B	461.10	460.30	84.0	0.0095	0.013	0.0	15.0	0.0	TO DMH#112
48	DMH-B	456.80	455.90	45.0	0.0200	0.011	0.0	15.0	0.0	TO DMH-D

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P100A: TO 12" ROOF DRAIN	Runoff Area=33,077 sf 100.00% Impervious Runoff Depth=2.90" Tc=5.0 min CN=98 Runoff=2.13 cfs 0.183 af
Subcatchment P100B: TO YARD DRAIN	Runoff Area=32,189 sf 65.00% Impervious Runoff Depth=1.16" Tc=5.0 min CN=77 Runoff=0.94 cfs 0.072 af
Subcatchment P100D: TO 12" ROOF DRAIN	Runoff Area=32,189 sf 100.00% Impervious Runoff Depth=2.90" Tc=5.0 min CN=98 Runoff=2.07 cfs 0.178 af
Subcatchment P105: TO DCB#5	Runoff Area=12,319 sf 35.47% Impervious Runoff Depth=0.38" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=60 Runoff=0.07 cfs 0.009 af
Subcatchment P106: TO DCB#6	Runoff Area=6,540 sf 94.27% Impervious Runoff Depth=2.58" Flow Length=101' Slope=0.0150 '/' Tc=5.0 min CN=95 Runoff=0.40 cfs 0.032 af
Subcatchment P107: TO DCB#7	Runoff Area=14,453 sf 83.32% Impervious Runoff Depth=1.93" Flow Length=126' Slope=0.0150 '/' Tc=5.0 min CN=88 Runoff=0.70 cfs 0.053 af
Subcatchment P108: TO DCB#8	Runoff Area=7,623 sf 76.33% Impervious Runoff Depth=1.62" Flow Length=156' Tc=5.0 min CN=84 Runoff=0.31 cfs 0.024 af
Subcatchment P109: TO DCB#9	Runoff Area=9,811 sf 39.59% Impervious Runoff Depth=0.45" Flow Length=156' Tc=5.1 min CN=62 Runoff=0.08 cfs 0.008 af
Subcatchment P11: TO DP#1	Runoff Area=2,852 sf 89.73% Impervious Runoff Depth=2.28" Flow Length=98' Slope=0.0170 '/' Tc=5.0 min CN=92 Runoff=0.16 cfs 0.012 af
Subcatchment P110: TO DCB#10	Runoff Area=2,827 sf 67.92% Impervious Runoff Depth=1.28" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=79 Runoff=0.09 cfs 0.007 af
Subcatchment P111: TO DCB#11	Runoff Area=4,144 sf 28.74% Impervious Runoff Depth=0.26" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=56 Runoff=0.01 cfs 0.002 af
Subcatchment P112: TO DCB#12	Runoff Area=9,054 sf 93.65% Impervious Runoff Depth=2.48" Flow Length=150' Slope=0.0130 '/' Tc=5.0 min CN=94 Runoff=0.54 cfs 0.043 af
Subcatchment P113: TO DCB#13	Runoff Area=11,898 sf 94.49% Impervious Runoff Depth=2.58" Flow Length=122' Slope=0.0200 '/' Tc=5.0 min CN=95 Runoff=0.72 cfs 0.059 af
Subcatchment P114: TO DCB#14	Runoff Area=5,484 sf 94.42% Impervious Runoff Depth=2.58" Flow Length=126' Slope=0.0160 '/' Tc=5.0 min CN=95 Runoff=0.33 cfs 0.027 af
Subcatchment P115: TO DCB#15	Runoff Area=16,100 sf 70.06% Impervious Runoff Depth=1.35" Flow Length=122' Slope=0.0170 '/' Tc=5.0 min CN=80 Runoff=0.55 cfs 0.042 af
Subcatchment P116: TO DCB#25	Runoff Area=2,780 sf 89.32% Impervious Runoff Depth=2.28" Flow Length=80' Slope=0.0200 '/' Tc=5.0 min CN=92 Runoff=0.16 cfs 0.012 af

3030-Post-R9

Subcatchment P117: TO DP#6	Runoff Area=3,839 sf 33.45% Impervious Runoff Depth=0.35" Flow Length=74' Slope=0.0200 '/' Tc=5.0 min CN=59 Runoff=0.02 cfs 0.003 af
Subcatchment P119: TO DCB#19	Runoff Area=7,440 sf 78.16% Impervious Runoff Depth=1.70" Flow Length=213' Slope=0.0250 '/' Tc=5.0 min CN=85 Runoff=0.32 cfs 0.024 af
Subcatchment P12: TO DCB-A	Runoff Area=6,197 sf 94.61% Impervious Runoff Depth=2.58" Flow Length=147' Tc=5.0 min CN=95 Runoff=0.38 cfs 0.031 af
Subcatchment P120: TO DCB#20	Runoff Area=10,195 sf 85.75% Impervious Runoff Depth=2.10" Flow Length=146' Tc=5.0 min CN=90 Runoff=0.53 cfs 0.041 af
Subcatchment P121: TO DCB#21	Runoff Area=7,628 sf 71.01% Impervious Runoff Depth=1.41" Flow Length=153' Tc=5.0 min CN=81 Runoff=0.27 cfs 0.021 af
Subcatchment P122: TO DCB#22	Runoff Area=10,232 sf 44.85% Impervious Runoff Depth=0.57" Flow Length=189' Tc=5.0 min CN=65 Runoff=0.12 cfs 0.011 af
Subcatchment P123: TO DCB#23	Runoff Area=33,346 sf 40.00% Impervious Runoff Depth=0.49" Flow Length=171' Tc=5.0 min CN=63 Runoff=0.31 cfs 0.031 af
Subcatchment P14: TO DCB-B	Runoff Area=5,424 sf 87.24% Impervious Runoff Depth=2.10" Flow Length=169' Tc=5.0 min CN=90 Runoff=0.28 cfs 0.022 af
Subcatchment P15: TO DCB-C	Runoff Area=8,397 sf 71.34% Impervious Runoff Depth=1.41" Flow Length=161' Slope=0.0110 '/' Tc=7.0 min CN=81 Runoff=0.29 cfs 0.023 af
Subcatchment P18: TO DCB-D	Runoff Area=10,287 sf 76.50% Impervious Runoff Depth=1.62" Flow Length=222' Tc=5.0 min CN=84 Runoff=0.42 cfs 0.032 af
Subcatchment P19: TO DCB-E	Runoff Area=8,240 sf 64.27% Impervious Runoff Depth=1.16" Flow Length=177' Slope=0.0090 '/' Tc=5.0 min CN=77 Runoff=0.24 cfs 0.018 af
Subcatchment P20: TO DP#3	Runoff Area=9,426 sf 68.08% Impervious Runoff Depth=1.28" Flow Length=137' Tc=5.0 min CN=79 Runoff=0.31 cfs 0.023 af
Subcatchment P24: TO DCB#24	Runoff Area=34,704 sf 47.02% Impervious Runoff Depth=0.65" Flow Length=247' Slope=0.0250 '/' Tc=5.0 min CN=67 Runoff=0.50 cfs 0.043 af
Reach CMH3: TO DMH-E	Avg. Flow Depth=0.48' Max Vel=4.55 fps Inflow=3.31 cfs 0.291 af 36.0" Round Pipe n=0.011 L=196.0' S=0.0058 '/' Capacity=60.12 cfs Outflow=3.18 cfs 0.291 af
Reach DCB-A: TO DMH-D	Inflow=0.38 cfs 0.031 af Outflow=0.38 cfs 0.031 af
Reach DCB-B: TO DMH-E	Inflow=0.28 cfs 0.022 af Outflow=0.28 cfs 0.022 af
Reach DCB-C: TO TRUNKLINE	Inflow=0.29 cfs 0.023 af Outflow=0.29 cfs 0.023 af

3030-Post-R9

Reach DCB-D: TO DMH-A	Avg. Flow Depth=0.17' Max Vel=5.85 fps Inflow=0.42 cfs 0.032 af 8.0" Round Pipe n=0.010 L=15.0' S=0.0333 '/' Capacity=2.87 cfs Outflow=0.42 cfs 0.032 af
Reach DCB-E: TO DMH-A	Avg. Flow Depth=0.13' Max Vel=4.83 fps Inflow=0.24 cfs 0.018 af 8.0" Round Pipe n=0.010 L=16.0' S=0.0313 '/' Capacity=2.78 cfs Outflow=0.24 cfs 0.018 af
Reach DCB10: TO DMH#106	Avg. Flow Depth=0.08' Max Vel=3.52 fps Inflow=0.09 cfs 0.007 af 8.0" Round Pipe n=0.010 L=7.0' S=0.0286 '/' Capacity=2.66 cfs Outflow=0.09 cfs 0.007 af
Reach DCB11: TO DMH#103	Avg. Flow Depth=0.03' Max Vel=1.32 fps Inflow=0.01 cfs 0.002 af 8.0" Round Pipe n=0.010 L=15.0' S=0.0133 '/' Capacity=1.81 cfs Outflow=0.01 cfs 0.002 af
Reach DCB12: TO DMH#12	Avg. Flow Depth=0.26' Max Vel=4.16 fps Inflow=0.54 cfs 0.043 af 8.0" Round Pipe n=0.010 L=28.0' S=0.0107 '/' Capacity=1.63 cfs Outflow=0.53 cfs 0.043 af
Reach DCB13: TO DMH#102	Avg. Flow Depth=0.22' Max Vel=5.81 fps Inflow=0.72 cfs 0.059 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=0.72 cfs 0.059 af
Reach DCB14: TO DMH#109	Avg. Flow Depth=0.15' Max Vel=4.48 fps Inflow=0.33 cfs 0.027 af 12.0" Round Pipe n=0.013 L=19.0' S=0.0368 '/' Capacity=6.84 cfs Outflow=0.33 cfs 0.027 af
Reach DCB15: TO DMH#102	Avg. Flow Depth=0.27' Max Vel=3.25 fps Inflow=0.55 cfs 0.042 af 12.0" Round Pipe n=0.013 L=70.0' S=0.0100 '/' Capacity=3.56 cfs Outflow=0.54 cfs 0.042 af
Reach DCB19: TO DMH#111	Avg. Flow Depth=0.14' Max Vel=4.56 fps Inflow=0.32 cfs 0.024 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=0.32 cfs 0.024 af
Reach DCB20: TO DMH#109	Avg. Flow Depth=0.25' Max Vel=3.37 fps Inflow=0.53 cfs 0.041 af 12.0" Round Pipe n=0.013 L=9.0' S=0.0111 '/' Capacity=3.76 cfs Outflow=0.53 cfs 0.041 af
Reach DCB21: TO DMH#109A	Avg. Flow Depth=0.18' Max Vel=3.56 fps Inflow=0.27 cfs 0.021 af 8.0" Round Pipe n=0.013 L=5.0' S=0.0200 '/' Capacity=1.71 cfs Outflow=0.27 cfs 0.021 af
Reach DCB22: TO DMH#111	Avg. Flow Depth=0.10' Max Vel=3.08 fps Inflow=0.12 cfs 0.011 af 12.0" Round Pipe n=0.013 L=20.0' S=0.0300 '/' Capacity=6.17 cfs Outflow=0.12 cfs 0.011 af
Reach DCB23: TO DMH#111	Avg. Flow Depth=0.19' Max Vel=2.99 fps Inflow=0.31 cfs 0.031 af 12.0" Round Pipe n=0.013 L=250.0' S=0.0124 '/' Capacity=3.97 cfs Outflow=0.28 cfs 0.031 af
Reach DCB24: TO DMH#113	Avg. Flow Depth=0.21' Max Vel=4.21 fps Inflow=0.50 cfs 0.043 af 12.0" Round Pipe n=0.013 L=9.0' S=0.0222 '/' Capacity=5.31 cfs Outflow=0.50 cfs 0.043 af
Reach DCB25: TO DMH#109A	Avg. Flow Depth=0.12' Max Vel=3.46 fps Inflow=0.16 cfs 0.012 af 8.0" Round Pipe n=0.010 L=29.0' S=0.0172 '/' Capacity=2.06 cfs Outflow=0.15 cfs 0.012 af
Reach DCB5: TO DMH#108	Avg. Flow Depth=0.08' Max Vel=3.33 fps Inflow=0.07 cfs 0.009 af 8.0" Round Pipe n=0.010 L=7.0' S=0.0286 '/' Capacity=2.66 cfs Outflow=0.07 cfs 0.009 af
Reach DCB6: TO DMH#107	Avg. Flow Depth=0.14' Max Vel=7.21 fps Inflow=0.40 cfs 0.032 af 8.0" Round Pipe n=0.010 L=46.0' S=0.0630 '/' Capacity=3.94 cfs Outflow=0.39 cfs 0.032 af

3030-Post-R9	
Data a secolar based based as a second	

Reach DCB7: TO DMH#102	Avg. Flow Depth=0.22' Max Vel=5.27 fps Inflow=0.70 cfs 0.053 af 12.0" Round Pipe n=0.013 L=54.0' S=0.0315 '/' Capacity=6.32 cfs Outflow=0.69 cfs 0.053 af
Reach DCB8: TO DMH#103	Avg. Flow Depth=0.13' Max Vel=6.20 fps Inflow=0.31 cfs 0.024 af 8.0" Round Pipe n=0.010 L=4.0' S=0.0500 '/' Capacity=3.51 cfs Outflow=0.31 cfs 0.024 af
Reach DCB9: TO DMH#103	Avg. Flow Depth=0.09' Max Vel=2.82 fps Inflow=0.08 cfs 0.008 af 8.0" Round Pipe n=0.010 L=12.0' S=0.0167 '/' Capacity=2.03 cfs Outflow=0.08 cfs 0.008 af
Reach DMH-A*: TO DMH-B	Avg. Flow Depth=0.45' Max Vel=6.99 fps Inflow=3.67 cfs 0.318 af 24.0" Round Pipe n=0.011 L=267.0' S=0.0157 '/' Capacity=33.53 cfs Outflow=3.61 cfs 0.318 af
Reach DMH-C: TO DP#1	Inflow=3.89 cfs 0.366 af Outflow=3.89 cfs 0.366 af
Reach DMH-D: TO DMH-C	Avg. Flow Depth=0.50' Max Vel=5.12 fps Inflow=3.95 cfs 0.366 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=3.89 cfs 0.366 af
Reach DMH-E: TO DMH-D	Avg. Flow Depth=0.51' Max Vel=4.63 fps Inflow=3.72 cfs 0.336 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=3.63 cfs 0.336 af
Reach DMH-F: TO DMH-E	Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=72.0' S=0.0058 '/' Capacity=60.20 cfs Outflow=0.00 cfs 0.000 af
Reach DMH100: TO DMH-A	Avg. Flow Depth=0.42' Max Vel=7.38 fps Inflow=3.05 cfs 0.267 af 18.0" Round Pipe n=0.011 L=70.0' S=0.0200 '/' Capacity=17.56 cfs Outflow=3.05 cfs 0.267 af
Reach DMH101: TO DMH#100	Avg. Flow Depth=0.38' Max Vel=6.80 fps Inflow=2.11 cfs 0.183 af 15.0" Round Pipe n=0.011 L=5.0' S=0.0200 '/' Capacity=10.80 cfs Outflow=2.11 cfs 0.183 af
Reach DMH102: TO UGS#1A	Avg. Flow Depth=0.39' Max Vel=5.87 fps Inflow=1.94 cfs 0.154 af 15.0" Round Pipe n=0.013 L=5.0' S=0.0200 '/' Capacity=9.14 cfs Outflow=1.93 cfs 0.154 af
Reach DMH103: TO CMH#2	Avg. Flow Depth=0.49' Max Vel=6.64 fps Inflow=3.33 cfs 0.291 af 18.0" Round Pipe n=0.011 L=154.0' S=0.0136 '/' Capacity=14.50 cfs Outflow=3.31 cfs 0.291 af
Reach DMH104: TO DMH#104	Avg. Flow Depth=0.21' Max Vel=3.44 fps Inflow=0.47 cfs 0.041 af 15.0" Round Pipe n=0.011 L=120.0' S=0.0100 '/' Capacity=7.63 cfs Outflow=0.45 cfs 0.041 af
Reach DMH105: TO DMH#104	Avg. Flow Depth=0.10' Max Vel=2.09 fps Inflow=0.10 cfs 0.009 af 15.0" Round Pipe n=0.011 L=187.0' S=0.0096 '/' Capacity=7.49 cfs Outflow=0.09 cfs 0.009 af
Reach DMH106: TO DMH#105	Avg. Flow Depth=0.09' Max Vel=2.87 fps Inflow=0.10 cfs 0.009 af 12.0" Round Pipe n=0.011 L=57.0' S=0.0211 '/' Capacity=6.11 cfs Outflow=0.10 cfs 0.009 af
Reach DMH107: TO DMH#100	Avg. Flow Depth=0.28' Max Vel=5.35 fps Inflow=0.98 cfs 0.084 af 12.0" Round Pipe n=0.011 L=78.0' S=0.0179 '/' Capacity=5.64 cfs Outflow=0.98 cfs 0.084 af
Reach DMH108: TO DMH#107	Avg. Flow Depth=0.25' Max Vel=3.90 fps Inflow=0.60 cfs 0.052 af 12.0" Round Pipe n=0.011 L=45.0' S=0.0111 '/' Capacity=4.44 cfs Outflow=0.60 cfs 0.052 af

3030-Post-R9

Reach DMH109: TO DMH#110	Avg. Flow Depth=0.29' Max Vel=6.83 fps Inflow=1.28 cfs 0.101 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=1.28 cfs 0.101 af
Reach DMH109A: TO DMH109	Avg. Flow Depth=0.21' Max Vel=3.43 fps Inflow=0.43 cfs 0.033 af 12.0" Round Pipe n=0.013 L=35.0' S=0.0143 '/' Capacity=4.26 cfs Outflow=0.42 cfs 0.033 af
Reach DMH110: TO UGS#2A	Avg. Flow Depth=0.31' Max Vel=6.24 fps Inflow=1.28 cfs 0.101 af 12.0" Round Pipe n=0.013 L=24.0' S=0.0313 '/' Capacity=6.30 cfs Outflow=1.27 cfs 0.101 af
Reach DMH111: TO DMH#112	Avg. Flow Depth=0.24' Max Vel=4.70 fps Inflow=0.69 cfs 0.066 af 12.0" Round Pipe n=0.013 L=66.0' S=0.0227 '/' Capacity=5.37 cfs Outflow=0.68 cfs 0.066 af
Reach DMH112: TO DMH#113	Avg. Flow Depth=0.28' Max Vel=3.75 fps Inflow=0.85 cfs 0.165 af 18.0" Round Pipe n=0.013 L=35.0' S=0.0114 '/' Capacity=11.23 cfs Outflow=0.84 cfs 0.165 af
Reach DMH113: TO DMH#114	Avg. Flow Depth=0.32' Max Vel=4.82 fps Inflow=1.33 cfs 0.208 af 18.0" Round Pipe n=0.013 L=28.0' S=0.0161 '/' Capacity=13.32 cfs Outflow=1.33 cfs 0.208 af
Reach DMH114: TO DMH-K1	Avg. Flow Depth=0.27' Max Vel=6.09 fps Inflow=1.33 cfs 0.208 af 18.0" Round Pipe n=0.013 L=8.0' S=0.0313 '/' Capacity=18.57 cfs Outflow=1.33 cfs 0.208 af
Reach DMHR1: TO DMH#104	Avg. Flow Depth=0.27' Max Vel=5.27 fps Inflow=0.92 cfs 0.072 af 12.0" Round Pipe n=0.012 L=94.0' S=0.0213 '/' Capacity=5.63 cfs Outflow=0.90 cfs 0.072 af
Reach DMHR2: TO DMH#R2	Avg. Flow Depth=0.31' Max Vel=4.57 fps Inflow=0.94 cfs 0.072 af 12.0" Round Pipe n=0.010 L=131.0' S=0.0099 '/' Capacity=4.61 cfs Outflow=0.92 cfs 0.072 af
Reach DP#6: OFFSITE LOW POINT	Inflow=0.02 cfs 0.003 af Outflow=0.02 cfs 0.003 af
Reach DP1: GUTTER POINT FRANKL	IN (WEST) Inflow=0.16 cfs 0.012 af Outflow=0.16 cfs 0.012 af
Reach DP2: MUNICIPAL SYSTEM	Inflow=7.44 cfs 0.684 af Outflow=7.44 cfs 0.684 af
Reach DP3: CATCHBASIN (FIRE STA	Inflow=0.31 cfs 0.023 af Outflow=0.31 cfs 0.023 af
Reach DP4: DMH-K1	Inflow=1.33 cfs 0.208 af Outflow=1.33 cfs 0.208 af
Reach DP5: DCB-H	
Reach RF1: TO DMH#101	Avg. Flow Depth=0.43' Max Vel=6.59 fps Inflow=2.13 cfs 0.183 af 12.0" Round Pipe n=0.012 L=24.0' S=0.0208 '/' Capacity=5.57 cfs Outflow=2.11 cfs 0.183 af
Reach RF2: TO DMH#101	Avg. Flow Depth=0.00' Max Vel=0.00 fps 10.0" Round Pipe n=0.012 L=24.0' S=0.0208 '/' Capacity=3.43 cfs Outflow=0.00 cfs 0.000 af

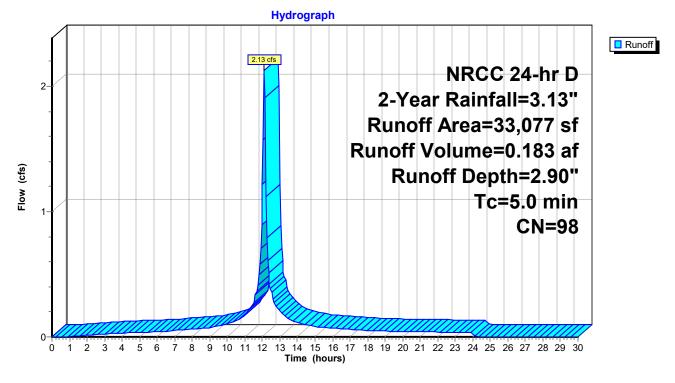
Prepared by Hannigan Engineering In HydroCAD® 10.20-3g s/n 00840 © 2023 Hy	
Reach UGS1A: TO UGS#1	Inflow=1.93 cfs 0.154 af Outflow=1.93 cfs 0.154 af
Reach UGS1B: TO DMH106	Avg. Flow Depth=0.00' Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af 12.0" Round Pipe n=0.011 L=17.0' S=0.0118 '/' Capacity=4.57 cfs Outflow=0.00 cfs 0.000 af
Reach UGS2A: TO UGS#2	Inflow=1.27 cfs 0.101 af Outflow=1.27 cfs 0.101 af
Reach UGS2B: TO DMH#112	Avg. Flow Depth=0.14' Max Vel=2.24 fps Inflow=0.17 cfs 0.098 af 15.0" Round Pipe n=0.013 L=84.0' S=0.0095 '/' Capacity=6.30 cfs Outflow=0.17 cfs 0.098 af
Pond DMH-B: TO DMH-D	Peak Elev=0.00' 15.0" Round Culvert n=0.011 L=45.0' S=0.0200 '/' Primary=0.00 cfs 0.000 af
Pond UGS1: TO DMH#106	Peak Elev=466.09' Storage=0.047 af Inflow=1.93 cfs 0.154 af Discarded=0.20 cfs 0.154 af Primary=0.00 cfs 0.000 af Outflow=0.20 cfs 0.154 af
Pond UGS2: TO UGS#2B	Peak Elev=462.90' Storage=0.036 af Inflow=1.27 cfs 0.101 af Outflow=0.17 cfs 0.098 af

3030-Post-R9

Total Runoff Area = 8.235 acRunoff Volume = 1.086 af
29.06% Pervious = 2.393 acAverage Runoff Depth = 1.58"
70.94% Impervious = 5.842 ac

NRCC 24-hr D 2-Year Rainfall=3.13"

Summary for Subcatchment P100A: TO 12" ROOF DRAIN


[49] Hint: Tc<2dt may require smaller dt

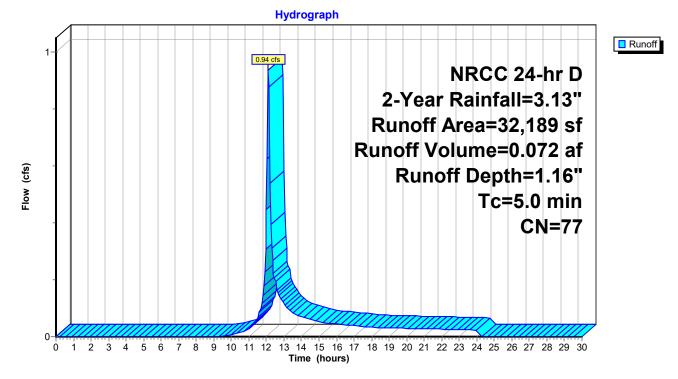
Runoff = 2.13 cfs @ 12.11 hrs, Volume= 0.183 af, Depth= 2.90" Routed to Reach RF1 : TO DMH#101

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

Ar	ea (sf)	CN	Description	escription							
3	33,077	98	Paved park	aved parking, HSG A							
3	33,077	077 100.00% Impervious Area									
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description						
5.0					Direct Entry,						

Subcatchment P100A: TO 12" ROOF DRAIN

Summary for Subcatchment P100B: TO YARD DRAIN


[49] Hint: Tc<2dt may require smaller dt

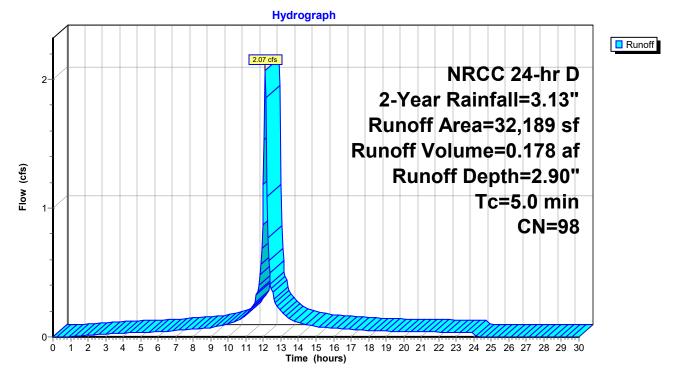
Runoff = 0.94 cfs @ 12.12 hrs, Volume= 0.072 af, Depth= 1.16" Routed to Reach DMHR2 : TO DMH#R2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

Area (sf)	CN	Description	Description							
32,189	77	1/8 acre lot	/8 acre lots, 65% imp, HSG A							
11,266 20,923		35.00% Pervious Area 65.00% Impervious Area								
Tc Length (min) (feet)	Slop (ft/f	e Velocity	Capacity (cfs)	Description						
5.0				Direct Entry,						

Subcatchment P100B: TO YARD DRAIN

Summary for Subcatchment P100D: TO 12" ROOF DRAIN


[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.07 cfs @ 12.11 hrs, Volume= 0.178 af, Depth= 2.90" Routed to Reach DMH103 : TO CMH#2

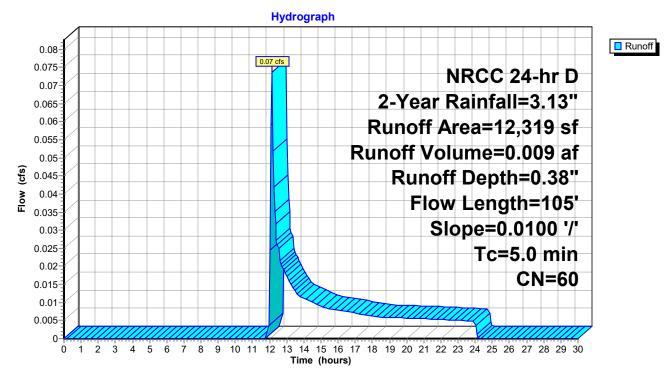
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

Area (sf)	CN	Description	Description						
32,189	98	Paved park	aved parking, HSG A						
32,189	32,189 100.00% Impervious Area								
Tc Length (min) (feet) 5.0		,	Capacity (cfs)	Description Direct Entry,					
5.0				Direct Entry,					

Subcatchment P100D: TO 12" ROOF DRAIN

Summary for Subcatchment P105: TO DCB#5

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.07 cfs @ 12.15 hrs, Volume= 0.009 af, Depth= 0.38" Routed to Reach DCB5 : TO DMH#108

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

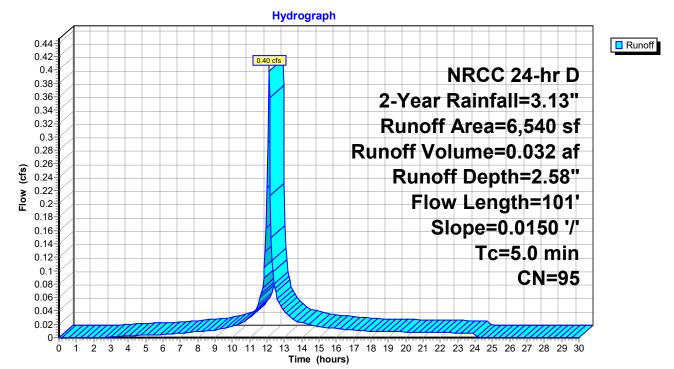
_	A	rea (sf)	CN	Description									
		7,950	39	39 >75% Grass cover, Good, HSG A									
_		4,369	98	98 Paved parking, HSG A									
		12,319	60	60 Weighted Average									
		7,950		64.53% Pe	rvious Area								
		4,369	:	35.47% Imj	pervious Ar	ea							
	Tc	Length	Slope	,		Description							
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
	0.9	50	0.0100	0.90		Sheet Flow,							
						Smooth surfaces n= 0.011 P2= 3.13"							
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,							
_						Paved Kv= 20.3 fps							
		405	T ()			T = C :							

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P105: TO DCB#5

Summary for Subcatchment P106: TO DCB#6

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.40 cfs @ 12.11 hrs, Volume= 0.032 af, Depth= 2.58" Routed to Reach DCB6 : TO DMH#107

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

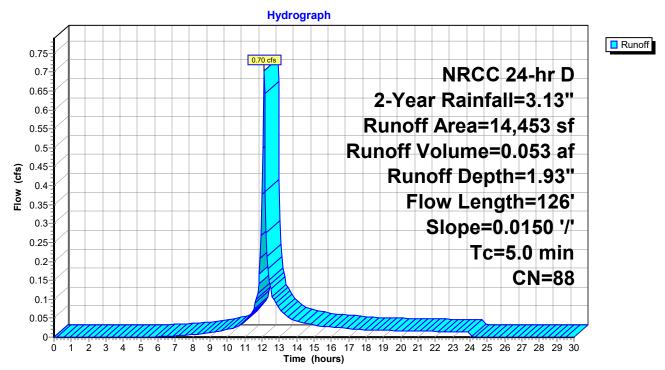
_	A	rea (sf)	CN	N Description						
	375 39 >75% Grass cover, Good, HSG A									
_	6,165 98 Paved parking, HSG A									
	6,540 95 Weighted Average									
		375		5.73% Perv	ious Area					
		6,165		94.27% Im	pervious Ar	rea				
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
	0.8	50	0.0150	1.06		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.3	51	0.0150	2.49		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
		101	Takal							

1.1 101 Total, Increased to minimum Tc = 5.0 min

Subcatchment P106: TO DCB#6

Summary for Subcatchment P107: TO DCB#7

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.70 cfs @ 12.11 hrs, Volume= 0.053 af, Depth= 1.93" Routed to Reach DCB7 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

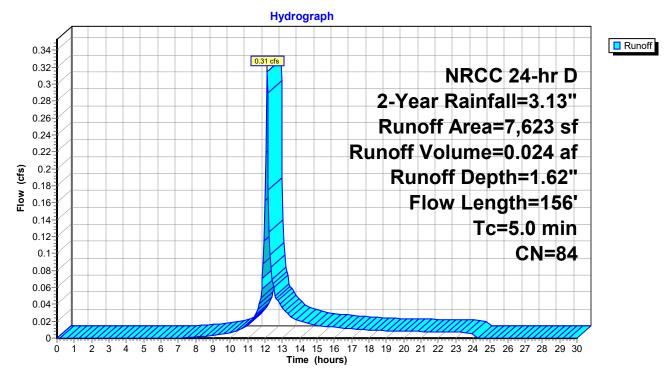
_	A	rea (sf)	CN	Description				
	2,411 39 >75% Grass cover, Good, HSG A							
_	12,042 98 Paved parking, HSG A							
	14,453 88 Weighted Average							
		2,411		16.68% Pe	rvious Area			
		12,042		83.32% Im	pervious Ar	ea		
	Tc	Length	Slope	Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	1.5	8	0.0150	0.09		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.13"		
	0.7	42	0.0150	1.02		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.5	76	0.0150	2.49		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
_	0.7	400	T ()					

2.7 126 Total, Increased to minimum Tc = 5.0 min

Subcatchment P107: TO DCB#7

Summary for Subcatchment P108: TO DCB#8

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.31 cfs @ 12.12 hrs, Volume= 0.024 af, Depth= 1.62" Routed to Reach DCB8 : TO DMH#103

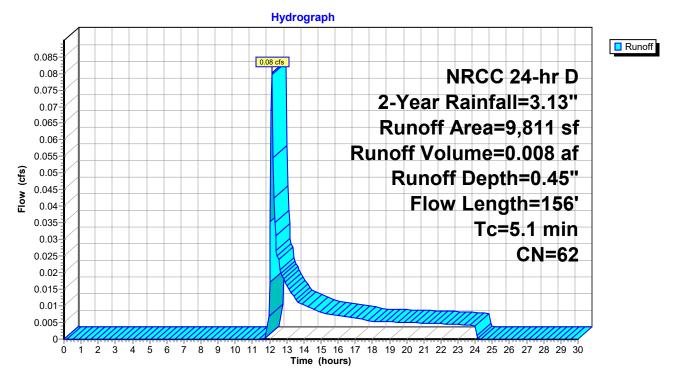
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

A	rea (sf)	CN	Description				
	1,804 39 >75% Grass cover, Good, HSG A						
	5,819 98 Paved parking, HSG A						
	7,623 84 Weighted Average						
	1,804		23.67% Pe	rvious Area			
	5,819		76.33% Im	pervious Are	ea		
Tc	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
2.6	16	0.0150	0.10		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.13"		
0.7	34	0.0100	0.83		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 3.13"		
0.9	106	0.0100	2.03		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
10	156	Tatal	Inereced	la maininauma	$T_{0} = F_{0}$ min		

4.2 156 Total, Increased to minimum Tc = 5.0 min

Subcatchment P108: TO DCB#8

Summary for Subcatchment P109: TO DCB#9


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.08 cfs @ 12.14 hrs, Volume= 0.008 af, Depth= 0.45" Routed to Reach DCB9 : TO DMH#103

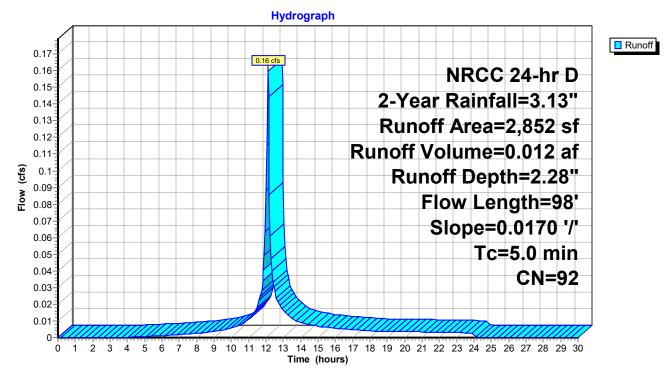
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

	Area (sf)	CN	Description		
	5,927	od, HSG A			
	5,927		60.41% Pe	rvious Area	
	3,884		39.59% lmj	pervious Ar	ea
_				. .	
To	0	Slope	•		Description
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
3.7	25	0.0150	0.11		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.5	5 25	0.0100	0.78		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
0.9	106	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
5.1	156	Total			

Subcatchment P109: TO DCB#9

Summary for Subcatchment P11: TO DP#1

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.16 cfs @ 12.11 hrs, Volume= 0.012 af, Depth= 2.28" Routed to Reach DP1 : GUTTER POINT FRANKLIN (WEST)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

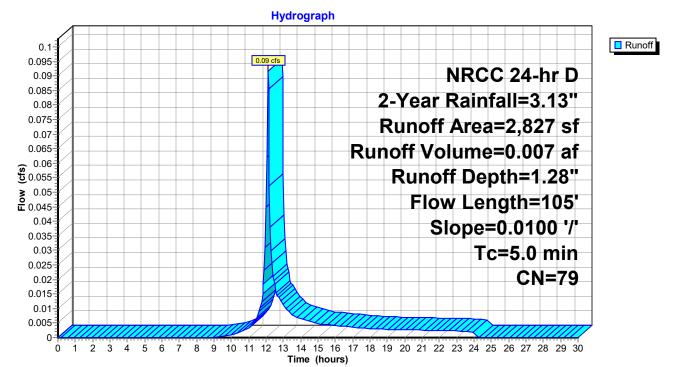
_	A	rea (sf)	CN	N Description						
	293 39 >75% Grass cover, Good, HSG A									
_	2,559 98 Paved parking, HSG A									
	2,852 92 Weighted Average									
		293		10.27% Pe	rvious Area					
		2,559		89.73% Im	pervious Ar	ea				
	Tc	Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.8	50	0.0170	1.11		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.3	48	0.0170	2.65		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
		00	T - 4 - 1	المحمد محمد الأ						

1.1 98 Total, Increased to minimum Tc = 5.0 min

Subcatchment P11: TO DP#1

Summary for Subcatchment P110: TO DCB#10

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.09 cfs @ 12.12 hrs, Volume= 0.007 af, Depth= 1.28" Routed to Reach DCB10 : TO DMH#106

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

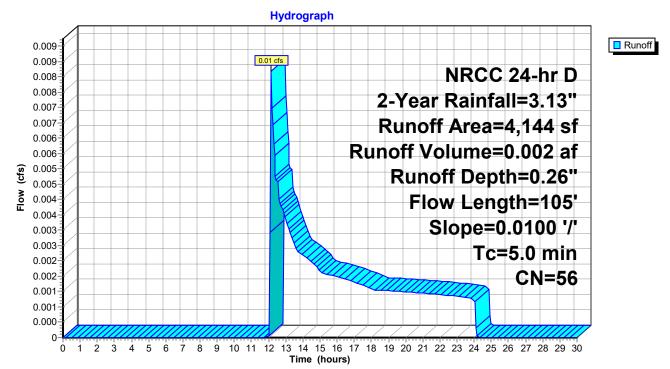
_	A	rea (sf)	CN	Description						
	907 39 >75% Grass cover, Good, HSG A									
_	1,920 98 Paved parking, HSG A									
	2,827 79 Weighted Average									
		907		32.08% Pe	rvious Area	1				
	1,920 67.92% Impervious Area									
	Tc	Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.9	50	0.0100	0.90		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
		405	T ()			T 60 :				

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P110: TO DCB#10

Summary for Subcatchment P111: TO DCB#11

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.01 cfs @ 12.17 hrs, Volume= 0.002 af, Depth= 0.26" Routed to Reach DCB11 : TO DMH#103

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

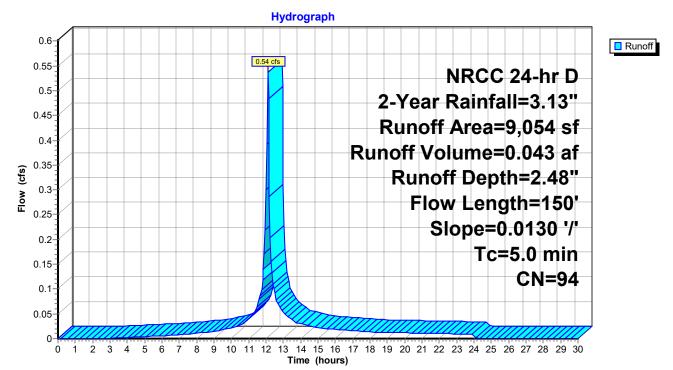
_	A	rea (sf)	CN	Description	lescription						
	2,953 39 >75% Grass cover, Good, HSG A										
_	1,191 98 Paved parking, HSG A										
	4,144 56 Weighted Average										
		2,953		71.26% Pe	rvious Area	l					
		1,191	:	28.74% Imj	pervious Ar	ea					
	Tc	Length	Slope	,		Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.9	50	0.0100	0.90		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
		405	T ()			T = C = C					

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P111: TO DCB#11

Summary for Subcatchment P112: TO DCB#12

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.54 cfs @ 12.11 hrs, Volume= 0.043 af, Depth= 2.48" Routed to Reach DCB12 : TO DMH#12

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

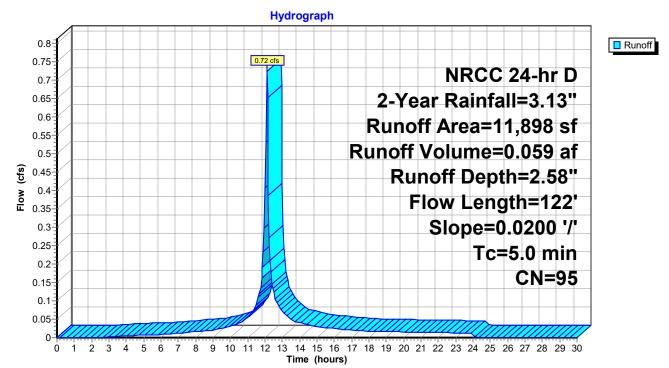
_	A	rea (sf)	CN	Description								
		575	39	>75% Grass cover, Good, HSG A								
_		8,479	98	Paved park	laved parking, HSG A							
		9,054	94	Weighted A	verage							
	575 6.35% Pervious Area											
		8,479		93.65% Imj	pervious Ar	ea						
	Tc	Length	Slope	,	Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	0.8	50	0.0130	1.00		Sheet Flow,						
						Smooth surfaces n= 0.011 P2= 3.13"						
	0.7	100	0.0130	2.31		Shallow Concentrated Flow,						
_						Paved Kv= 20.3 fps						
	4 -	4 = 0	— · ·									

1.5 150 Total, Increased to minimum Tc = 5.0 min

Subcatchment P112: TO DCB#12

Summary for Subcatchment P113: TO DCB#13

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.72 cfs @ 12.11 hrs, Volume= 0.059 af, Depth= 2.58" Routed to Reach DCB13 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

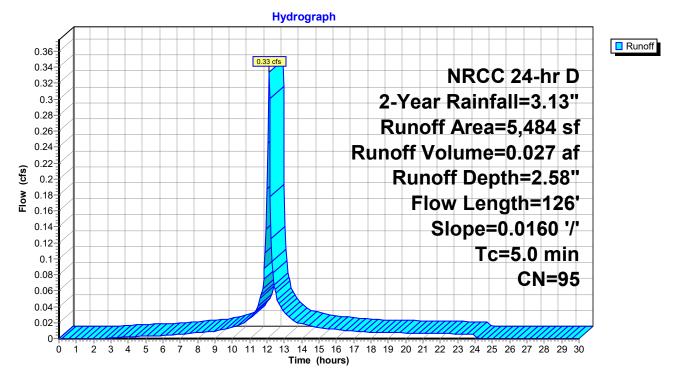
_	A	rea (sf)	CN	Description							
		656	39 >75% Grass cover, Good, HSG A								
_		11,242	98	Paved parking, HSG A							
	11,898 95 Weighted Average										
		656		5.51% Perv	vious Area						
		11,242		94.49% Imp	pervious Ar	ea					
	Tc	Length	Slope		Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.7	50	0.0200	1.18		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.4	72	0.0200	2.87		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
		400	— · ·			T F A B					

1.1 122 Total, Increased to minimum Tc = 5.0 min

Subcatchment P113: TO DCB#13

Summary for Subcatchment P114: TO DCB#14

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.33 cfs @ 12.11 hrs, Volume= 0.027 af, Depth= 2.58" Routed to Reach DCB14 : TO DMH#109

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

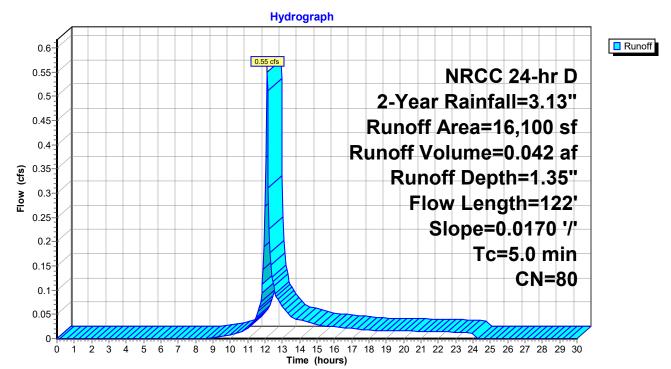
_	A	rea (sf)	CN I	Description								
		306	39 :	9 >75% Grass cover, Good, HSG A								
_		5,178	98	Paved park	Paved parking, HSG A							
		5,484	5,484 95 Weighted Average									
	306 5.58% Pervious Area											
		5,178	9	94.42% Imj	pervious Ar	ea						
	Tc	Length	Slope			Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	0.8	50	0.0160	1.08		Sheet Flow,						
						Smooth surfaces n= 0.011 P2= 3.13"						
	0.5	76	0.0160	2.57		Shallow Concentrated Flow,						
_						Paved Kv= 20.3 fps						
	4.0	400	T ()			T = C :						

1.3 126 Total, Increased to minimum Tc = 5.0 min

Subcatchment P114: TO DCB#14

Summary for Subcatchment P115: TO DCB#15

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.55 cfs @ 12.12 hrs, Volume= 0.042 af, Depth= 1.35" Routed to Reach DCB15 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

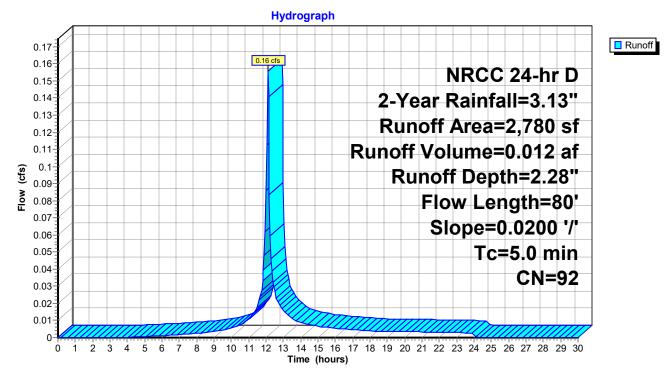
_	A	rea (sf)	CN	Description							
		4,821	21 39 >75% Grass cover, Good, HSG A								
_		11,279	98	Paved parking, HSG A							
	16,100 80 Weighted Average										
	4,821 29.94% Pervious Area										
		11,279		70.06% Im	ea						
	_							
	Tc	Length	Slope	,		Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.8	50	0.0170	1.11		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.5	72	0.0170	2.65		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
		400									

1.3 122 Total, Increased to minimum Tc = 5.0 min

Subcatchment P115: TO DCB#15

Summary for Subcatchment P116: TO DCB#25

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.16 cfs @ 12.11 hrs, Volume= 0.012 af, Depth= 2.28" Routed to Reach DCB25 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

_	A	rea (sf)	CN	Description						
		297	39 >75% Grass cover, Good, HSG A							
_		2,483	98	Paved parking, HSG A						
	2,780 92 Weighted Average									
		297		10.68% Pe	rvious Area					
	2,483 89.32% Impervious Area									
	Tc	Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
	0.7	50	0.0200	1.18		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.2	30	0.0200	2.87		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	0.0	00	Tatal							

0.9 80 Total, Increased to minimum Tc = 5.0 min

Subcatchment P116: TO DCB#25

Summary for Subcatchment P117: TO DP#6

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.02 cfs @	12.15 hrs, V	'olume=	0.003 af,	Depth= 0.35"
Routed	I to Rea	ch DP#6 : OF	FSITE LOW F	POINT		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

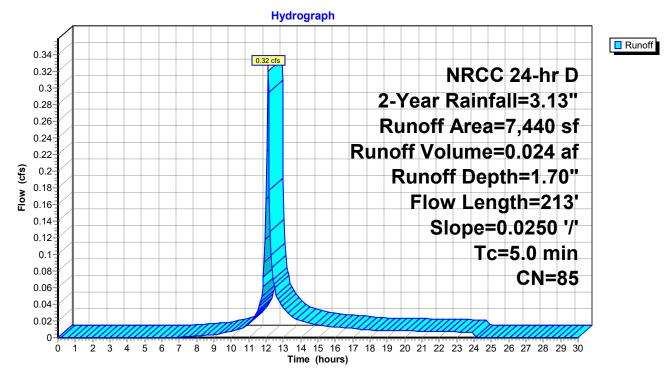
_	A	rea (sf)	CN	Description							
		2,555 39 >75% Grass cover, Good, HSG A									
_		1,284	98	98 Paved parking, HSG A							
	3,839 59 Weighted Average										
	2,555 66.55% Pervious Area										
	1,284 33.45% Impervious Area										
	Tc	Length	Slope	e Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	0.7	50	0.020) 1.18		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.1	24	0.020) 2.87		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	0 0	74	Total	Inoroood	la minimum						

0.8 74 Total, Increased to minimum Tc = 5.0 min

Subcatchment P117: TO DP#6

Summary for Subcatchment P119: TO DCB#19

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.32 cfs @ 12.12 hrs, Volume= 0.024 af, Depth= 1.70" Routed to Reach DCB19 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

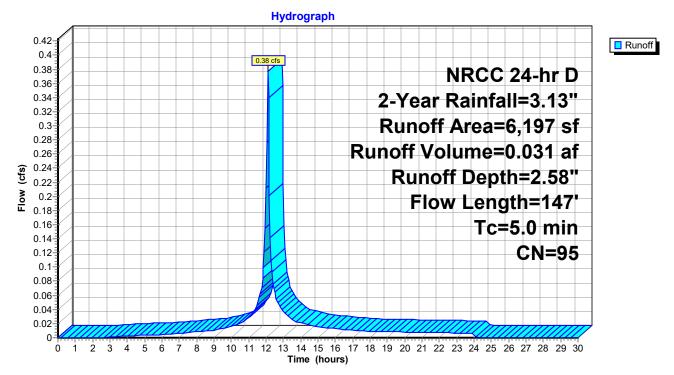
_	A	rea (sf)	CN	Description					
		1,625 39 >75% Grass cover, Good, HSG A							
_		5,815	98 Paved parking, HSG A						
	7,440 85 Weighted Average								
	1,625 21.84% Pervious Area								
	5,815 78.16% Impervious Area								
	Tc	Length	Slope	,		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.6	50	0.0250	1.29		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.8	163	0.0250	3.21		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
		040	T ()			T 60 :			

1.4 213 Total, Increased to minimum Tc = 5.0 min

Subcatchment P119: TO DCB#19

Summary for Subcatchment P12: TO DCB-A

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.38 cfs @ 12.11 hrs, Volume= 0.031 af, Depth= 2.58" Routed to Reach DCB-A : TO DMH-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

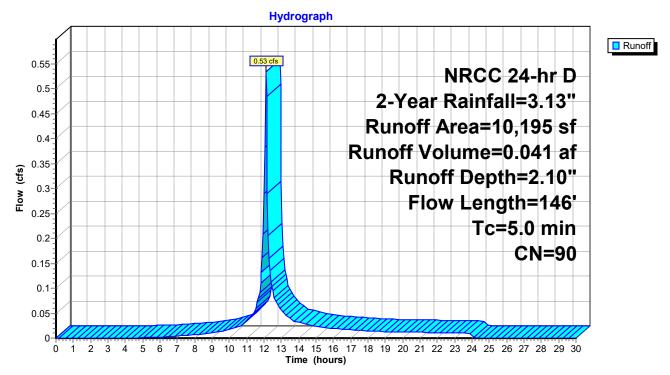
_	A	rea (sf)	CN	Description					
		334	39	>75% Gras	s cover, Go	bod, HSG A			
_	5,863 98 Paved parking, HSG A								
		6,197	95	95 Weighted Average					
		334		5.39% Perv	vious Area				
		5,863		94.61% Im	pervious Ar	ea			
	Tc	Length	Slope	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	1.5	8	0.0150	0.09		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.13"			
	0.2	7	0.0150	0.71		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.8	35	0.0080	0.76		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.9	97	0.0080) 1.82		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	21	1/7	Total	Ingraacad	la minimum	$T_{0} = 5.0 \text{ min}$			

3.4 147 Total, Increased to minimum Tc = 5.0 min

Subcatchment P12: TO DCB-A

Summary for Subcatchment P120: TO DCB#20

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.53 cfs @ 12.11 hrs, Volume= 0.041 af, Depth= 2.10" Routed to Reach DCB20 : TO DMH#109

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

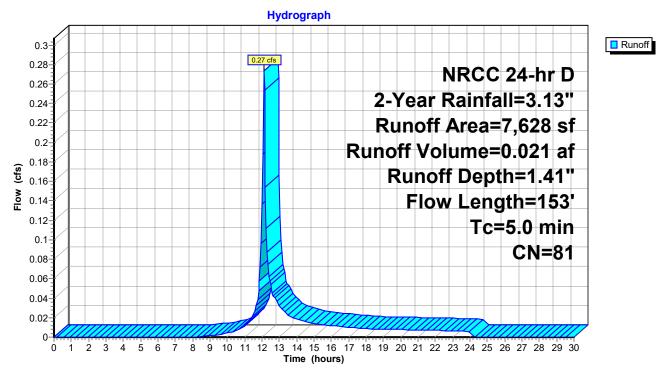
_	A	rea (sf)	CN	Description					
	1,453 39 >75% Grass cover, Good, HSG A								
		8,742 98 Paved parking, HSG A							
		10,195	90 Weighted Average						
		1,453		14.25% Pe	rvious Area				
		8,742		85.75% Im	pervious Ar	ea			
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.9	5	0.0200	0.09		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.13"			
	0.7	45	0.0150	1.03		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.6	96	0.0150	2.49		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	0.0	110	T . 4 . 1						

2.2 146 Total, Increased to minimum Tc = 5.0 min

Subcatchment P120: TO DCB#20

Summary for Subcatchment P121: TO DCB#21

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.27 cfs @ 12.12 hrs, Volume= 0.021 af, Depth= 1.41" Routed to Reach DCB21 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

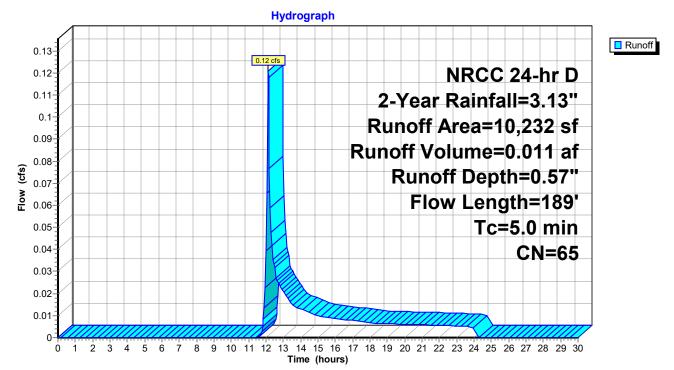
/	Area (sf)	CN	Description					
	2,211 39 >75% Grass cover, Good, HSG A							
	5,417 98 Paved parking, HSG A							
	7,628	8 81 Weighted Average						
	2,211		28.99% Pe	rvious Area				
	5,417		71.01% Im	pervious Ar	ea			
_								
Tc	0	Slope	,		Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.0	12	0.1000	0.21		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.7	38	0.0100	0.85		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
0.8	103	0.0100	2.03		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
	450	Takal	lin ana a a a d					

2.5 153 Total, Increased to minimum Tc = 5.0 min

Subcatchment P121: TO DCB#21

Summary for Subcatchment P122: TO DCB#22

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.12 cfs @ 12.13 hrs, Volume= 0.011 af, Depth= 0.57" Routed to Reach DCB22 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

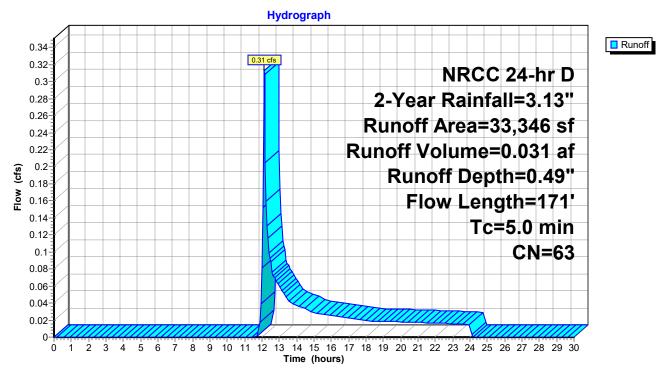
_	A	rea (sf)	CN	Description						
		5,643	39	9 >75% Grass cover, Good, HSG A						
_		4,589	98	Paved parking, HSG A						
	10,232 65 Weighted Average									
		5,643		55.15% Pe	rvious Area	l				
	4,589 44.85% Impervious Area									
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	3.0	50	0.1000	0.28		Sheet Flow,				
						Grass: Short n= 0.150 P2= 3.13"				
	0.7	139	0.0300) 3.52		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	2.7	400	Tatal	la sus a sud i						

3.7 189 Total, Increased to minimum Tc = 5.0 min

Subcatchment P122: TO DCB#22

Summary for Subcatchment P123: TO DCB#23

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.31 cfs @ 12.14 hrs, Volume= 0.031 af, Depth= 0.49" Routed to Reach DCB23 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

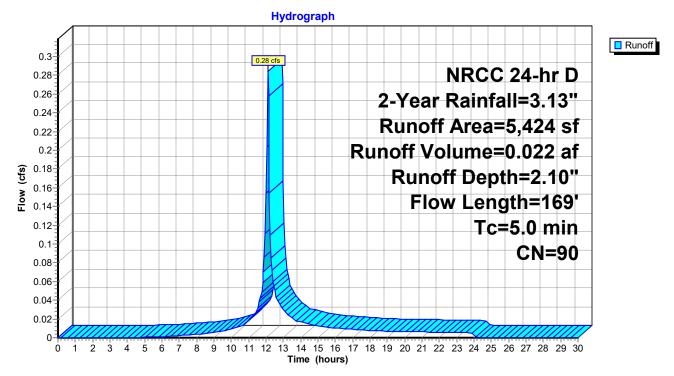
A	Area (sf)	CN	Description		
	20,008	39	>75% Gras	s cover, Go	od, HSG A
	13,338	98	Paved park	ing, HSG A	
	33,346	63	Weighted A	verage	
	20,008		60.00% Pe	rvious Area	
	13,338		40.00% Imj	pervious Are	ea
Tc		Slope	,		Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.5	40	0.1000	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.2	10	0.0200	0.86		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
0.7	121	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
2.4	171	Tatal	Increased	ka malalaasuma	$T_{0} = E_{0} min$

3.4 171 Total, Increased to minimum Tc = 5.0 min

Subcatchment P123: TO DCB#23

Summary for Subcatchment P14: TO DCB-B

[49] Hint: Tc<2dt may require smaller dt

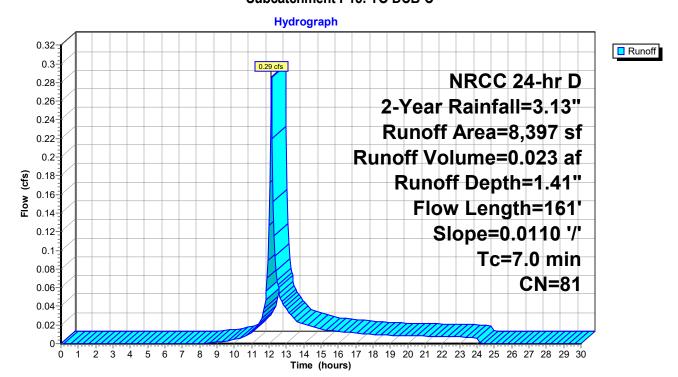

Runoff = 0.28 cfs @ 12.11 hrs, Volume= 0.022 af, Depth= 2.10" Routed to Reach DCB-B : TO DMH-E

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

_	A	rea (sf)	CN	Description		
		692	39	>75% Gras	s cover, Go	ood, HSG A
_		4,732	98	Paved park	ing, HSG A	
		5,424	90	Weighted A	verage	
		692		12.76% Pe	rvious Area	
		4,732		87.24% Im	pervious Ar	ea
	-		01		o	
	TC	Length	Slope			Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	1.8	10	0.0150	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	7	0.0150	0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.7	33	0.0080	0.76		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.1	119	0.0080) 1.82		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	20	160	Total	Inoroacad	la minimum	$T_0 = 5.0 \text{ min}$

3.8 169 Total, Increased to minimum Tc = 5.0 min

Subcatchment P14: TO DCB-B


Summary for Subcatchment P15: TO DCB-C

Runoff = 0.29 cfs @ 12.14 hrs, Volume= 0.023 af, Depth= 1.41" Routed to Reach DCB-C : TO TRUNKLINE

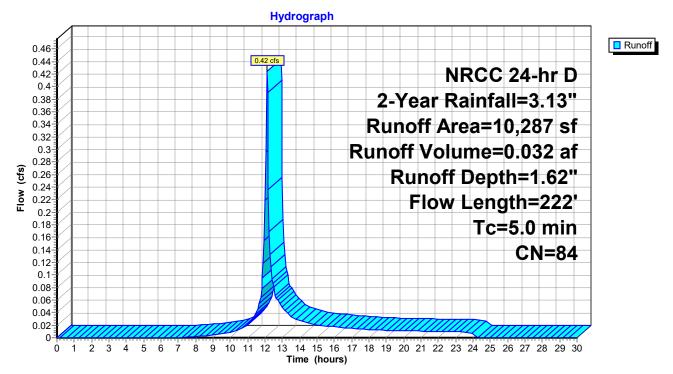
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

A	rea (sf)	CN	Description		
	2,407			,	od, HSG A
	5,990	98	Paved park	ing, HSG A	
	8,397	81	Weighted A	verage	
	2,407		28.66% Per	rvious Area	
	5,990		71.34% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.8	38	0.0110	0.11		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.3	12	0.0110	0.70		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
0.9	111	0.0110	2.13		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
7.0	161	Total			

Subcatchment P15: TO DCB-C

Summary for Subcatchment P18: TO DCB-D

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.42 cfs @ 12.12 hrs, Volume= 0.032 af, Depth= 1.62" Routed to Reach DCB-D : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

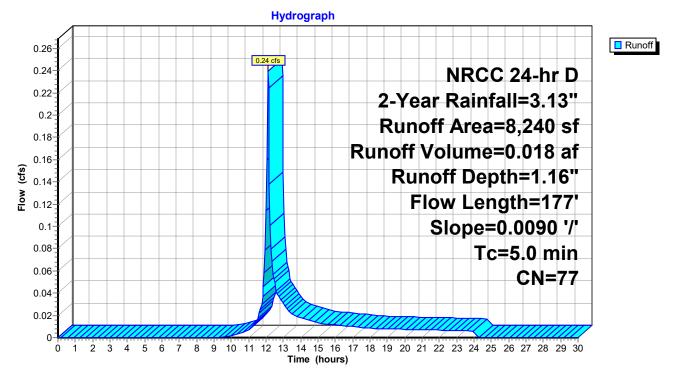
_	A	rea (sf)	CN	Description		
		2,417 39 >75% Grass cover, G			s cover, Go	ood, HSG A
_		7,870	98	Paved park	ing, HSG A	
		10,287	84	Weighted A	verage	
		2,417		23.50% Pe	rvious Area	
		7,870		76.50% Im	pervious Ar	ea
	-		0		o	
	TC	Length	Slope		Capacity	Description
-	(min)	(feet)	(ft/ft		(cfs)	
	1.6	9	0.0150	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	9	0.0150	0.75		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.7	32	0.0075	5 0.73		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.6	172	0.0075	5 1.76		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	11	000	Tatal	In are as ad		$T_{0} = 50$ min

4.1 222 Total, Increased to minimum Tc = 5.0 min

Subcatchment P18: TO DCB-D

Summary for Subcatchment P19: TO DCB-E

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.24 cfs @ 12.12 hrs, Volume= 0.018 af, Depth= 1.16" Routed to Reach DCB-E : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

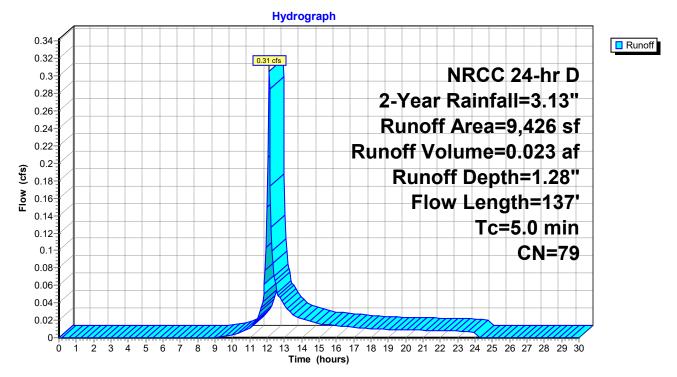
_	A	rea (sf)	CN	Description		
		2,944	39	>75% Gras	s cover, Go	bod, HSG A
_		5,296	98	Paved park	king, HSG A	Α
		8,240	77	Weighted A	Verage	
		2,944		35.73% Pe	rvious Area	l
	5,296 64.27% Impervious Area			ea		
	Tc	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	1.0	50	0.0090	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.1	127	0.0090) 1.93		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	04	477	Takal	la sus sa s d		

2.1 177 Total, Increased to minimum Tc = 5.0 min

Subcatchment P19: TO DCB-E

Summary for Subcatchment P20: TO DP#3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.31 cfs @ 12.12 hrs, Volume= 0.023 af, Depth= 1.28" Routed to Reach DP3 : CATCHBASIN (FIRE STATION)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

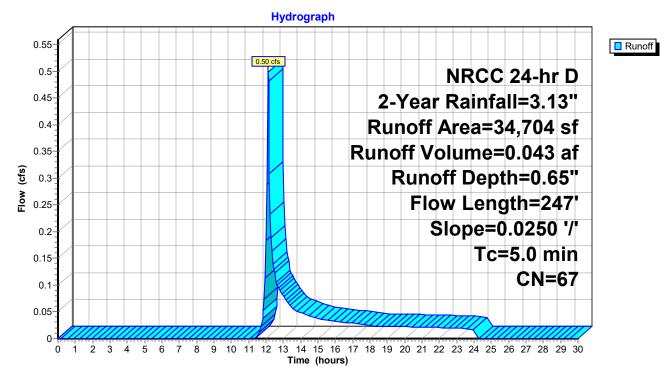
_	A	rea (sf)	CN	Description		
		3,009	39	>75% Gras	s cover, Go	bod, HSG A
_		6,417	98	Paved park	ting, HSG A	
		9,426	79	Weighted A	verage	
		3,009		31.92% Pe	rvious Area	
		6,417		68.08% Im	pervious Ar	ea
	-		0		0 ''	
	Tc (reire)	Length	Slope			Description
_	(min)	(feet)	(ft/ft		(cfs)	
	0.3	18	0.0300) 1.14		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.6	26	0.1300	0.27		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.1	6	0.0150	0.69		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.6	87	0.0150) 2.49		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	26	107	Tatal	In or o o o d		$T_{0} = 50$ min

2.6 137 Total, Increased to minimum Tc = 5.0 min

Subcatchment P20: TO DP#3

Summary for Subcatchment P24: TO DCB#24

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.50 cfs @ 12.13 hrs, Volume=	0.043 af, Depth= 0.65"				
Routed to Reach DCB24 : TO DMH#113							

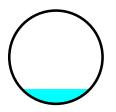
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 2-Year Rainfall=3.13"

_	A	rea (sf)	CN	Description		
		18,387	39	>75% Gras	s cover, Go	bod, HSG A
_		16,317	98	Paved park	ting, HSG A	
		34,704	67	Weighted A	verage	
		18,387		52.98% Pe	rvious Area	
		16,317		47.02% Imj	pervious Ar	ea
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.6	50	0.0250	1.29		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.0	197	0.0250	3.21		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	4.0	047	T ()			

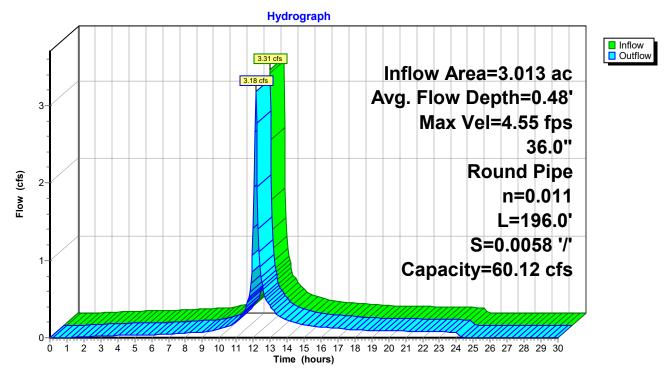
1.6 247 Total, Increased to minimum Tc = 5.0 min

Subcatchment P24: TO DCB#24

Summary for Reach CMH3: TO DMH-E


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH-F outlet invert by 0.48' @ 12.15 hrs

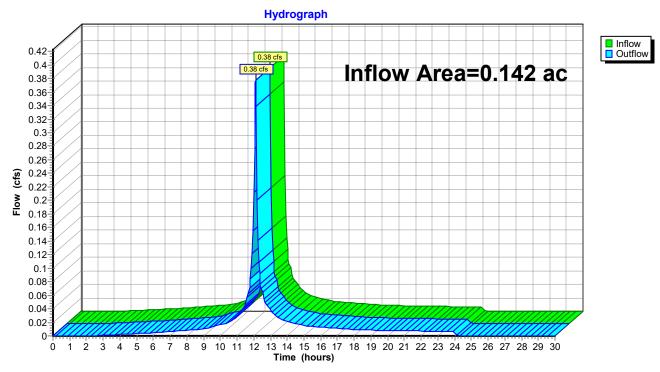
Inflow Area = 3.013 ac, 76.57% Impervious, Inflow Depth = 1.16" for 2-Year event Inflow = 3.31 cfs @ 12.14 hrs, Volume= 0.291 af Outflow = 3.18 cfs @ 12.15 hrs, Volume= 0.291 af, Atten= 4%, Lag= 1.0 min Routed to Reach DMH-E : TO DMH-D


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.55 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.56 fps, Avg. Travel Time= 2.1 min

Peak Storage= 141 cf @ 12.14 hrs Average Depth at Peak Storage= 0.48', Surface Width= 2.19' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.12 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 196.0' Slope= 0.0058 '/' Inlet Invert= 457.71', Outlet Invert= 456.57'

Reach CMH3: TO DMH-E

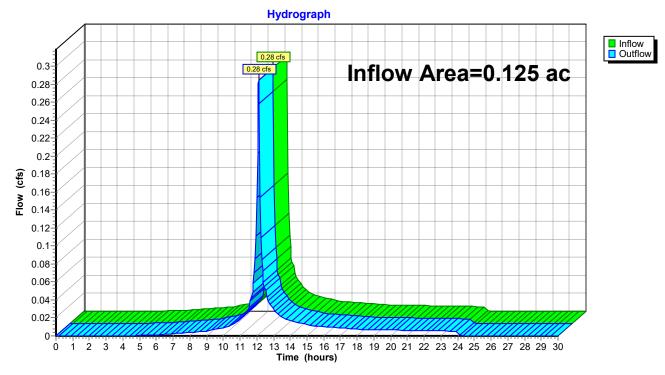


Summary for Reach DCB-A: TO DMH-D

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.142 ac, 94.61% Impervious, Inflov	v Depth = 2.58"	for 2-Year event			
Inflow =	0.38 cfs @ 12.11 hrs, Volume=	0.031 af				
Outflow =	0.38 cfs @ 12.11 hrs, Volume=	0.031 af, Atte	en= 0%, Lag= 0.0 min			
Routed to Reach DMH-D : TO DMH-C						

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DCB-A: TO DMH-D

Summary for Reach DCB-B: TO DMH-E

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.125 ac, 87.24% Impervious, In	flow Depth = 2.10" for 2-Year event			
Inflow =	0.28 cfs @ 12.11 hrs, Volume=	0.022 af			
Outflow =	0.28 cfs @ 12.11 hrs, Volume=	0.022 af, Atten= 0%, Lag= 0.0 min			
Routed to Reach DMH-E : TO DMH-D					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DCB-B: TO DMH-E

Summary for Reach DCB-C: TO TRUNKLINE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.193 ac, 71.34% Impervious, Inflo	w Depth = 1.41" for 2-Year event			
Inflow =	0.29 cfs @ 12.14 hrs, Volume=	0.023 af			
Outflow =	0.29 cfs @ 12.14 hrs, Volume=	0.023 af, Atten= 0%, Lag= 0.0 min			
Routed to Reach DMH-E : TO DMH-D					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

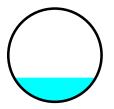
Reach DCB-C: TO TRUNKLINE

Summary for Reach DCB-D: TO DMH-A

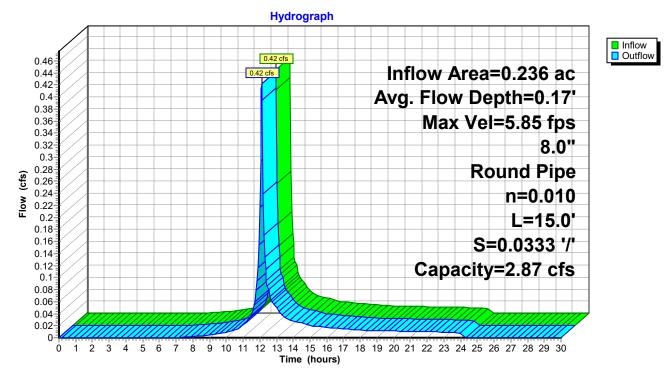
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.236 ac, 76.50% Impervious, Inflow Depth =
 1.62" for 2-Year event

 Inflow =
 0.42 cfs @
 12.12 hrs, Volume=
 0.032 af


 Outflow =
 0.42 cfs @
 12.12 hrs, Volume=
 0.032 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH-A* : TO DMH-B
 TO DMH-B
 0.032 af, Atten= 1%, Lag= 0.1 min

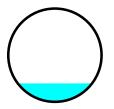

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.85 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.15 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.17', Surface Width= 0.58' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.87 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 15.0' Slope= 0.0333 '/' Inlet Invert= 468.00', Outlet Invert= 467.50'

Reach DCB-D: TO DMH-A

Summary for Reach DCB-E: TO DMH-A


[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =0.189 ac, 64.27% Impervious, Inflow Depth =1.16" for 2-Year eventInflow =0.24 cfs @12.12 hrs, Volume=0.018 afOutflow =0.24 cfs @12.12 hrs, Volume=0.018 af, Atten= 1%, Lag= 0.1 minRouted to Reach DMH-A* : TO DMH-B

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.83 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.90 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.13', Surface Width= 0.53' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.78 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 16.0' Slope= 0.0313 '/' Inlet Invert= 468.00', Outlet Invert= 467.50'

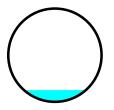
Reach DCB-E: TO DMH-A

Summary for Reach DCB10: TO DMH#106

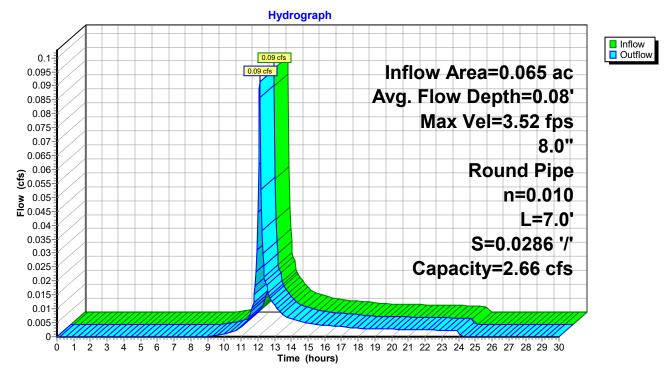
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.065 ac, 67.92% Impervious, Inflow Depth =
 1.28" for 2-Year event

 Inflow =
 0.09 cfs @
 12.12 hrs, Volume=
 0.007 af


 Outflow =
 0.09 cfs @
 12.12 hrs, Volume=
 0.007 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH106 : TO DMH#105
 TO DMH#105
 10.007 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.52 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.37 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.12 hrs Average Depth at Peak Storage= 0.08', Surface Width= 0.44' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.66 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 7.0' Slope= 0.0286 '/' Inlet Invert= 470.30', Outlet Invert= 470.10'

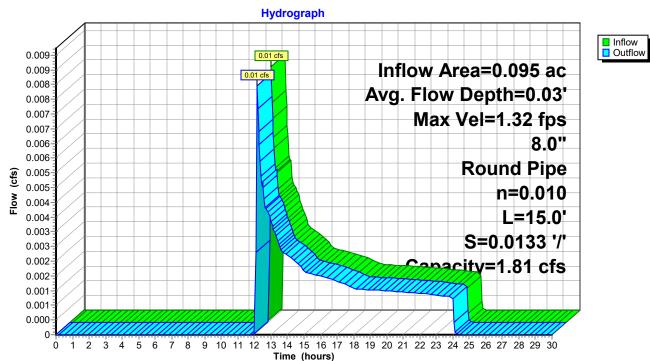
Reach DCB10: TO DMH#106

Summary for Reach DCB11: TO DMH#103

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.095 ac, 28.74% Impervious, Inflow Depth =
 0.26" for 2-Year event

 Inflow =
 0.01 cfs @
 12.17 hrs, Volume=
 0.002 af


 Outflow =
 0.01 cfs @
 12.17 hrs, Volume=
 0.002 af, Atten= 3%, Lag= 0.3 min

 Routed to Reach DMH106 : TO DMH#105
 TO DMH#105
 10.002 af, Atten= 3%, Lag= 0.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 1.32 fps, Min. Travel Time= 0.2 min Avg. Velocity = 0.85 fps, Avg. Travel Time= 0.3 min

Peak Storage= 0 cf @ 12.17 hrs Average Depth at Peak Storage= 0.03', Surface Width= 0.29' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.81 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 15.0' Slope= 0.0133 '/' Inlet Invert= 470.30', Outlet Invert= 470.10'

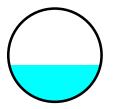
Reach DCB11: TO DMH#103

Summary for Reach DCB12: TO DMH#12

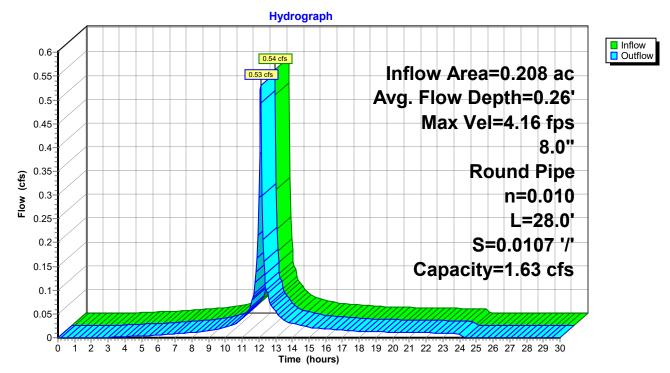
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.208 ac, 93.65% Impervious, Inflow Depth =
 2.48" for 2-Year event

 Inflow =
 0.54 cfs @
 12.11 hrs, Volume=
 0.043 af


 Outflow =
 0.53 cfs @
 12.12 hrs, Volume=
 0.043 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH108 : TO DMH#107
 TO DMH#107
 10.043 af, Atten= 1%, Lag= 0.2 min

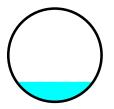

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.16 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.46 fps, Avg. Travel Time= 0.3 min

Peak Storage= 4 cf @ 12.12 hrs Average Depth at Peak Storage= 0.26', Surface Width= 0.65' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.63 cfs

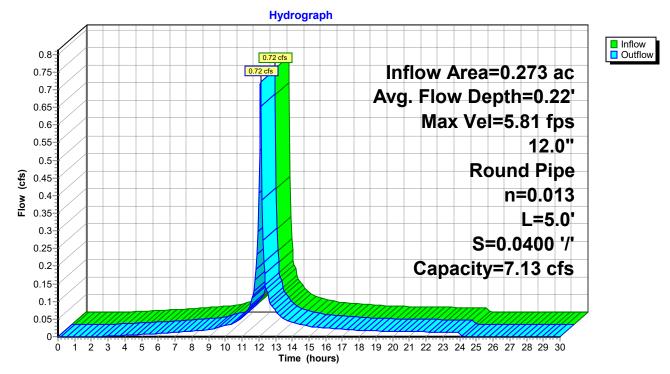
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 28.0' Slope= 0.0107 '/' Inlet Invert= 467.80', Outlet Invert= 467.50'

Reach DCB12: TO DMH#12

Summary for Reach DCB13: TO DMH#102


[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =0.273 ac, 94.49% Impervious, Inflow Depth =2.58" for 2-Year eventInflow =0.72 cfs @12.11 hrs, Volume=0.059 afOutflow =0.72 cfs @12.11 hrs, Volume=0.059 af, Atten= 0%, Lag= 0.0 minRouted to Reach DMH102 : TO UGS#1A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.81 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.01 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.22', Surface Width= 0.82' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 467.90', Outlet Invert= 467.70'

Reach DCB13: TO DMH#102

Summary for Reach DCB14: TO DMH#109

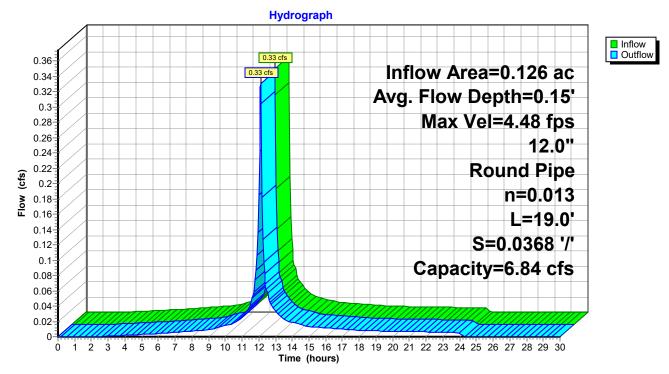
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.126 ac, 94.42% Impervious, Inflow Depth =
 2.58" for 2-Year event

 Inflow =
 0.33 cfs @
 12.11 hrs, Volume=
 0.027 af

 Outflow =
 0.33 cfs @
 12.11 hrs, Volume=
 0.027 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 10.027 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.48 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.56 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.15', Surface Width= 0.71' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.84 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 19.0' Slope= 0.0368 '/' Inlet Invert= 467.10', Outlet Invert= 466.40'

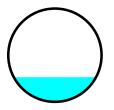
Reach DCB14: TO DMH#109

Summary for Reach DCB15: TO DMH#102

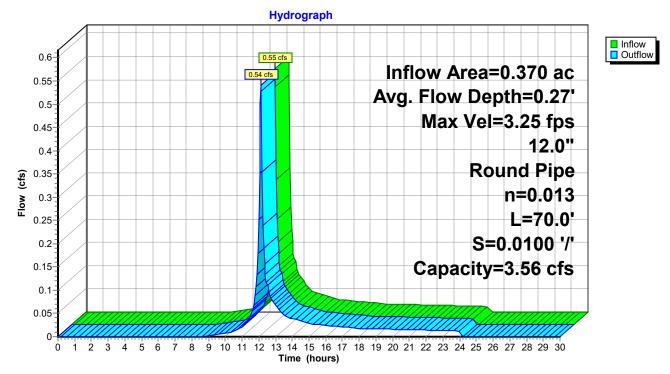
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.370 ac, 70.06% Impervious, Inflow Depth =
 1.35" for 2-Year event

 Inflow =
 0.55 cfs @
 12.12 hrs, Volume=
 0.042 af


 Outflow =
 0.54 cfs @
 12.13 hrs, Volume=
 0.042 af, Atten= 2%, Lag= 0.8 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 10.042 af, Atten= 2%, Lag= 0.8 min

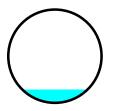

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.25 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.24 fps, Avg. Travel Time= 0.9 min

Peak Storage= 12 cf @ 12.13 hrs Average Depth at Peak Storage= 0.27', Surface Width= 0.88' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

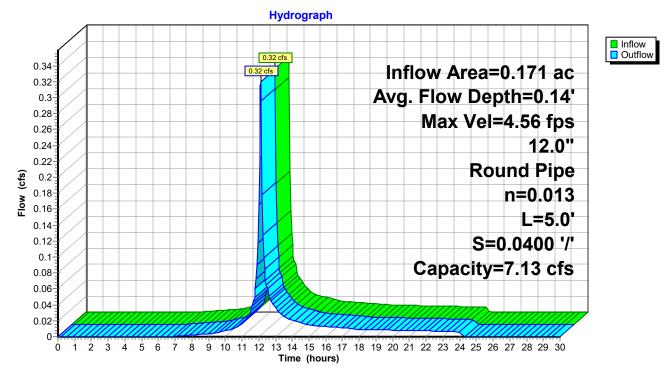
12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 70.0' Slope= 0.0100 '/' Inlet Invert= 467.00', Outlet Invert= 466.30'

Reach DCB15: TO DMH#102

Summary for Reach DCB19: TO DMH#111


[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =0.171 ac, 78.16% Impervious, Inflow Depth =1.70" for 2-Year eventInflow =0.32 cfs @12.12 hrs, Volume=0.024 afOutflow =0.32 cfs @12.12 hrs, Volume=0.024 af, Atten= 0%, Lag= 0.0 minRouted to Reach DMH111 : TO DMH#112


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.56 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.66 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.12 hrs Average Depth at Peak Storage= 0.14', Surface Width= 0.70' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 463.80', Outlet Invert= 463.60'

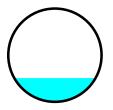
Reach DCB19: TO DMH#111

Summary for Reach DCB20: TO DMH#109

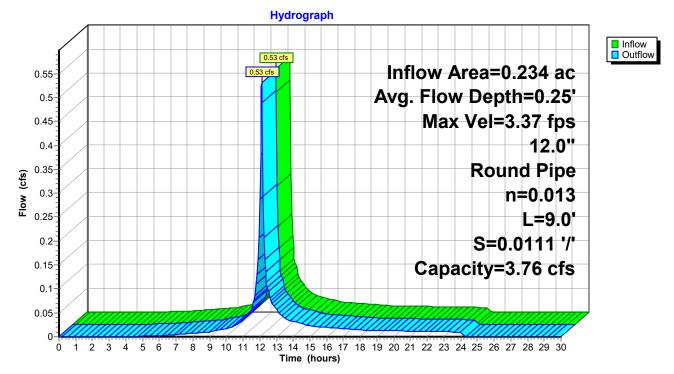
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.234 ac, 85.75% Impervious, Inflow Depth =
 2.10" for 2-Year event

 Inflow =
 0.53 cfs @
 12.11 hrs, Volume=
 0.041 af


 Outflow =
 0.53 cfs @
 12.12 hrs, Volume=
 0.041 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 10.041 af, Atten= 1%, Lag= 0.1 min

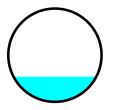

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.37 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.18 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.25', Surface Width= 0.87' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.76 cfs

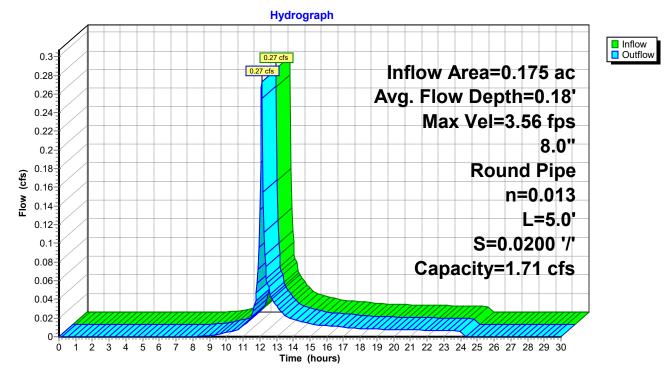
12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 9.0' Slope= 0.0111 '/' Inlet Invert= 466.50', Outlet Invert= 466.40'

Reach DCB20: TO DMH#109

Summary for Reach DCB21: TO DMH#109A


[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =0.175 ac, 71.01% Impervious, Inflow Depth =1.41" for 2-Year eventInflow =0.27 cfs @12.12 hrs, Volume=0.021 afOutflow =0.27 cfs @12.12 hrs, Volume=0.021 af, Atten= 0%, Lag= 0.1 minRouted to Reach DMH109A : TO DMH109


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.56 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.35 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.12 hrs Average Depth at Peak Storage= 0.18', Surface Width= 0.59' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 467.10', Outlet Invert= 467.00'

Reach DCB21: TO DMH#109A

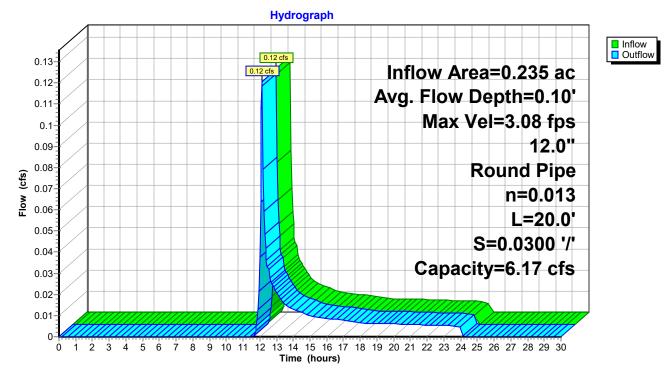
Summary for Reach DCB22: TO DMH#111

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.235 ac, 44.85% Impervious, Inflow Depth =
 0.57" for 2-Year event

 Inflow =
 0.12 cfs @
 12.13 hrs, Volume=
 0.011 af

 Outflow =
 0.12 cfs @
 12.14 hrs, Volume=
 0.011 af, Atten= 0%, Lag= 0.2 min


 Routed to Reach DMH111 : TO DMH#112
 0.011 af, Atten= 0%, Lag= 0.2 min
 0.011 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.08 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.40 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.13 hrs Average Depth at Peak Storage= 0.10', Surface Width= 0.59' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.17 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0300 '/' Inlet Invert= 464.20', Outlet Invert= 463.60'

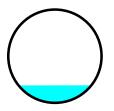
Reach DCB22: TO DMH#111

Summary for Reach DCB23: TO DMH#111

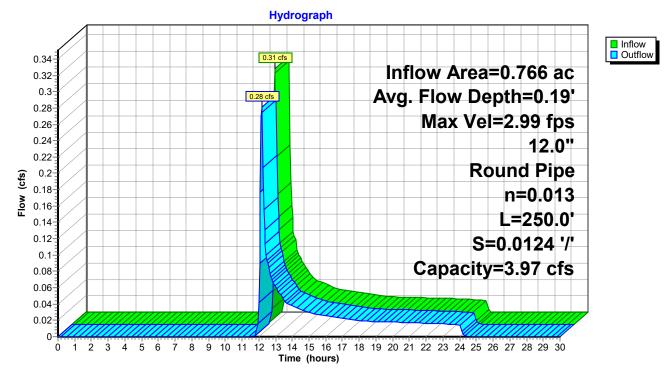
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.766 ac, 40.00% Impervious, Inflow Depth =
 0.49" for 2-Year event

 Inflow =
 0.31 cfs @
 12.14 hrs, Volume=
 0.031 af


 Outflow =
 0.28 cfs @
 12.18 hrs, Volume=
 0.031 af, Atten=

 Routed to Reach DMH111 : TO DMH#112
 0.031 af, Atten=
 10%, Lag=


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.99 fps, Min. Travel Time= 1.4 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 3.0 min

Peak Storage= 26 cf @ 12.15 hrs Average Depth at Peak Storage= 0.19', Surface Width= 0.78' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.97 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 250.0' Slope= 0.0124 '/' Inlet Invert= 466.70', Outlet Invert= 463.60'

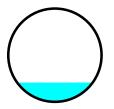
Reach DCB23: TO DMH#111

Summary for Reach DCB24: TO DMH#113

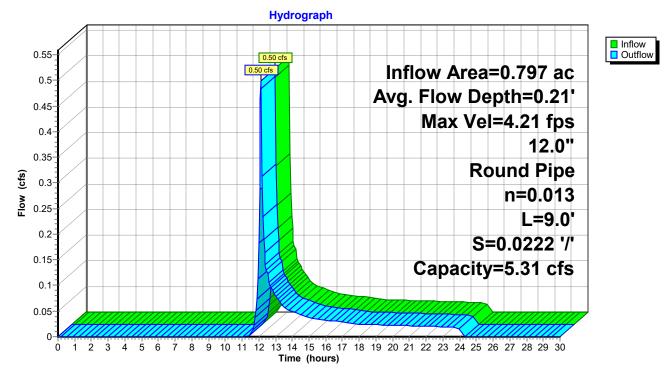
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.797 ac, 47.02% Impervious, Inflow Depth =
 0.65" for 2-Year event

 Inflow =
 0.50 cfs @
 12.13 hrs, Volume=
 0.043 af


 Outflow =
 0.50 cfs @
 12.13 hrs, Volume=
 0.043 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH113 : TO DMH#114
 0.043 af, Atten= 0%, Lag= 0.1 min
 0.043 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.21 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.87 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.13 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.81' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.31 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 9.0' Slope= 0.0222 '/' Inlet Invert= 460.50', Outlet Invert= 460.30'

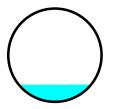
Reach DCB24: TO DMH#113

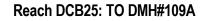
Summary for Reach DCB25: TO DMH#109A

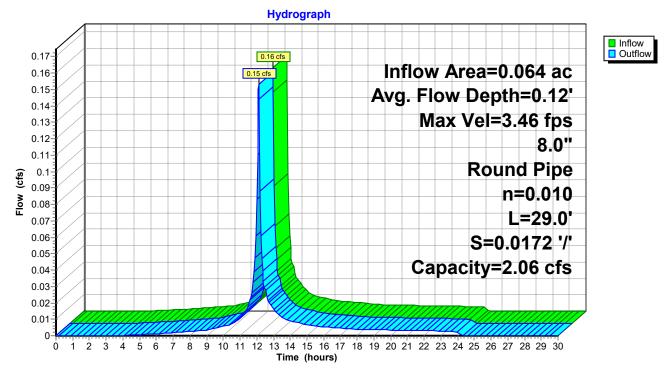
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.064 ac, 89.32% Impervious, Inflow Depth =
 2.28" for 2-Year event

 Inflow =
 0.16 cfs @
 12.11 hrs, Volume=
 0.012 af


 Outflow =
 0.15 cfs @
 12.12 hrs, Volume=
 0.012 af, Atten= 2%, Lag= 0.3 min


 Routed to Reach DMH109A : TO DMH109
 TO DMH109
 12.12 hrs, Volume=
 0.012 af, Atten= 2%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.46 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.20 fps, Avg. Travel Time= 0.4 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.12', Surface Width= 0.52' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.06 cfs

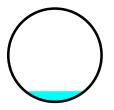
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 29.0' Slope= 0.0172 '/' Inlet Invert= 467.50', Outlet Invert= 467.00'

Summary for Reach DCB5: TO DMH#108

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.283 ac, 35.47% Impervious, Inflow Depth =
 0.38" for 2-Year event

 Inflow =
 0.07 cfs @
 12.15 hrs, Volume=
 0.009 af


 Outflow =
 0.07 cfs @
 12.15 hrs, Volume=
 0.009 af, Atten= 0%, Lag= 0.1 min


 Routed to Reach DMH108 : TO DMH#107
 0.009 af, Atten= 0%, Lag= 0.1 min
 0.009 af, Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.33 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.15 hrs Average Depth at Peak Storage= 0.08', Surface Width= 0.42' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.66 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 7.0' Slope= 0.0286 '/' Inlet Invert= 468.20', Outlet Invert= 468.00'

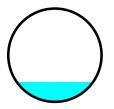
Reach DCB5: TO DMH#108

Summary for Reach DCB6: TO DMH#107

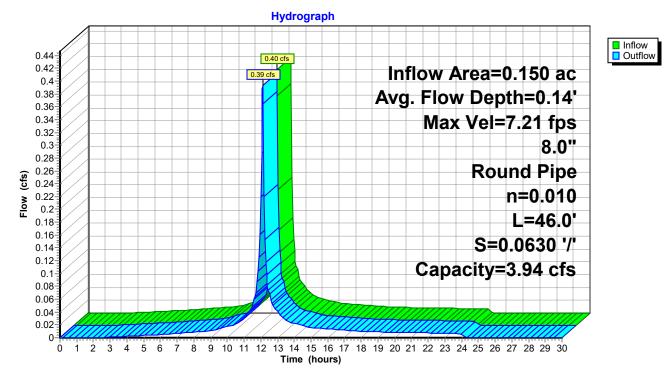
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.150 ac, 94.27% Impervious, Inflow Depth =
 2.58" for 2-Year event

 Inflow =
 0.40 cfs @
 12.11 hrs, Volume=
 0.032 af


 Outflow =
 0.39 cfs @
 12.12 hrs, Volume=
 0.032 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH107 : TO DMH#100
 TO DMH#100
 10.032 af, Atten= 1%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.21 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.50 fps, Avg. Travel Time= 0.3 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.14', Surface Width= 0.55' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.94 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 46.0' Slope= 0.0630 '/' Inlet Invert= 469.80', Outlet Invert= 466.90'

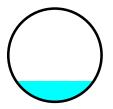
Reach DCB6: TO DMH#107

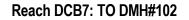
Summary for Reach DCB7: TO DMH#102

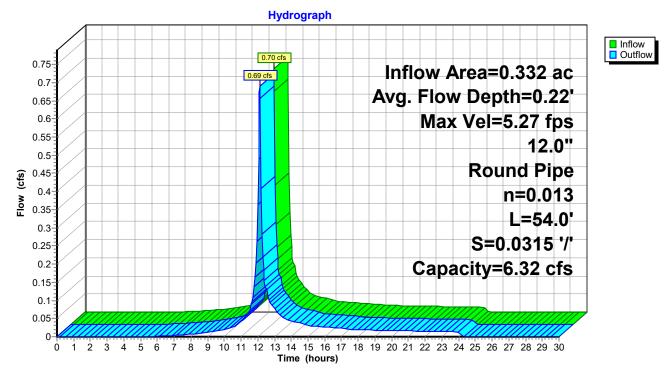
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.332 ac, 83.32% Impervious, Inflow Depth =
 1.93" for 2-Year event

 Inflow =
 0.70 cfs @
 12.11 hrs, Volume=
 0.053 af


 Outflow =
 0.69 cfs @
 12.12 hrs, Volume=
 0.053 af, Atten= 2%, Lag= 0.4 min


 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 1.010 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.27 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.87 fps, Avg. Travel Time= 0.5 min

Peak Storage= 7 cf @ 12.12 hrs Average Depth at Peak Storage= 0.22', Surface Width= 0.83' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

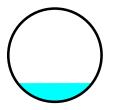
12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 54.0' Slope= 0.0315 '/' Inlet Invert= 468.40', Outlet Invert= 466.70'

Summary for Reach DCB8: TO DMH#103

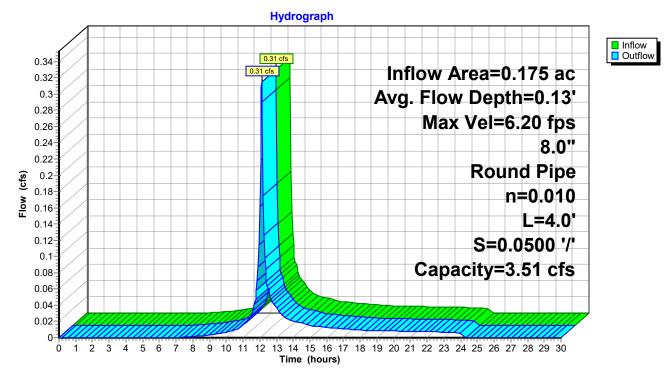
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.175 ac, 76.33% Impervious, Inflow Depth =
 1.62" for 2-Year event

 Inflow =
 0.31 cfs @
 12.12 hrs, Volume=
 0.024 af


 Outflow =
 0.31 cfs @
 12.12 hrs, Volume=
 0.024 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH104 : TO DMH#104
 TO DMH#104
 10.024 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.20 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.27 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 12.12 hrs Average Depth at Peak Storage= 0.13', Surface Width= 0.54' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.51 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 4.0' Slope= 0.0500 '/' Inlet Invert= 470.00', Outlet Invert= 469.80'

Reach DCB8: TO DMH#103

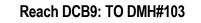
Summary for Reach DCB9: TO DMH#103

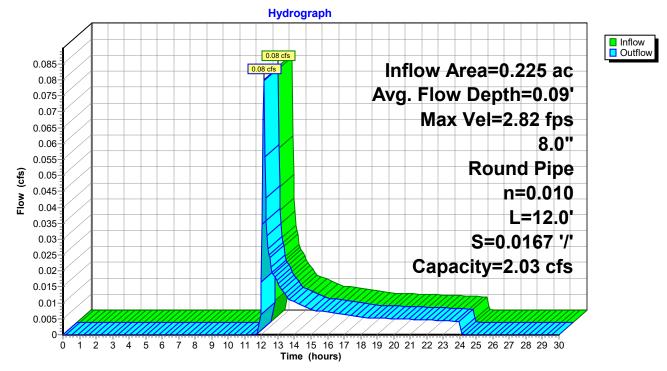
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.225 ac, 39.59% Impervious, Inflow Depth =
 0.45" for 2-Year event

 Inflow =
 0.08 cfs @
 12.14 hrs, Volume=
 0.008 af

 Outflow =
 0.08 cfs @
 12.14 hrs, Volume=
 0.008 af, Atten= 0%, Lag= 0.1 min

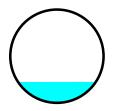

 Routed to Reach DMH104 : TO DMH#104
 0.008 af, Atten= 0%, Lag= 0.1 min
 0.008 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.82 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.35 fps, Avg. Travel Time= 0.1 min

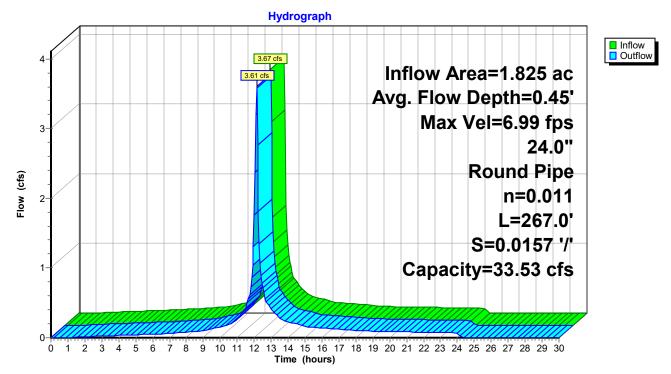
Peak Storage= 0 cf @ 12.14 hrs Average Depth at Peak Storage= 0.09', Surface Width= 0.46' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.03 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 12.0' Slope= 0.0167 '/' Inlet Invert= 470.00', Outlet Invert= 469.80'

Summary for Reach DMH-A*: TO DMH-B


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH100 outlet invert by 0.34' @ 12.15 hrs

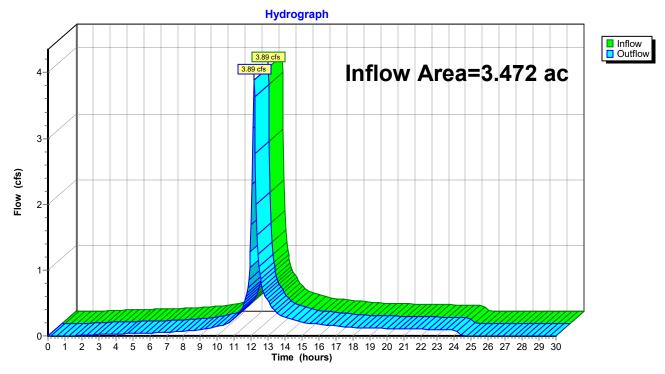
Inflow Area = 1.825 ac, 82.07% Impervious, Inflow Depth = 2.09" for 2-Year event Inflow = 3.67 cfs @ 12.12 hrs, Volume= 0.318 af Outflow = 3.61 cfs @ 12.14 hrs, Volume= 0.318 af, Atten= 2%, Lag= 1.0 min Routed to Reach DP2 : MUNICIPAL SYSTEM


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.99 fps, Min. Travel Time= 0.6 min Avg. Velocity = 2.40 fps, Avg. Travel Time= 1.9 min

Peak Storage= 141 cf @ 12.13 hrs Average Depth at Peak Storage= 0.45', Surface Width= 1.67' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 33.53 cfs

24.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 267.0' Slope= 0.0157 '/' Inlet Invert= 463.70', Outlet Invert= 459.50'

Reach DMH-A*: TO DMH-B



Summary for Reach DMH-C: TO DP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.472 ac, 77.40% Impervious, Inflow D	Depth = 1.27" for 2-Year event
Inflow =	3.89 cfs @ 12.16 hrs, Volume=	0.366 af
Outflow =	3.89 cfs @ 12.16 hrs, Volume=	0.366 af, Atten= 0%, Lag= 0.0 min
Routed to Reach DP2 : MUNICIPAL SYSTEM		

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

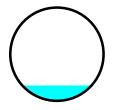
Reach DMH-C: TO DP#1

Summary for Reach DMH-D: TO DMH-C

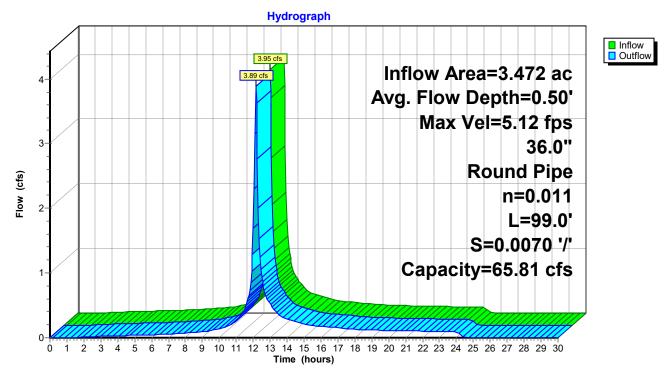
[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach DMH-E OUTLET depth by 0.01' @ 12.25 hrs
[79] Warning: Submerged Pond DMH-B Primary device # 1 OUTLET by 0.50'

 Inflow Area =
 3.472 ac, 77.40% Impervious, Inflow Depth =
 1.27" for 2-Year event

 Inflow =
 3.95 cfs @
 12.15 hrs, Volume=
 0.366 af


 Outflow =
 3.89 cfs @
 12.16 hrs, Volume=
 0.366 af, Atten= 2%, Lag= 0.5 min

 Routed to Reach DMH-C : TO DP#1
 TO DP#1
 0.366 af, Atten= 2%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.12 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.77 fps, Avg. Travel Time= 0.9 min

Peak Storage= 76 cf @ 12.16 hrs Average Depth at Peak Storage= 0.50', Surface Width= 2.23' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 65.81 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 99.0' Slope= 0.0070 '/' Inlet Invert= 455.90', Outlet Invert= 455.21'

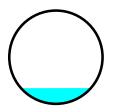
Reach DMH-D: TO DMH-C

Summary for Reach DMH-E: TO DMH-D

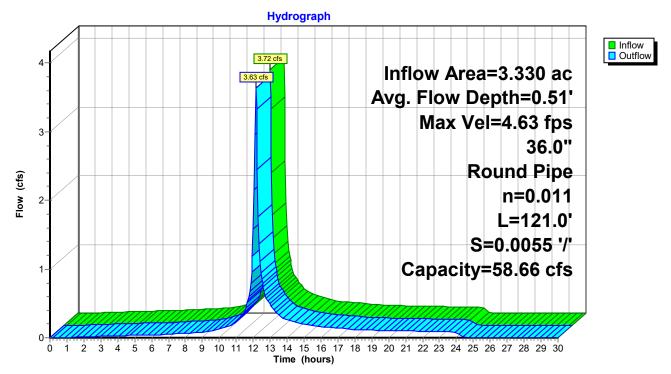
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach CMH3 OUTLET depth by 0.06' @ 12.25 hrs

 Inflow Area =
 3.330 ac, 76.67% Impervious, Inflow Depth =
 1.21" for 2-Year event

 Inflow =
 3.72 cfs @
 12.15 hrs, Volume=
 0.336 af


 Outflow =
 3.63 cfs @
 12.16 hrs, Volume=
 0.336 af, Atten= 2%, Lag= 0.6 min

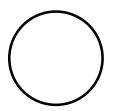
 Routed to Reach DMH-D : TO DMH-C
 TO DMH-C
 0.336 af, Atten= 2%, Lag= 0.6 min

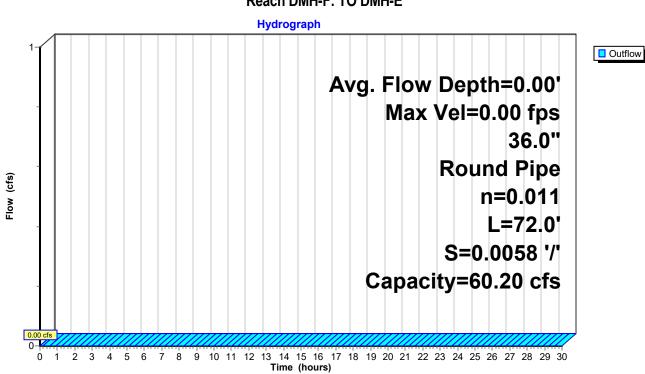

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.63 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.59 fps, Avg. Travel Time= 1.3 min

Peak Storage= 97 cf @ 12.15 hrs Average Depth at Peak Storage= 0.51', Surface Width= 2.26' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 58.66 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 121.0' Slope= 0.0055 '/' Inlet Invert= 456.57', Outlet Invert= 455.90'

Reach DMH-E: TO DMH-D



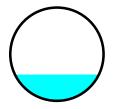

Summary for Reach DMH-F: TO DMH-E

[43] Hint: Has no inflow (Outflow=Zero)

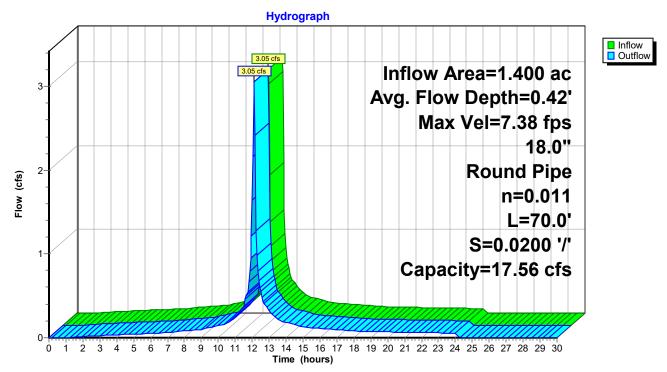
Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.20 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0058 '/' Inlet Invert= 458.13', Outlet Invert= 457.71'

Reach DMH-F: TO DMH-E


Summary for Reach DMH100: TO DMH-A

[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach DMH101 outlet invert by 0.32' @ 12.10 hrs
[62] Hint: Exceeded Reach DMH107 OUTLET depth by 0.04' @ 12.10 hrs
Inflow Area = 1.400 ac, 85.41% Impervious, Inflow Depth = 2.29" for 2-Year event
Inflow = 3.05 cfs @ 12.12 hrs, Volume= 0.267 af
Outflow = 3.05 cfs @ 12.13 hrs, Volume= 0.267 af, Atten= 0%, Lag= 0.4 min Routed to Reach DMH-A* : TO DMH-B


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.38 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.60 fps, Avg. Travel Time= 0.4 min

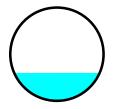
Peak Storage= 29 cf @ 12.12 hrs Average Depth at Peak Storage= 0.42', Surface Width= 1.35' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 17.56 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 70.0' Slope= 0.0200 '/' Inlet Invert= 465.20', Outlet Invert= 463.80'

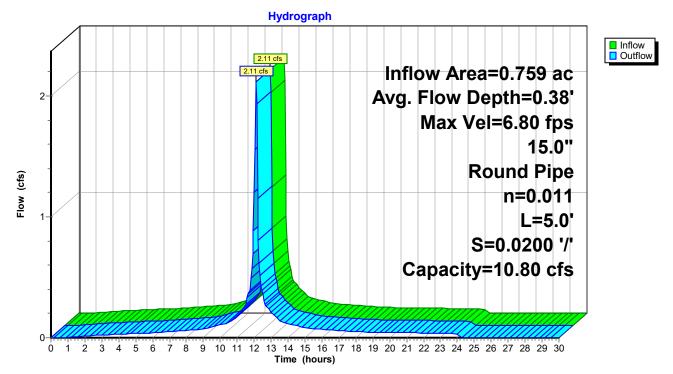
Reach DMH100: TO DMH-A

Summary for Reach DMH101: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated[61] Hint: Exceeded Reach RF1 outlet invert by 0.07' @ 12.10 hrs


[61] Hint: Exceeded Reach RF2 outlet invert by 0.07' @ 12.10 hrs

Inflow Area = 0.759 ac,100.00% Impervious, Inflow Depth = 2.90" for 2-Year event Inflow = 2.11 cfs @ 12.11 hrs, Volume= 0.183 af Outflow = 2.11 cfs @ 12.11 hrs, Volume= 0.183 af, Atten= 0%, Lag= 0.0 min Routed to Reach DMH100 : TO DMH-A

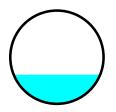

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.80 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.41 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.38', Surface Width= 1.15' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 10.80 cfs

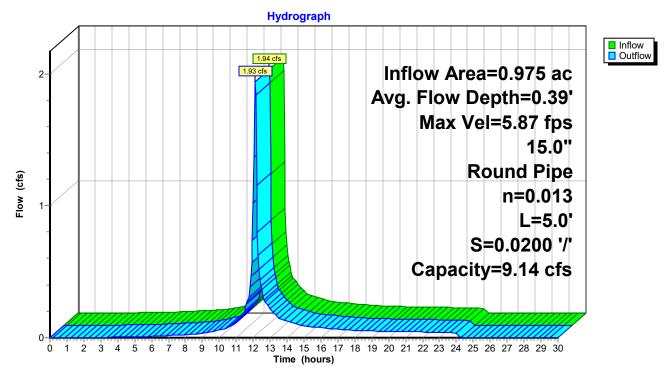
15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 465.40', Outlet Invert= 465.30'

Reach DMH101: TO DMH#100

Summary for Reach DMH102: TO UGS#1A


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DCB15 outlet invert by 0.19' @ 12.10 hrs

Inflow Area =0.975 ac, 81.42% Impervious, Inflow Depth =1.89"for 2-Year eventInflow =1.94 cfs @12.12 hrs, Volume=0.154 afOutflow =1.93 cfs @12.12 hrs, Volume=0.154 af, Atten= 0%, Lag= 0.0 minRouted to Reach UGS1A : TO UGS#1


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.87 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.97 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.39', Surface Width= 1.16' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 9.14 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 466.10', Outlet Invert= 466.00'

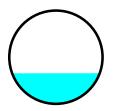
Reach DMH102: TO UGS#1A

Summary for Reach DMH103: TO CMH#2

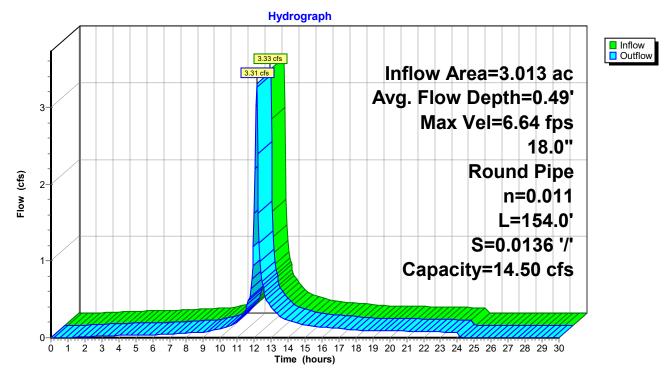
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach DMH104 OUTLET depth by 0.18' @ 12.15 hrs

 Inflow Area =
 3.013 ac, 76.57% Impervious, Inflow Depth =
 1.16" for 2-Year event

 Inflow =
 3.33 cfs @
 12.12 hrs, Volume=
 0.291 af


 Outflow =
 3.31 cfs @
 12.14 hrs, Volume=
 0.291 af, Atten=

 Routed to Reach CMH3 : TO DMH-E
 TO DMH-E
 10.291 af, Atten=


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.64 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.30 fps, Avg. Travel Time= 1.1 min

Peak Storage= 78 cf @ 12.13 hrs Average Depth at Peak Storage= 0.49', Surface Width= 1.41' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.50 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 154.0' Slope= 0.0136 '/' Inlet Invert= 464.10', Outlet Invert= 462.00'

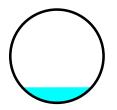
Reach DMH103: TO CMH#2

Summary for Reach DMH104: TO DMH#104

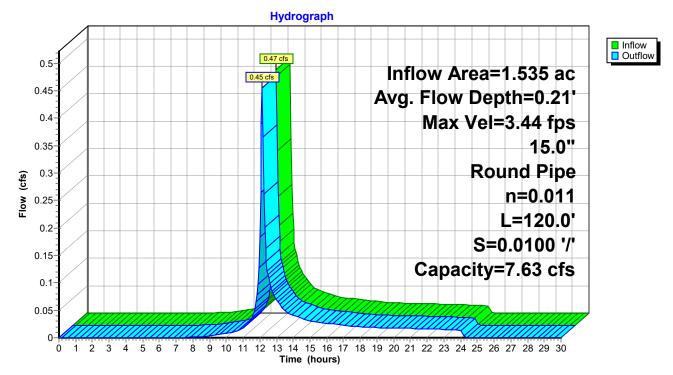
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach DMH105 OUTLET depth by 0.01' @ 12.15 hrs

 Inflow Area =
 1.535 ac, 70.86% Impervious, Inflow Depth =
 0.32" for 2-Year event

 Inflow =
 0.47 cfs @
 12.13 hrs, Volume=
 0.041 af


 Outflow =
 0.45 cfs @
 12.15 hrs, Volume=
 0.041 af, Atten= 2%, Lag= 1.0 min

 Routed to Reach DMH103 : TO CMH#2
 TO CMH#2
 10.041 af, Atten= 2%, Lag= 1.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.44 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.31 fps, Avg. Travel Time= 1.5 min

Peak Storage= 16 cf @ 12.14 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.93' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.63 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 120.0' Slope= 0.0100 '/' Inlet Invert= 465.40', Outlet Invert= 464.20'

Reach DMH104: TO DMH#104

Summary for Reach DMH105: TO DMH#104

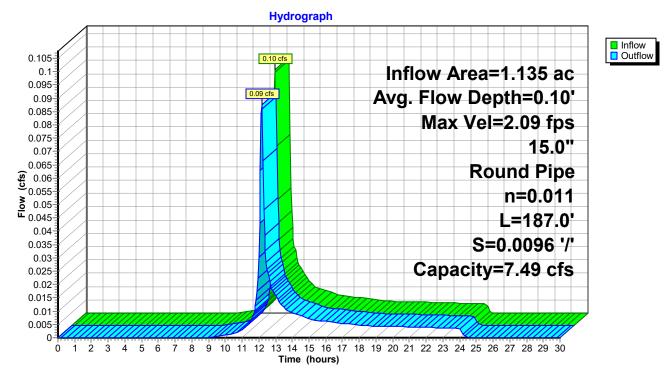
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 1.135 ac, 76.23% Impervious, Inflow Depth =
 0.10"
 for 2-Year event

 Inflow =
 0.10 cfs @
 12.14 hrs, Volume=
 0.009 af

 Outflow =
 0.09 cfs @
 12.18 hrs, Volume=
 0.009 af, Atten= 9%, Lag= 2.5 min

 Routed to Reach DMH104 : TO DMH#104
 TO DMH#104
 10.009 af, Atten= 9%, Lag= 2.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.09 fps, Min. Travel Time= 1.5 min Avg. Velocity = 0.89 fps, Avg. Travel Time= 3.5 min

Peak Storage= 8 cf @ 12.15 hrs Average Depth at Peak Storage= 0.10', Surface Width= 0.67' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.49 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 187.0' Slope= 0.0096 '/' Inlet Invert= 467.30', Outlet Invert= 465.50'

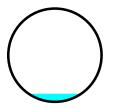
Reach DMH105: TO DMH#104

Summary for Reach DMH106: TO DMH#105

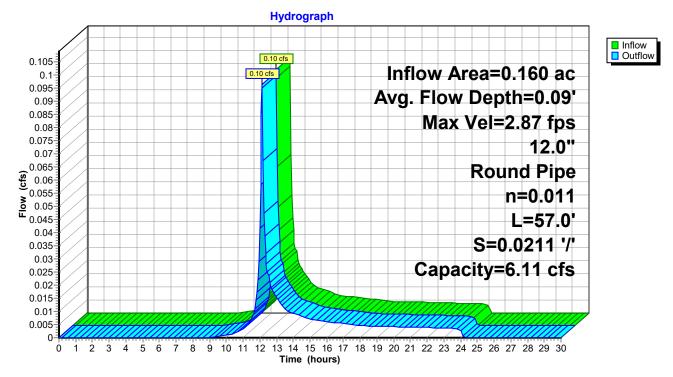
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.160 ac, 44.63% Impervious, Inflow Depth =
 0.67" for 2-Year event

 Inflow =
 0.10 cfs @
 12.13 hrs, Volume=
 0.009 af


 Outflow =
 0.10 cfs @
 12.14 hrs, Volume=
 0.009 af, Atten= 1%, Lag= 0.6 min

 Routed to Reach DMH105 : TO DMH#104
 0.009 af, Atten= 1%, Lag= 0.6 min
 0.009 af, Atten= 1%, Lag= 0.6 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.87 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.20 fps, Avg. Travel Time= 0.8 min

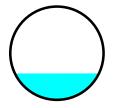
Peak Storage= 2 cf @ 12.13 hrs Average Depth at Peak Storage= 0.09', Surface Width= 0.57' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.11 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 57.0' Slope= 0.0211 '/' Inlet Invert= 470.00', Outlet Invert= 468.80'

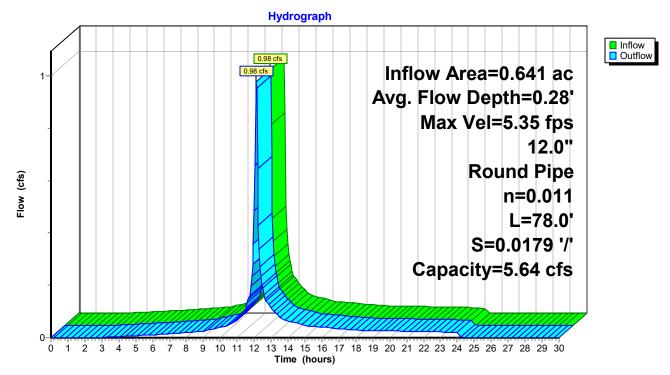
Reach DMH106: TO DMH#105

Summary for Reach DMH107: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated


- [61] Hint: Exceeded Reach DCB6 outlet invert by 0.08' @ 12.15 hrs
- [61] Hint: Exceeded Reach DMH108 outlet invert by 0.08' @ 12.15 hrs

Inflow Area =0.641 ac, 68.12% Impervious, Inflow Depth =1.58"for 2-Year eventInflow =0.98 cfs @12.12 hrs, Volume=0.084 afOutflow =0.98 cfs @12.13 hrs, Volume=0.084 af, Atten= 0%, Lag= 0.5 minRouted to Reach DMH100 : TO DMH-A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.35 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.89 fps, Avg. Travel Time= 0.7 min

Peak Storage= 14 cf @ 12.13 hrs Average Depth at Peak Storage= 0.28', Surface Width= 0.90' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.64 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 78.0' Slope= 0.0179 '/' Inlet Invert= 466.70', Outlet Invert= 465.30'

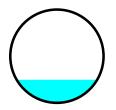
Reach DMH107: TO DMH#100

Summary for Reach DMH108: TO DMH#107

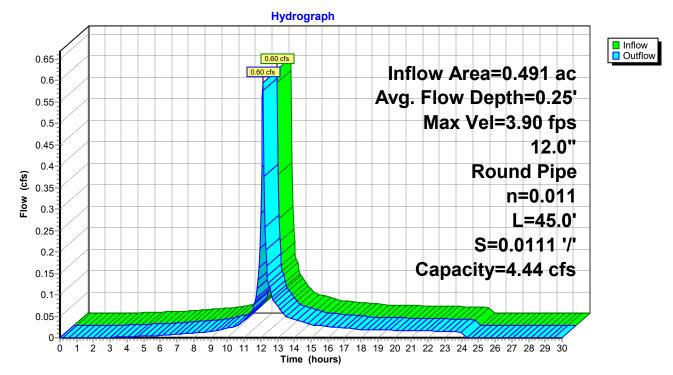
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DCB12 outlet invert by 0.14' @ 12.15 hrs

 Inflow Area =
 0.491 ac, 60.11% Impervious, Inflow Depth =
 1.27" for 2-Year event

 Inflow =
 0.60 cfs @
 12.12 hrs, Volume=
 0.052 af


 Outflow =
 0.60 cfs @
 12.13 hrs, Volume=
 0.052 af, Atten= 0%, Lag= 0.4 min

 Routed to Reach DMH107 : TO DMH#100
 TO DMH#100
 10.052 af, Atten= 0%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.90 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.40 fps, Avg. Travel Time= 0.5 min

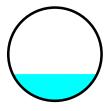
Peak Storage= 7 cf @ 12.13 hrs Average Depth at Peak Storage= 0.25', Surface Width= 0.86' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.44 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 45.0' Slope= 0.0111 '/' Inlet Invert= 467.40', Outlet Invert= 466.90'

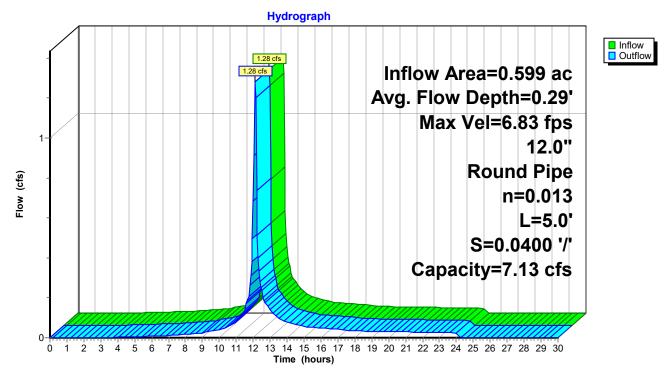
Reach DMH108: TO DMH#107

Summary for Reach DMH109: TO DMH#110

[52] Hint: Inlet/Outlet conditions not evaluated


- [61] Hint: Exceeded Reach DCB14 outlet invert by 0.08' @ 12.10 hrs
- [61] Hint: Exceeded Reach DCB20 outlet invert by 0.08' @ 12.10 hrs
- [61] Hint: Exceeded Reach DMH109A outlet invert by 0.08' @ 12.10 hrs

Inflow Area =0.599 ac, 83.64% Impervious, Inflow Depth =2.02" for 2-Year eventInflow =1.28 cfs @12.12 hrs, Volume=0.101 afOutflow =1.28 cfs @12.12 hrs, Volume=0.101 af, Atten= 0%, Lag= 0.0 minRouted to Reach DMH110 : TO UGS#2A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.83 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.29 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.29', Surface Width= 0.90' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 466.20', Outlet Invert= 466.00'

Reach DMH109: TO DMH#110

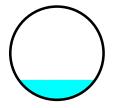
Summary for Reach DMH109A: TO DMH109

[52] Hint: Inlet/Outlet conditions not evaluated

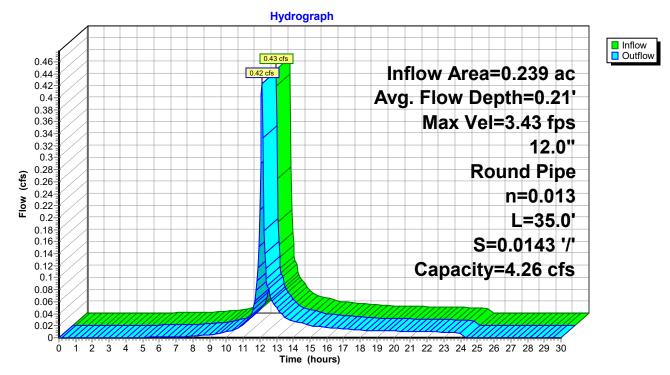
- [61] Hint: Exceeded Reach DCB21 outlet invert by 0.11' @ 12.10 hrs
- [61] Hint: Exceeded Reach DCB25 outlet invert by 0.11' @ 12.10 hrs

 Inflow Area =
 0.239 ac, 75.90% Impervious, Inflow Depth =
 1.65" for 2-Year event

 Inflow =
 0.43 cfs @
 12.12 hrs, Volume=
 0.033 af


 Outflow =
 0.42 cfs @
 12.13 hrs, Volume=
 0.033 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 10.033 af, Atten= 1%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.43 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.16 fps, Avg. Travel Time= 0.5 min

Peak Storage= 4 cf @ 12.12 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.82' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.26 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0143 '/' Inlet Invert= 466.90', Outlet Invert= 466.40'

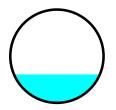
Reach DMH109A: TO DMH109

Summary for Reach DMH110: TO UGS#2A

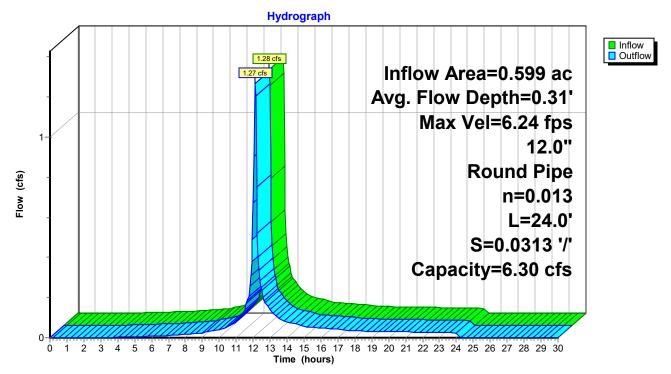
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH109 outlet invert by 0.05' @ 12.10 hrs

 Inflow Area =
 0.599 ac, 83.64% Impervious, Inflow Depth =
 2.02" for 2-Year event

 Inflow =
 1.28 cfs @
 12.12 hrs, Volume=
 0.101 af


 Outflow =
 1.27 cfs @
 12.12 hrs, Volume=
 0.101 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach UGS2A : TO UGS#2
 TO UGS#2
 10.101 af, Atten= 1%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.10 fps, Avg. Travel Time= 0.2 min

Peak Storage= 5 cf @ 12.12 hrs Average Depth at Peak Storage= 0.31', Surface Width= 0.92' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.30 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 24.0' Slope= 0.0313 '/' Inlet Invert= 465.75', Outlet Invert= 465.00'

Reach DMH110: TO UGS#2A

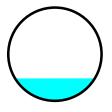
Summary for Reach DMH111: TO DMH#112

[52] Hint: Inlet/Outlet conditions not evaluated

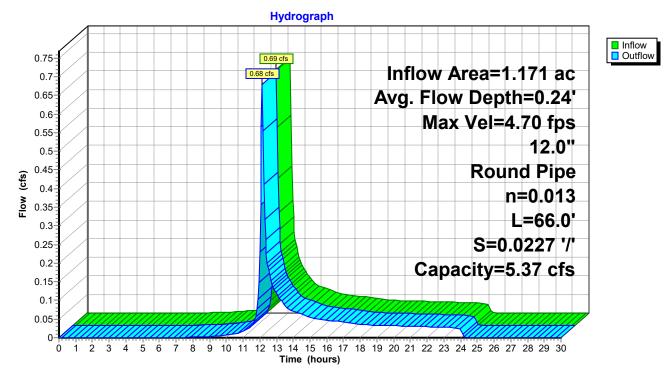
- [62] Hint: Exceeded Reach DCB19 OUTLET depth by 0.01' @ 12.20 hrs
- [62] Hint: Exceeded Reach DCB22 OUTLET depth by 0.05' @ 12.15 hrs
- [61] Hint: Exceeded Reach DCB23 outlet invert by 0.14' @ 12.15 hrs

 Inflow Area =
 1.171 ac, 46.54% Impervious, Inflow Depth =
 0.68" for 2-Year event

 Inflow =
 0.69 cfs @
 12.14 hrs, Volume=
 0.066 af


 Outflow =
 0.68 cfs @
 12.15 hrs, Volume=
 0.066 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach DMH112 : TO DMH#113
 To DMH#113
 10.066 af, Atten= 1%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.70 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.80 fps, Avg. Travel Time= 0.6 min

Peak Storage= 10 cf @ 12.15 hrs Average Depth at Peak Storage= 0.24', Surface Width= 0.86' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.37 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 66.0' Slope= 0.0227 '/' Inlet Invert= 463.50', Outlet Invert= 462.00'

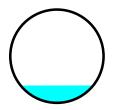
Reach DMH111: TO DMH#112

Summary for Reach DMH112: TO DMH#113

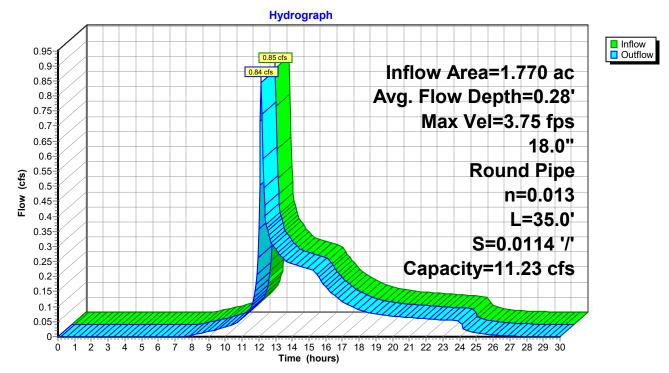
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach UGS2B OUTLET depth by 0.04' @ 12.15 hrs

 Inflow Area =
 1.770 ac, 59.09% Impervious, Inflow Depth >
 1.12" for 2-Year event

 Inflow =
 0.85 cfs @
 12.15 hrs, Volume=
 0.165 af


 Outflow =
 0.84 cfs @
 12.15 hrs, Volume=
 0.165 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH113 : TO DMH#114
 TO DMH#114
 14


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.75 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.56 fps, Avg. Travel Time= 0.4 min

Peak Storage= 8 cf @ 12.15 hrs Average Depth at Peak Storage= 0.28', Surface Width= 1.17' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 11.23 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0114 '/' Inlet Invert= 460.20', Outlet Invert= 459.80'

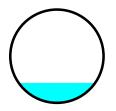
Reach DMH112: TO DMH#113

Summary for Reach DMH113: TO DMH#114

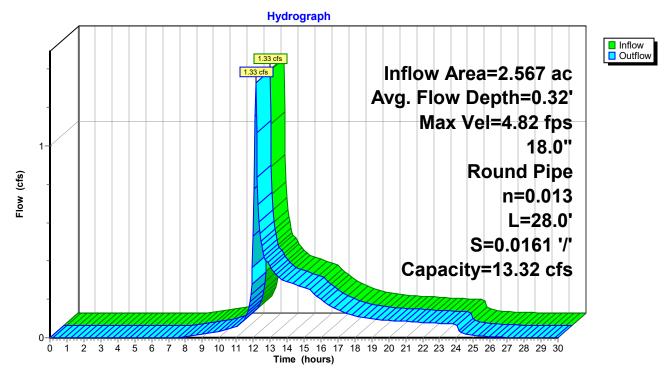
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH112 outlet invert by 0.22' @ 12.15 hrs

 Inflow Area =
 2.567 ac, 55.34% Impervious, Inflow Depth > 0.97" for 2-Year event

 Inflow =
 1.33 cfs @
 12.14 hrs, Volume=
 0.208 af


 Outflow =
 1.33 cfs @
 12.15 hrs, Volume=
 0.208 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH114 : TO DMH-K1
 TO DMH-K1
 10.208 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.82 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.86 fps, Avg. Travel Time= 0.3 min

Peak Storage= 8 cf @ 12.14 hrs Average Depth at Peak Storage= 0.32', Surface Width= 1.23' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 13.32 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 28.0' Slope= 0.0161 '/' Inlet Invert= 459.70', Outlet Invert= 459.25'

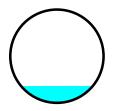
Reach DMH113: TO DMH#114

Summary for Reach DMH114: TO DMH-K1

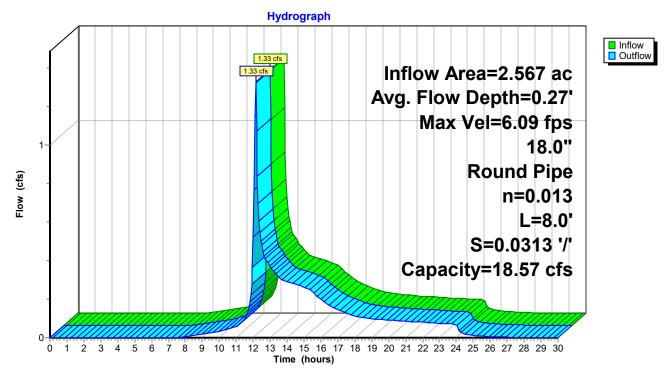
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH113 outlet invert by 0.02' @ 12.15 hrs

 Inflow Area =
 2.567 ac, 55.34% Impervious, Inflow Depth > 0.97" for 2-Year event

 Inflow =
 1.33 cfs @
 12.15 hrs, Volume=
 0.208 af


 Outflow =
 1.33 cfs @
 12.15 hrs, Volume=
 0.208 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DP4 : DMH-K1
 DMH-K1
 0.208 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.09 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.37 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.15 hrs Average Depth at Peak Storage= 0.27', Surface Width= 1.16' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 18.57 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 8.0' Slope= 0.0313 '/' Inlet Invert= 459.00', Outlet Invert= 458.75'

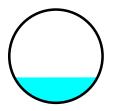
Reach DMH114: TO DMH-K1

Summary for Reach DMHR1: TO DMH#104

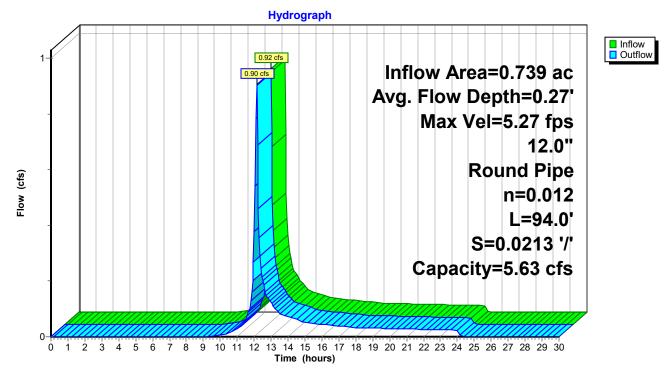
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMHR2 outlet invert by 0.17' @ 12.15 hrs

 Inflow Area =
 0.739 ac, 65.00% Impervious, Inflow Depth =
 1.16" for 2-Year event

 Inflow =
 0.92 cfs @
 12.14 hrs, Volume=
 0.072 af


 Outflow =
 0.90 cfs @
 12.14 hrs, Volume=
 0.072 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach DMH103 : TO CMH#2
 TO CMH#2
 0.072 af, Atten= 1%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.27 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.06 fps, Avg. Travel Time= 0.8 min

Peak Storage= 16 cf @ 12.14 hrs Average Depth at Peak Storage= 0.27', Surface Width= 0.89' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.63 cfs

12.0" Round Pipe n= 0.012 Steel, smooth Length= 94.0' Slope= 0.0213 '/' Inlet Invert= 467.00', Outlet Invert= 465.00'

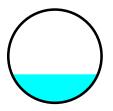
Reach DMHR1: TO DMH#104

Summary for Reach DMHR2: TO DMH#R2

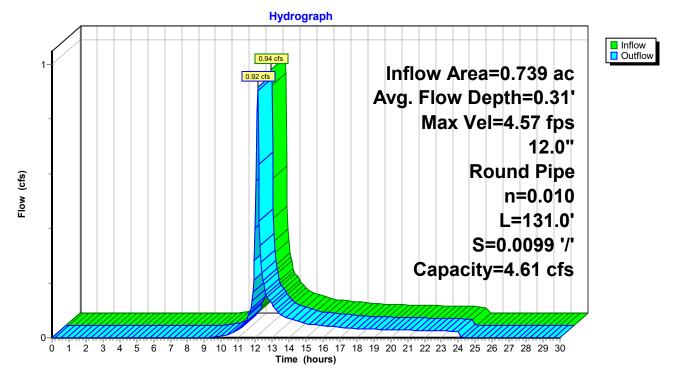
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.739 ac, 65.00% Impervious, Inflow Depth =
 1.16"
 for 2-Year event

 Inflow =
 0.94 cfs @
 12.12 hrs, Volume=
 0.072 af


 Outflow =
 0.92 cfs @
 12.14 hrs, Volume=
 0.072 af, Atten= 2%, Lag= 1.0 min

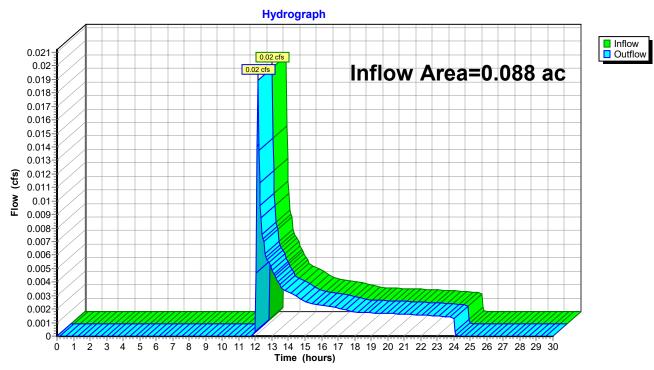
 Routed to Reach DMHR1 : TO DMH#104
 To DMH#104
 0.072 af, Atten= 2%, Lag= 1.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.57 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.80 fps, Avg. Travel Time= 1.2 min

Peak Storage= 27 cf @ 12.13 hrs Average Depth at Peak Storage= 0.31', Surface Width= 0.92' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.61 cfs

12.0" Round Pipe n= 0.010 PVC, smooth interior Length= 131.0' Slope= 0.0099 '/' Inlet Invert= 468.40', Outlet Invert= 467.10'

Reach DMHR2: TO DMH#R2

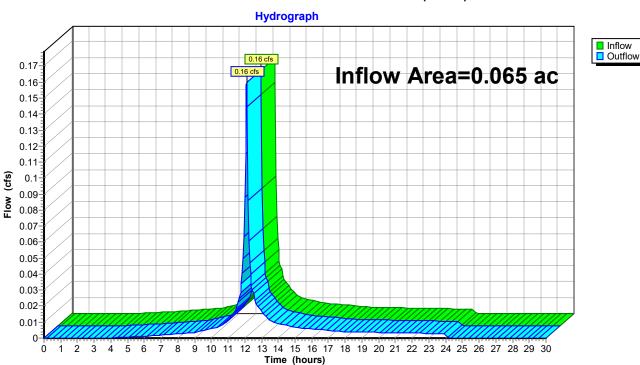


Summary for Reach DP#6: OFFSITE LOW POINT

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.088 ac, 33.45% Impervious, Inflow E	Depth = 0.35" for 2-Year event
Inflow =	0.02 cfs @ 12.15 hrs, Volume=	0.003 af
Outflow =	0.02 cfs @ 12.15 hrs, Volume=	0.003 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

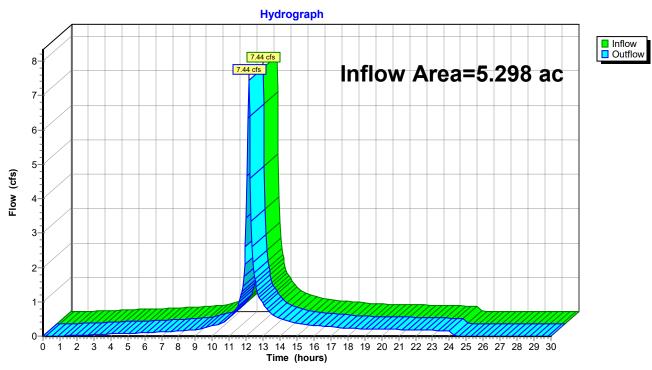

Reach DP#6: OFFSITE LOW POINT

Summary for Reach DP1: GUTTER POINT FRANKLIN (WEST)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.065 ac, 89.73% Impervious, Inflow D	Depth = 2.28" for 2-Year event
Inflow =	0.16 cfs @ 12.11 hrs, Volume=	0.012 af
Outflow =	0.16 cfs @ 12.11 hrs, Volume=	0.012 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DP1: GUTTER POINT FRANKLIN (WEST)

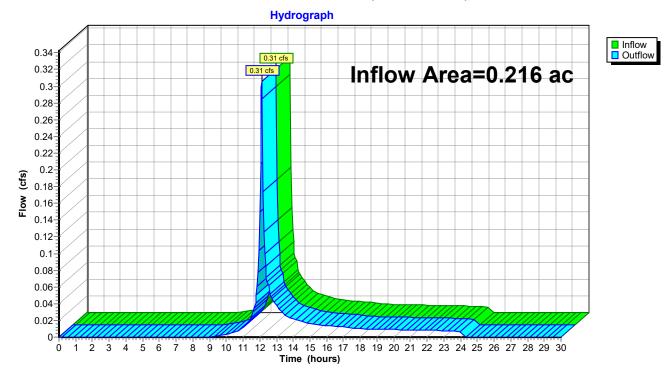
Summary for Reach DP2: MUNICIPAL SYSTEM

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	5.298 ac, 79.01% Impervious, Inflow	Depth = 1.55" for 2-Year event
Inflow =	7.44 cfs @ 12.15 hrs, Volume=	0.684 af
Outflow =	7.44 cfs @ 12.15 hrs, Volume=	0.684 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP2: MUNICIPAL SYSTEM

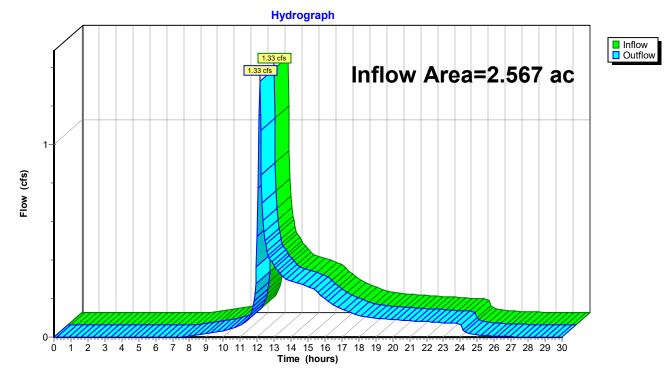

Summary for Reach DP3: CATCHBASIN (FIRE STATION)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.216 ac, 68.08% Impervious, Inflow E	Depth = 1.28" for 2-Year event
Inflow =	0.31 cfs @ 12.12 hrs, Volume=	0.023 af
Outflow =	0.31 cfs @ 12.12 hrs, Volume=	0.023 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP3: CATCHBASIN (FIRE STATION)



Summary for Reach DP4: DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	2.567 ac, 55.34% Impervious, Inflow I	Depth > 0.97" for 2-Year event
Inflow =	1.33 cfs @ 12.15 hrs, Volume=	0.208 af
Outflow =	1.33 cfs @ 12.15 hrs, Volume=	0.208 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP4: DMH-K1

Summary for Reach DP5: DCB-H

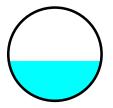
[40] Hint: Not Described (Outflow=Inflow)

Summary for Reach RF1: TO DMH#101

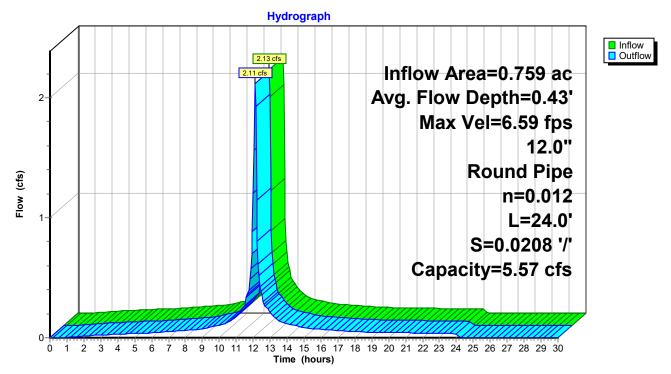
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.759 ac,100.00% Impervious, Inflow Depth =
 2.90"
 for 2-Year event

 Inflow =
 2.13 cfs @
 12.11 hrs, Volume=
 0.183 af


 Outflow =
 2.11 cfs @
 12.11 hrs, Volume=
 0.183 af, Atten= 1%, Lag= 0.1 min

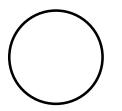
 Routed to Reach DMH101 : TO DMH#100
 0
 0.183 af, Atten= 1%, Lag= 0.1 min

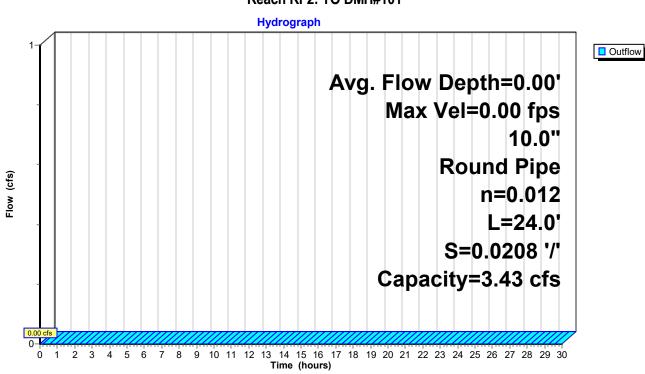

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.59 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.37 fps, Avg. Travel Time= 0.2 min

Peak Storage= 8 cf @ 12.11 hrs Average Depth at Peak Storage= 0.43', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.57 cfs

12.0" Round Pipe n= 0.012 Steel, smooth Length= 24.0' Slope= 0.0208 '/' Inlet Invert= 466.20', Outlet Invert= 465.70'

Reach RF1: TO DMH#101

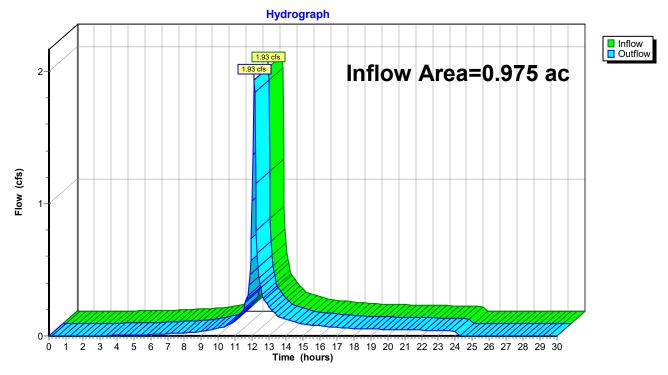



Summary for Reach RF2: TO DMH#101

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 0.83' Flow Area= 0.5 sf, Capacity= 3.43 cfs

10.0" Round Pipe n= 0.012 Steel, smooth Length= 24.0' Slope= 0.0208 '/' Inlet Invert= 466.20', Outlet Invert= 465.70'


Reach RF2: TO DMH#101

Summary for Reach UGS1A: TO UGS#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.975 ac, 81.42% Impervious, Inflow	Depth = 1.89" for 2-Year event
Inflow =	1.93 cfs @ 12.12 hrs, Volume=	0.154 af
Outflow =	1.93 cfs @ 12.12 hrs, Volume=	0.154 af, Atten= 0%, Lag= 0.0 min
Routed to Pond	d UGS1 : TO DMH#106	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach UGS1A: TO UGS#1

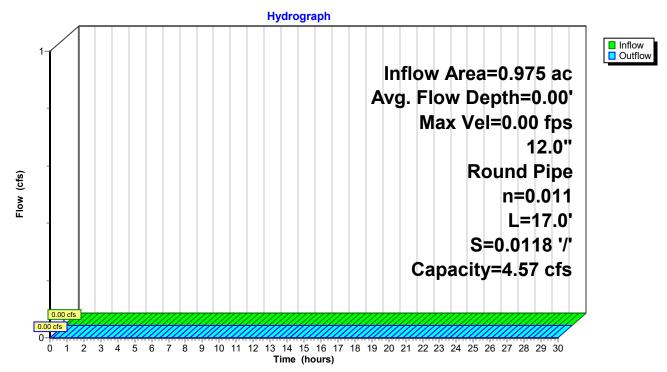
Summary for Reach UGS1B: TO DMH106

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.975 ac, 81.42% Impervious, Inflow Depth =
 0.00" for 2-Year event

 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af

 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

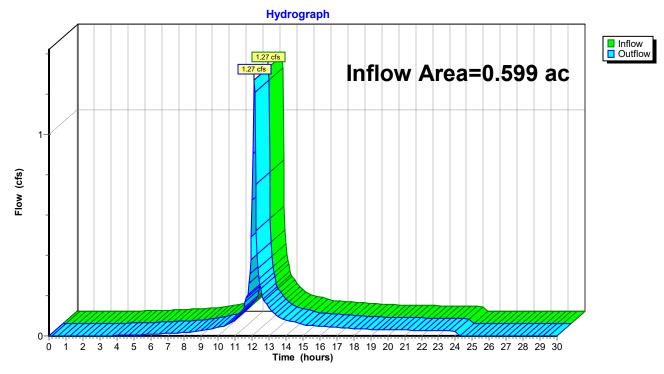

 Routed to Reach DMH105 : TO DMH#104
 0.000 af, Atten= 0%, Lag= 0.0 min
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.57 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 17.0' Slope= 0.0118 '/' Inlet Invert= 467.60', Outlet Invert= 467.40'

Reach UGS1B: TO DMH106



Summary for Reach UGS2A: TO UGS#2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.599 ac, 83.64% Impervious, Infl	flow Depth = 2.02" for 2-Year event
Inflow =	1.27 cfs @ 12.12 hrs, Volume=	0.101 af
Outflow =	1.27 cfs @ 12.12 hrs, Volume=	0.101 af, Atten= 0%, Lag= 0.0 min
Routed to Pond	d UGS2 : TO UGS#2B	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

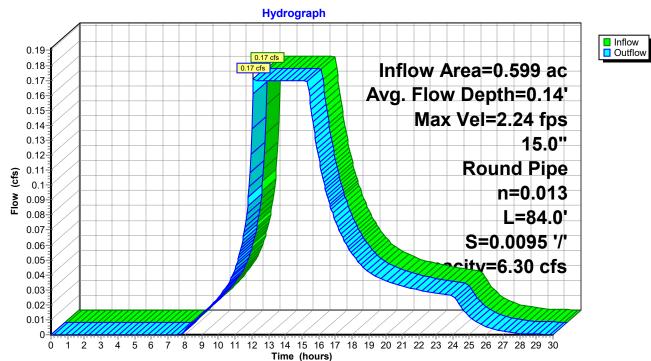
Reach UGS2A: TO UGS#2

Summary for Reach UGS2B: TO DMH#112

[52] Hint: Inlet/Outlet conditions not evaluated[78] Warning: Submerged Pond UGS2 Primary device # 2 by 0.09'

 Inflow Area =
 0.599 ac, 83.64% Impervious, Inflow Depth >
 1.97" for 2-Year event

 Inflow =
 0.17 cfs @
 12.05 hrs, Volume=
 0.098 af


 Outflow =
 0.17 cfs @
 12.10 hrs, Volume=
 0.098 af

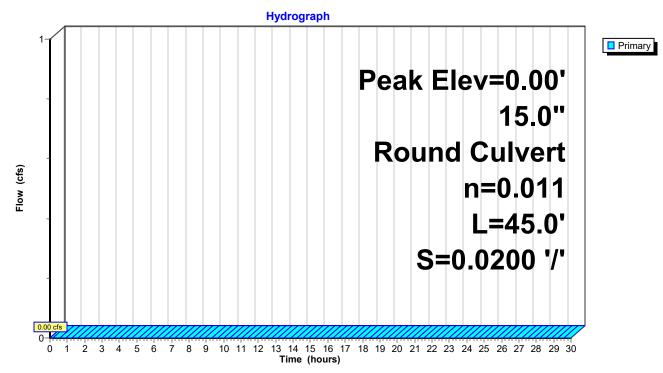
 Routed to Reach DMH112 : TO DMH#113
 TO DMH#113
 12.00 hrs, Volume=

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.24 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.35 fps, Avg. Travel Time= 1.0 min

Peak Storage= 6 cf @ 12.10 hrs Average Depth at Peak Storage= 0.14', Surface Width= 0.79' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.30 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 84.0' Slope= 0.0095 '/' Inlet Invert= 461.10', Outlet Invert= 460.30'

Reach UGS2B: TO DMH#112

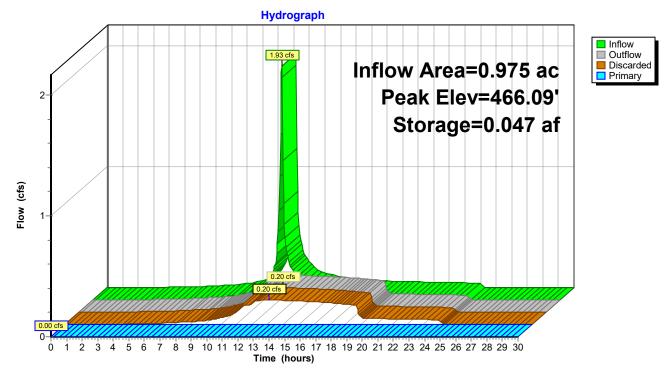

Summary for Pond DMH-B: TO DMH-D

[43] Hint: Has no inflow (Outflow=Zero)

Device	Routing	Invert	Outlet Devices
#1	Primary	456.80'	15.0" Round Culvert L= 45.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 456.80' / 455.90' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

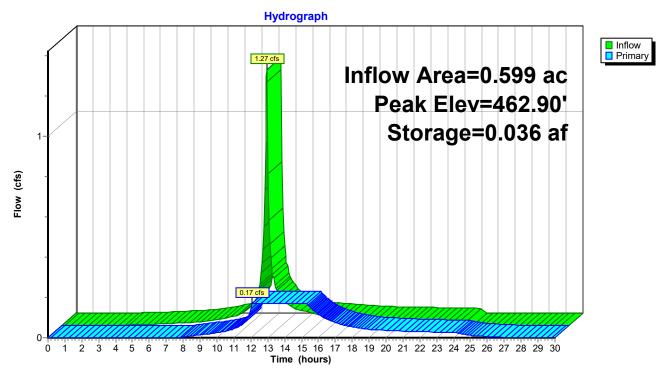
Pond DMH-B: TO DMH-D



Summary for Pond UGS1: TO DMH#106

Primary	= = ed = =	1.93 cfs @ 12 0.20 cfs @ 13 0.20 cfs @ 13	42% Impervious, Inflow Depth = 1.89" for 2-Year event 2.12 hrs, Volume= 0.154 af 3.09 hrs, Volume= 0.154 af, Atten= 90%, Lag= 58.2 min 3.09 hrs, Volume= 0.154 af 0.09 hrs, Volume= 0.154 af 0.09 hrs, Volume= 0.154 af 0.00 hrs, Volume= 0.100 af DMH106 0.000 af	
•			Span= 0.00-30.00 hrs, dt= 0.05 hrs Surf.Area= 0.065 ac Storage= 0.047 af	
	Plug-Flow detention time= 80.1 min calculated for 0.153 af (100% of inflow) Center-of-Mass det. time= 80.0 min (908.5 - 828.5)			
Volume	Inver	t Avail.Stora	ge Storage Description	
#1	464.75	0.073	af 38.00'W x 74.00'L x 6.00'H Prismatoid	
			0.387 af Overall - 0.206 af Embedded = 0.181 af x 40.0% Voids	
#2	465.50	' 0.153	af Shea Leaching Chamber 4x4x4 x 144 Inside #1	
			Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf	
			Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf	
		0.226	af Total Available Storage	
Device	Routing	Invert	Outlet Devices	
#1	Primary	467.75'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600 Limited to weir flow at low heads	
#2	Discarded	464.75'	2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 460.00'	
Discarded OutFlow Max=0.20 cfs @ 13.09 hrs HW=466.09' (Free Discharge) 2=Exfiltration (Controls 0.20 cfs)				

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=464.75' (Free Discharge)


Pond UGS1: TO DMH#106

Summary for Pond UGS2: TO UGS#2B

Inflow Area = 0.599 ac, 83.64% Impervious, Inflow Depth = 2.02" for 2-Year event Inflow = 1.27 cfs @ 12.12 hrs, Volume= 0.101 af Outflow = 0.17 cfs @ 12.05 hrs, Volume= 0.098 af, Atten= 87%, Lag= 0.0 min Primary = 0.17 cfs @ 12.05 hrs, Volume= 0.098 af Routed to Reach UGS2B : TO DMH#112 0.098 af				
			an= 0.00-30.00 hrs, dt= 0.05 hrs f.Area= 0.041 ac Storage= 0.036 af	
		ime= 118.1 min c ime= 103.6 min (calculated for 0.098 af (98% of inflow) 926.8 - 823.3)	
Volume	Invert	Avail.Storage	Storage Description	
#1	461.00'	0.052 af	38.00'W x 47.00'L x 6.30'H Prismatoid	
			0.258 af Overall - 0.129 af Embedded = 0.130 af x 40.0% Voids	
#2	462.50'	0.096 af		
			Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf	
			Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf	
			90 Chambers in 10 Rows	
		0.148 af	Total Available Storage	
Device	Routing	Invert Ou	itlet Devices	
#1	Primary	464.25' 12	.0" Vert. Orifice/Grate X 3.00 C= 0.600 Limited to weir flow at low heads	
#2	Primary		ecial & User-Defined	
			ad (feet) 0.00 1.00 15.00	
		Dis	sch. (cfs) 0.000 0.170 0.170	
Primary OutFlow Max=0.17 cfs @ 12.05 hrs HW=462.16' (Free Discharge) 1=Orifice/Grate (Controls 0.00 cfs) 2=Special & User-Defined (Custom Controls 0.17 cfs)				

Pond UGS2: TO UGS#2B

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P100A: TO 12" ROOF DRAIN	Runoff Area=33,077 sf 100.00% Impervious Runoff Depth=4.44" Tc=5.0 min CN=98 Runoff=3.21 cfs 0.281 af
Subcatchment P100B: TO YARD DRAIN	Runoff Area=32,189 sf 65.00% Impervious Runoff Depth=2.36" Tc=5.0 min CN=77 Runoff=1.93 cfs 0.145 af
Subcatchment P100D: TO 12" ROOF DRAIN	Runoff Area=32,189 sf 100.00% Impervious Runoff Depth=4.44" Tc=5.0 min CN=98 Runoff=3.12 cfs 0.274 af
Subcatchment P105: TO DCB#5	Runoff Area=12,319 sf 35.47% Impervious Runoff Depth=1.12" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=60 Runoff=0.32 cfs 0.026 af
Subcatchment P106: TO DCB#6	Runoff Area=6,540 sf 94.27% Impervious Runoff Depth=4.10" Flow Length=101' Slope=0.0150 '/' Tc=5.0 min CN=95 Runoff=0.62 cfs 0.051 af
Subcatchment P107: TO DCB#7	Runoff Area=14,453 sf 83.32% Impervious Runoff Depth=3.37" Flow Length=126' Slope=0.0150 '/' Tc=5.0 min CN=88 Runoff=1.20 cfs 0.093 af
Subcatchment P108: TO DCB#8	Runoff Area=7,623 sf 76.33% Impervious Runoff Depth=2.98" Flow Length=156' Tc=5.0 min CN=84 Runoff=0.57 cfs 0.043 af
Subcatchment P109: TO DCB#9	Runoff Area=9,811 sf 39.59% Impervious Runoff Depth=1.25" Flow Length=156' Tc=5.1 min CN=62 Runoff=0.29 cfs 0.023 af
Subcatchment P11: TO DP#1	Runoff Area=2,852 sf 89.73% Impervious Runoff Depth=3.78" Flow Length=98' Slope=0.0170 '/' Tc=5.0 min CN=92 Runoff=0.26 cfs 0.021 af
Subcatchment P110: TO DCB#10	Runoff Area=2,827 sf 67.92% Impervious Runoff Depth=2.53" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=79 Runoff=0.18 cfs 0.014 af
Subcatchment P111: TO DCB#11	Runoff Area=4,144 sf 28.74% Impervious Runoff Depth=0.88" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=56 Runoff=0.08 cfs 0.007 af
Subcatchment P112: TO DCB#12	Runoff Area=9,054 sf 93.65% Impervious Runoff Depth=3.99" Flow Length=150' Slope=0.0130 '/' Tc=5.0 min CN=94 Runoff=0.84 cfs 0.069 af
Subcatchment P113: TO DCB#13	Runoff Area=11,898 sf 94.49% Impervious Runoff Depth=4.10" Flow Length=122' Slope=0.0200 '/' Tc=5.0 min CN=95 Runoff=1.12 cfs 0.093 af
Subcatchment P114: TO DCB#14	Runoff Area=5,484 sf 94.42% Impervious Runoff Depth=4.10" Flow Length=126' Slope=0.0160 '/' Tc=5.0 min CN=95 Runoff=0.52 cfs 0.043 af
Subcatchment P115: TO DCB#15	Runoff Area=16,100 sf 70.06% Impervious Runoff Depth=2.62" Flow Length=122' Slope=0.0170 '/' Tc=5.0 min CN=80 Runoff=1.07 cfs 0.081 af
Subcatchment P116: TO DCB#25	Runoff Area=2,780 sf 89.32% Impervious Runoff Depth=3.78" Flow Length=80' Slope=0.0200 '/' Tc=5.0 min CN=92 Runoff=0.25 cfs 0.020 af

3030-Post-R9

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Subcatchment P117: TO DP#6	Runoff Area=3,839 sf 33.45% Impervious Runoff Depth=1.06" Flow Length=74' Slope=0.0200 '/' Tc=5.0 min CN=59 Runoff=0.09 cfs 0.008 af
Subcatchment P119: TO DCB#19	Runoff Area=7,440 sf 78.16% Impervious Runoff Depth=3.07" Flow Length=213' Slope=0.0250 '/' Tc=5.0 min CN=85 Runoff=0.57 cfs 0.044 af
Subcatchment P12: TO DCB-A	Runoff Area=6,197 sf 94.61% Impervious Runoff Depth=4.10" Flow Length=147' Tc=5.0 min CN=95 Runoff=0.58 cfs 0.049 af
Subcatchment P120: TO DCB#20	Runoff Area=10,195 sf 85.75% Impervious Runoff Depth=3.57" Flow Length=146' Tc=5.0 min CN=90 Runoff=0.88 cfs 0.070 af
Subcatchment P121: TO DCB#21	Runoff Area=7,628 sf 71.01% Impervious Runoff Depth=2.70" Flow Length=153' Tc=5.0 min CN=81 Runoff=0.52 cfs 0.039 af
Subcatchment P122: TO DCB#22	Runoff Area=10,232 sf 44.85% Impervious Runoff Depth=1.44" Flow Length=189' Tc=5.0 min CN=65 Runoff=0.36 cfs 0.028 af
Subcatchment P123: TO DCB#23	Runoff Area=33,346 sf 40.00% Impervious Runoff Depth=1.31" Flow Length=171' Tc=5.0 min CN=63 Runoff=1.05 cfs 0.084 af
Subcatchment P14: TO DCB-B	Runoff Area=5,424 sf 87.24% Impervious Runoff Depth=3.57" Flow Length=169' Tc=5.0 min CN=90 Runoff=0.47 cfs 0.037 af
Subcatchment P15: TO DCB-C	Runoff Area=8,397 sf 71.34% Impervious Runoff Depth=2.70" Flow Length=161' Slope=0.0110 '/' Tc=7.0 min CN=81 Runoff=0.55 cfs 0.043 af
Subcatchment P18: TO DCB-D	Runoff Area=10,287 sf 76.50% Impervious Runoff Depth=2.98" Flow Length=222' Tc=5.0 min CN=84 Runoff=0.77 cfs 0.059 af
Subcatchment P19: TO DCB-E	Runoff Area=8,240 sf 64.27% Impervious Runoff Depth=2.36" Flow Length=177' Slope=0.0090 '/' Tc=5.0 min CN=77 Runoff=0.49 cfs 0.037 af
Subcatchment P20: TO DP#3	Runoff Area=9,426 sf 68.08% Impervious Runoff Depth=2.53" Flow Length=137' Tc=5.0 min CN=79 Runoff=0.61 cfs 0.046 af
Subcatchment P24: TO DCB#24	Runoff Area=34,704 sf 47.02% Impervious Runoff Depth=1.58" Flow Length=247' Slope=0.0250 '/' Tc=5.0 min CN=67 Runoff=1.36 cfs 0.105 af
Reach CMH3: TO DMH-E	Avg. Flow Depth=0.63' Max Vel=5.39 fps Inflow=5.87 cfs 0.506 af 36.0" Round Pipe n=0.011 L=196.0' S=0.0058 '/' Capacity=60.12 cfs Outflow=5.69 cfs 0.506 af
Reach DCB-A: TO DMH-D	Inflow=0.58 cfs 0.049 af Outflow=0.58 cfs 0.049 af
Reach DCB-B: TO DMH-E	Inflow=0.47 cfs 0.037 af Outflow=0.47 cfs 0.037 af
Reach DCB-C: TO TRUNKLINE	Inflow=0.55 cfs 0.043 af Outflow=0.55 cfs 0.043 af

3030-Post-R9

<u></u>	
Reach DCB-D: TO DMH-A	Avg. Flow Depth=0.24' Max Vel=6.93 fps Inflow=0.77 cfs 0.059 af 8.0" Round Pipe n=0.010 L=15.0' S=0.0333 '/' Capacity=2.87 cfs Outflow=0.77 cfs 0.059 af
Reach DCB-E: TO DMH-A	Avg. Flow Depth=0.19' Max Vel=5.97 fps Inflow=0.49 cfs 0.037 af 8.0" Round Pipe n=0.010 L=16.0' S=0.0313 '/' Capacity=2.78 cfs Outflow=0.49 cfs 0.037 af
Reach DCB10: TO DMH#106	Avg. Flow Depth=0.12' Max Vel=4.33 fps Inflow=0.18 cfs 0.014 af 8.0" Round Pipe n=0.010 L=7.0' S=0.0286 '/' Capacity=2.66 cfs Outflow=0.18 cfs 0.014 af
Reach DCB11: TO DMH#103	Avg. Flow Depth=0.09' Max Vel=2.57 fps Inflow=0.08 cfs 0.007 af 8.0" Round Pipe n=0.010 L=15.0' S=0.0133 '/' Capacity=1.81 cfs Outflow=0.08 cfs 0.007 af
Reach DCB12: TO DMH#12	Avg. Flow Depth=0.34' Max Vel=4.68 fps Inflow=0.84 cfs 0.069 af 8.0" Round Pipe n=0.010 L=28.0' S=0.0107 '/' Capacity=1.63 cfs Outflow=0.83 cfs 0.069 af
Reach DCB13: TO DMH#102	Avg. Flow Depth=0.27' Max Vel=6.60 fps Inflow=1.12 cfs 0.093 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=1.12 cfs 0.093 af
Reach DCB14: TO DMH#109	Avg. Flow Depth=0.19' Max Vel=5.11 fps Inflow=0.52 cfs 0.043 af 12.0" Round Pipe n=0.013 L=19.0' S=0.0368 '/' Capacity=6.84 cfs Outflow=0.51 cfs 0.043 af
Reach DCB15: TO DMH#102	Avg. Flow Depth=0.37' Max Vel=3.92 fps Inflow=1.07 cfs 0.081 af 12.0" Round Pipe n=0.013 L=70.0' S=0.0100 '/' Capacity=3.56 cfs Outflow=1.05 cfs 0.081 af
Reach DCB19: TO DMH#111	Avg. Flow Depth=0.19' Max Vel=5.41 fps Inflow=0.57 cfs 0.044 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=0.57 cfs 0.044 af
Reach DCB20: TO DMH#109	Avg. Flow Depth=0.33' Max Vel=3.89 fps Inflow=0.88 cfs 0.070 af 12.0" Round Pipe n=0.013 L=9.0' S=0.0111 '/' Capacity=3.76 cfs Outflow=0.88 cfs 0.070 af
Reach DCB21: TO DMH#109A	Avg. Flow Depth=0.25' Max Vel=4.28 fps Inflow=0.52 cfs 0.039 af 8.0" Round Pipe n=0.013 L=5.0' S=0.0200 '/' Capacity=1.71 cfs Outflow=0.52 cfs 0.039 af
Reach DCB22: TO DMH#111	Avg. Flow Depth=0.16' Max Vel=4.24 fps Inflow=0.36 cfs 0.028 af 12.0" Round Pipe n=0.013 L=20.0' S=0.0300 '/' Capacity=6.17 cfs Outflow=0.36 cfs 0.028 af
Reach DCB23: TO DMH#111	Avg. Flow Depth=0.35' Max Vel=4.25 fps Inflow=1.05 cfs 0.084 af 12.0" Round Pipe n=0.013 L=250.0' S=0.0124 '/' Capacity=3.97 cfs Outflow=0.99 cfs 0.084 af
Reach DCB24: TO DMH#113	Avg. Flow Depth=0.35' Max Vel=5.61 fps Inflow=1.36 cfs 0.105 af 12.0" Round Pipe n=0.013 L=9.0' S=0.0222 '/' Capacity=5.31 cfs Outflow=1.36 cfs 0.105 af
Reach DCB25: TO DMH#109A	Avg. Flow Depth=0.16' Max Vel=3.97 fps Inflow=0.25 cfs 0.020 af 8.0" Round Pipe n=0.010 L=29.0' S=0.0172 '/' Capacity=2.06 cfs Outflow=0.25 cfs 0.020 af
Reach DCB5: TO DMH#108	Avg. Flow Depth=0.16' Max Vel=5.07 fps Inflow=0.32 cfs 0.026 af 8.0" Round Pipe n=0.010 L=7.0' S=0.0286 '/' Capacity=2.66 cfs Outflow=0.32 cfs 0.026 af
Reach DCB6: TO DMH#107	Avg. Flow Depth=0.18' Max Vel=8.18 fps Inflow=0.62 cfs 0.051 af 8.0" Round Pipe n=0.010 L=46.0' S=0.0630 '/' Capacity=3.94 cfs Outflow=0.61 cfs 0.051 af

3030-Post-R9
Prepared by Hannigan Engineering Inc
HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

NRCC 24-hr D 10-Year Rainfall=4.68" Printed 10/16/2024 Page 160

Reach DCB7: TO DMH#102	Avg. Flow Depth=0.29' Max Vel=6.14 fps Inflow=1.20 cfs 0.093 af 12.0" Round Pipe n=0.013 L=54.0' S=0.0315 '/' Capacity=6.32 cfs Outflow=1.18 cfs 0.093 af
Reach DCB8: TO DMH#103	Avg. Flow Depth=0.18' Max Vel=7.37 fps Inflow=0.57 cfs 0.043 af 8.0" Round Pipe n=0.010 L=4.0' S=0.0500 '/' Capacity=3.51 cfs Outflow=0.57 cfs 0.043 af
Reach DCB9: TO DMH#103	Avg. Flow Depth=0.17' Max Vel=4.07 fps Inflow=0.29 cfs 0.023 af 8.0" Round Pipe n=0.010 L=12.0' S=0.0167 '/' Capacity=2.03 cfs Outflow=0.29 cfs 0.023 af
Reach DMH-A*: TO DMH-B	Avg. Flow Depth=0.58' Max Vel=8.06 fps Inflow=6.06 cfs 0.524 af 24.0" Round Pipe n=0.011 L=267.0' S=0.0157 '/' Capacity=33.53 cfs Outflow=5.97 cfs 0.524 af
Reach DMH-C: TO DP#1	Inflow=6.94 cfs 0.635 af Outflow=6.94 cfs 0.635 af
Reach DMH-D: TO DMH-C	Avg. Flow Depth=0.66' Max Vel=6.07 fps Inflow=7.05 cfs 0.635 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=6.94 cfs 0.635 af
Reach DMH-E: TO DMH-D	Avg. Flow Depth=0.68' Max Vel=5.50 fps Inflow=6.66 cfs 0.587 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=6.53 cfs 0.587 af
Reach DMH-F: TO DMH-E	Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=72.0' S=0.0058 '/' Capacity=60.20 cfs Outflow=0.00 cfs 0.000 af
Reach DMH100: TO DMH-A	Avg. Flow Depth=0.54' Max Vel=8.43 fps Inflow=4.87 cfs 0.428 af 18.0" Round Pipe n=0.011 L=70.0' S=0.0200 '/' Capacity=17.56 cfs Outflow=4.80 cfs 0.428 af
Reach DMH101: TO DMH#100	Avg. Flow Depth=0.47' Max Vel=7.63 fps Inflow=3.19 cfs 0.281 af 15.0" Round Pipe n=0.011 L=5.0' S=0.0200 '/' Capacity=10.80 cfs Outflow=3.18 cfs 0.281 af
Reach DMH102: TO UGS#1A	Avg. Flow Depth=0.52' Max Vel=6.82 fps Inflow=3.32 cfs 0.267 af 15.0" Round Pipe n=0.013 L=5.0' S=0.0200 '/' Capacity=9.14 cfs Outflow=3.32 cfs 0.267 af
Reach DMH103: TO CMH#2	Avg. Flow Depth=0.67' Max Vel=7.75 fps Inflow=5.90 cfs 0.506 af 18.0" Round Pipe n=0.011 L=154.0' S=0.0136 '/' Capacity=14.50 cfs Outflow=5.87 cfs 0.506 af
Reach DMH104: TO DMH#104	Avg. Flow Depth=0.32' Max Vel=4.38 fps Inflow=1.07 cfs 0.087 af 15.0" Round Pipe n=0.011 L=120.0' S=0.0100 '/' Capacity=7.63 cfs Outflow=1.05 cfs 0.087 af
Reach DMH105: TO DMH#104	Avg. Flow Depth=0.16' Max Vel=2.82 fps Inflow=0.25 cfs 0.021 af 15.0" Round Pipe n=0.011 L=187.0' S=0.0096 '/' Capacity=7.49 cfs Outflow=0.24 cfs 0.021 af
Reach DMH106: TO DMH#105	Avg. Flow Depth=0.14' Max Vel=3.81 fps Inflow=0.26 cfs 0.021 af 12.0" Round Pipe n=0.011 L=57.0' S=0.0211 '/' Capacity=6.11 cfs Outflow=0.25 cfs 0.021 af
Reach DMH107: TO DMH#100	Avg. Flow Depth=0.38' Max Vel=6.27 fps Inflow=1.73 cfs 0.147 af 12.0" Round Pipe n=0.011 L=78.0' S=0.0179 '/' Capacity=5.64 cfs Outflow=1.73 cfs 0.147 af
Reach DMH108: TO DMH#107	Avg. Flow Depth=0.35' Max Vel=4.69 fps Inflow=1.15 cfs 0.096 af 12.0" Round Pipe n=0.011 L=45.0' S=0.0111 '/' Capacity=4.44 cfs Outflow=1.14 cfs 0.096 af

3030-Post-R9

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Reach DMH109: TO DMH#110	Avg. Flow Depth=0.38' Max Vel=7.90 fps Inflow=2.14 cfs 0.172 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=2.14 cfs 0.172 af
Reach DMH109A: TO DMH109	Avg. Flow Depth=0.29' Max Vel=4.08 fps Inflow=0.77 cfs 0.060 af 12.0" Round Pipe n=0.013 L=35.0' S=0.0143 '/' Capacity=4.26 cfs Outflow=0.76 cfs 0.060 af
Reach DMH110: TO UGS#2A	Avg. Flow Depth=0.40' Max Vel=7.21 fps Inflow=2.14 cfs 0.172 af 12.0" Round Pipe n=0.013 L=24.0' S=0.0313 '/' Capacity=6.30 cfs Outflow=2.13 cfs 0.172 af
Reach DMH111: TO DMH#112	Avg. Flow Depth=0.41' Max Vel=6.23 fps Inflow=1.88 cfs 0.156 af 12.0" Round Pipe n=0.013 L=66.0' S=0.0227 '/' Capacity=5.37 cfs Outflow=1.87 cfs 0.156 af
Reach DMH112: TO DMH#113	Avg. Flow Depth=0.43' Max Vel=4.83 fps Inflow=2.04 cfs 0.325 af 18.0" Round Pipe n=0.013 L=35.0' S=0.0114 '/' Capacity=11.23 cfs Outflow=2.03 cfs 0.325 af
Reach DMH113: TO DMH#114	Avg. Flow Depth=0.52' Max Vel=6.26 fps Inflow=3.37 cfs 0.430 af 18.0" Round Pipe n=0.013 L=28.0' S=0.0161 '/' Capacity=13.32 cfs Outflow=3.36 cfs 0.430 af
Reach DMH114: TO DMH-K1	Avg. Flow Depth=0.43' Max Vel=7.95 fps Inflow=3.36 cfs 0.430 af 18.0" Round Pipe n=0.013 L=8.0' S=0.0313 '/' Capacity=18.57 cfs Outflow=3.36 cfs 0.430 af
Reach DMHR1: TO DMH#104	Avg. Flow Depth=0.40' Max Vel=6.43 fps Inflow=1.89 cfs 0.145 af 12.0" Round Pipe n=0.012 L=94.0' S=0.0213 '/' Capacity=5.63 cfs Outflow=1.87 cfs 0.145 af
Reach DMHR2: TO DMH#R2	Avg. Flow Depth=0.45' Max Vel=5.55 fps Inflow=1.93 cfs 0.145 af 12.0" Round Pipe n=0.010 L=131.0' S=0.0099 '/' Capacity=4.61 cfs Outflow=1.89 cfs 0.145 af
Reach DP#6: OFFSITE LOW POINT	Inflow=0.09 cfs 0.008 af Outflow=0.09 cfs 0.008 af
Reach DP1: GUTTER POINT FRANKL	Inflow=0.26 cfs 0.021 af Outflow=0.26 cfs 0.021 af
Reach DP2: MUNICIPAL SYSTEM	Inflow=12.85 cfs 1.159 af Outflow=12.85 cfs 1.159 af
Reach DP3: CATCHBASIN (FIRE STA	Inflow=0.61 cfs 0.046 af Outflow=0.61 cfs 0.046 af
Reach DP4: DMH-K1	Inflow=3.36 cfs 0.430 af Outflow=3.36 cfs 0.430 af
Reach DP5: DCB-H	
Reach RF1: TO DMH#101	Avg. Flow Depth=0.54' Max Vel=7.32 fps Inflow=3.21 cfs 0.281 af 12.0" Round Pipe n=0.012 L=24.0' S=0.0208 '/' Capacity=5.57 cfs Outflow=3.19 cfs 0.281 af
Reach RF2: TO DMH#101	Avg. Flow Depth=0.00' Max Vel=0.00 fps 10.0" Round Pipe n=0.012 L=24.0' S=0.0208 '/' Capacity=3.43 cfs Outflow=0.00 cfs 0.000 af

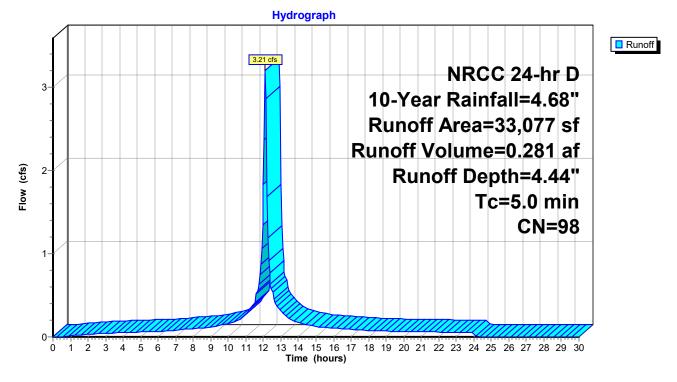
Prepared by Hannigan Engineering In HydroCAD® 10.20-3g s/n 00840 © 2023 Hy		Printed 10/16/2024 Page 162
Reach UGS1A: TO UGS#1		Inflow=3.32 cfs 0.267 af Outflow=3.32 cfs 0.267 af
Reach UGS1B: TO DMH106	Avg. Flow Depth=0.00' 12.0" Round Pipe n=0.011 L=17.0' S=0.0118 '/'	Max Vel=0.00 fps Inflow=0.00 cfs 0.000 af Capacity=4.57 cfs Outflow=0.00 cfs 0.000 af
Reach UGS2A: TO UGS#2		Inflow=2.13 cfs 0.172 af Outflow=2.13 cfs 0.172 af
Reach UGS2B: TO DMH#112	Avg. Flow Depth=0.14' 15.0" Round Pipe n=0.013 L=84.0' S=0.0095 '/	Max Vel=2.23 fps Inflow=0.17 cfs 0.170 af Capacity=6.30 cfs Outflow=0.17 cfs 0.170 af
Pond DMH-B: TO DMH-D	15.0" Round Culvert n=0.011 L=4	Peak Elev=0.00' 45.0' S=0.0200 '/' Primary=0.00 cfs 0.000 af
Pond UGS1: TO DMH#106		Storage=0.102 af Inflow=3.32 cfs 0.267 af 0.00 cfs 0.000 af Outflow=0.24 cfs 0.267 af
Pond UGS2: TO UGS#2B	Peak Elev=464.03	' Storage=0.071 af Inflow=2.13 cfs 0.172 af Outflow=0.17 cfs 0.170 af

3030-Post-R9

Total Runoff Area = 8.235 acRunoff Volume = 1.933 af
29.06% Pervious = 2.393 acAverage Runoff Depth = 2.82"
70.94% Impervious = 5.842 ac

NRCC 24-hr D 10-Year Rainfall=4.68"

Summary for Subcatchment P100A: TO 12" ROOF DRAIN


[49] Hint: Tc<2dt may require smaller dt

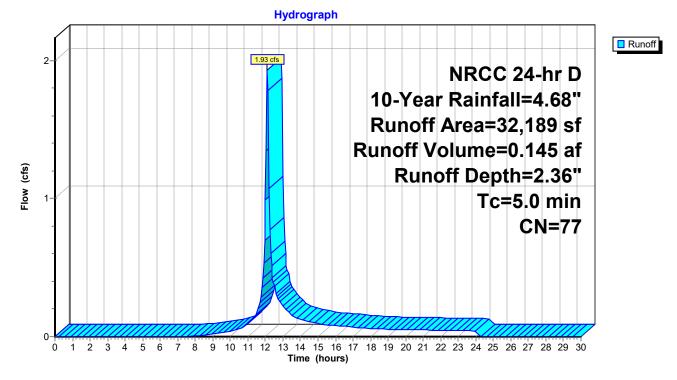
Runoff = 3.21 cfs @ 12.11 hrs, Volume= 0.281 af, Depth= 4.44" Routed to Reach RF1 : TO DMH#101

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

Ar	ea (sf)	CN	Description							
3	33,077	98	Paved park	Paved parking, HSG A						
3	33,077		100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description					
5.0					Direct Entry,					

Subcatchment P100A: TO 12" ROOF DRAIN

Summary for Subcatchment P100B: TO YARD DRAIN


[49] Hint: Tc<2dt may require smaller dt

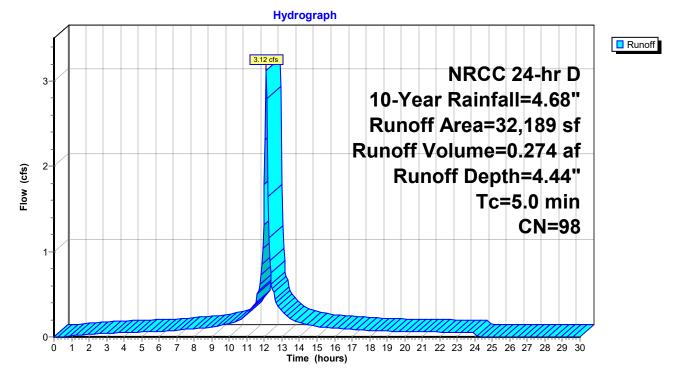
Runoff = 1.93 cfs @ 12.12 hrs, Volume= 0.145 af, Depth= 2.36" Routed to Reach DMHR2 : TO DMH#R2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

Area (sf)	CN	Description			
32,189	77	1/8 acre lot	s, 65% imp	, HSG A	
11,266 20,923					
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description	
5.0				Direct Entry,	

Subcatchment P100B: TO YARD DRAIN

Summary for Subcatchment P100D: TO 12" ROOF DRAIN


[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.12 cfs @ 12.11 hrs, Volume= 0.274 af, Depth= 4.44" Routed to Reach DMH103 : TO CMH#2

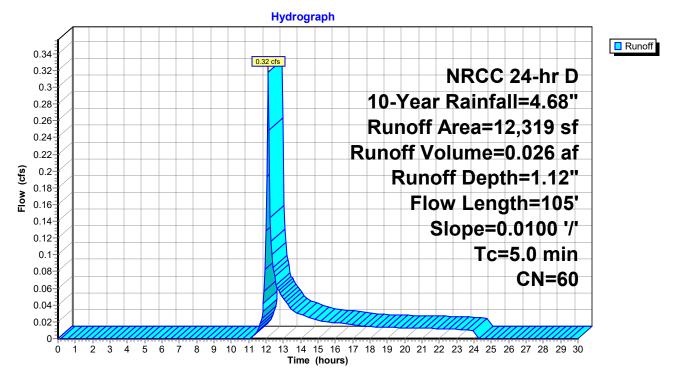
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

Area	(sf)	CN [Description						
32,	189	98 F	Paved parking, HSG A						
32,	189	100.00% Impervious Area							
(min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.0					Direct Entry,				

Subcatchment P100D: TO 12" ROOF DRAIN

Summary for Subcatchment P105: TO DCB#5

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.32 cfs @ 12.13 hrs, Volume= 0.026 af, Depth= 1.12" Routed to Reach DCB5 : TO DMH#108

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

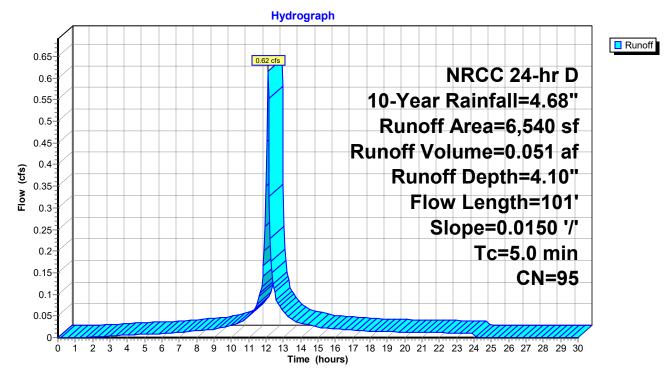
_	A	rea (sf)	CN	Description							
		7,950	39	>75% Grass cover, Good, HSG A							
_		4,369	98	Paved park	ting, HSG A	A					
		12,319	60	Weighted A	verage						
		7,950		64.53% Pe	rvious Area	l					
		4,369		35.47% Imj	pervious Ar	ea					
	Tc	Length	Slope	,	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.9	50	0.0100	0.90		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
		405	T ()			T 60 :					

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P105: TO DCB#5

Summary for Subcatchment P106: TO DCB#6

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.62 cfs @ 12.11 hrs, Volume= 0.051 af, Depth= 4.10" Routed to Reach DCB6 : TO DMH#107

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

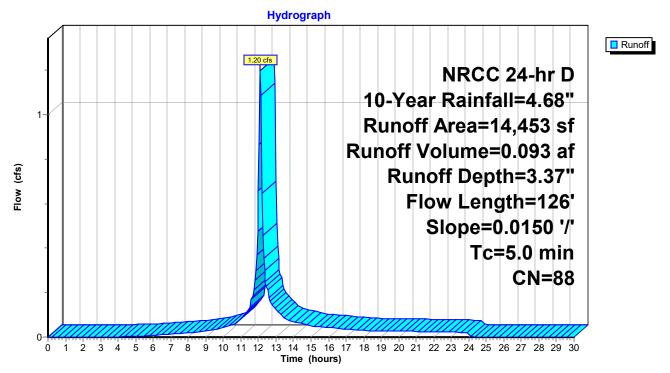
_	A	rea (sf)	CN	Description	escription						
		375	39	>75% Gras	>75% Grass cover, Good, HSG A						
_		6,165	98	Paved park	king, HSG A	Α					
		6,540	95	Weighted A	verage						
		375		5.73% Perv	ious Area						
		6,165		94.27% Im	pervious Ar	ea					
	Tc	Length	Slope	,		Description					
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)						
	0.8	50	0.0150	1.06		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.3	51	0.0150	2.49		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
		404	T ()			T 60 :					

1.1 101 Total, Increased to minimum Tc = 5.0 min

Subcatchment P106: TO DCB#6

Summary for Subcatchment P107: TO DCB#7

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.20 cfs @ 12.11 hrs, Volume= 0.093 af, Depth= 3.37" Routed to Reach DCB7 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

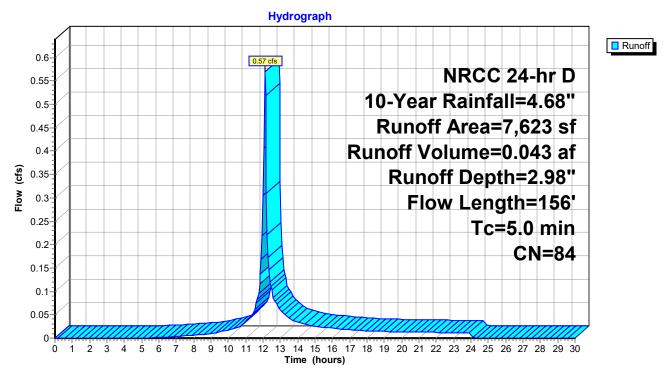
A	vrea (sf)	CN	Description						
	2,411	39	>75% Gras	5% Grass cover, Good, HSG A					
	12,042	98	Paved park	ing, HSG A					
	14,453	88	Weighted A	verage					
	2,411		16.68% Pe	rvious Area					
	12,042		83.32% Imj	pervious Are	ea				
Tc	0	Slope			Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.5	8	0.0150	0.09		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.13"				
0.7	42	0.0150	1.02		Sheet Flow,				
					Smooth surfaces n= 0.011 P2= 3.13"				
0.5	76	0.0150	2.49		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
07	106	Total	Increased	la minimum	$T_{0} = 5.0 \text{ min}$				

2.7 126 Total, Increased to minimum Tc = 5.0 min

Subcatchment P107: TO DCB#7

Summary for Subcatchment P108: TO DCB#8

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.57 cfs @ 12.11 hrs, Volume= 0.043 af, Depth= 2.98" Routed to Reach DCB8 : TO DMH#103

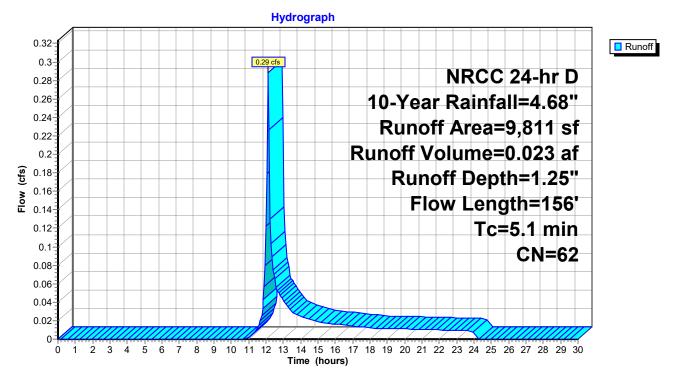
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description								
		1,804	39	9 >75% Grass cover, Good, HSG A								
_		5,819	98	Paved park	aved parking, HSG A							
		7,623	84	4 Weighted Average								
		1,804		23.67% Pe	rvious Area							
		5,819		76.33% Im	pervious Are	ea						
	Tc	Length	Slope	,	Capacity	Description						
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)							
	2.6	16	0.0150	0.10		Sheet Flow,						
						Grass: Short n= 0.150 P2= 3.13"						
	0.7	34	0.0100	0.83		Sheet Flow,						
						Smooth surfaces n= 0.011 P2= 3.13"						
	0.9	106	0.0100	2.03		Shallow Concentrated Flow,						
_						Paved Kv= 20.3 fps						
	10	150	Tatal	المممم مرابا								

4.2 156 Total, Increased to minimum Tc = 5.0 min

Subcatchment P108: TO DCB#8

Summary for Subcatchment P109: TO DCB#9


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.29 cfs @ 12.13 hrs, Volume= 0.023 af, Depth= 1.25" Routed to Reach DCB9 : TO DMH#103

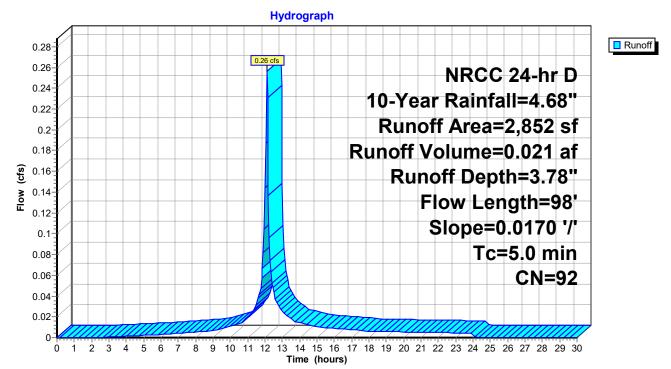
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

	A	rea (sf)	CN	Description			
5,927 39 >75% Grass cover, Good, HSG A							
	9,811 62 Weighted Average						
		5,927		60.41% Pe	rvious Area		
		3,884		39.59% Imp	pervious Are	ea	
	_						
		Length	Slope	•	Capacity	Description	
(n	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	3.7	25	0.0150	0.11		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.13"	
	0.5	25	0.0100) 0.78		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.9	106	0.0100) 2.03		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	5.1	156	Total				

Subcatchment P109: TO DCB#9

Summary for Subcatchment P11: TO DP#1

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.26 cfs @ 12.11 hrs, Volume= 0.021 af, Depth= 3.78" Routed to Reach DP1 : GUTTER POINT FRANKLIN (WEST)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

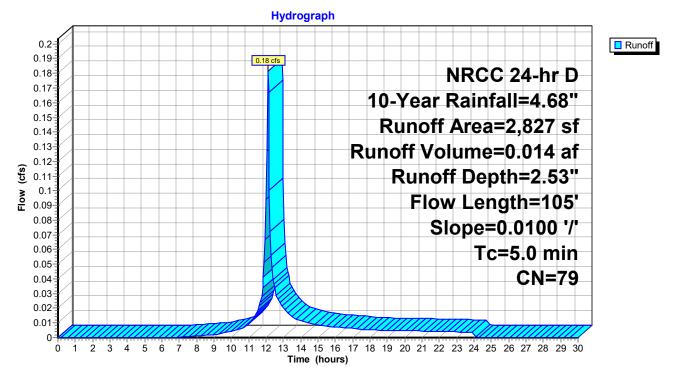
_	A	rea (sf)	CN	Description					
		293 39 >75% Grass cover, Good, HSG A							
_		2,559	98	98 Paved parking, HSG A					
	2,852 92 Weighted Average								
		293		10.27% Pe	rvious Area	3			
		2,559		89.73% Im	pervious Ar	rea			
	Tc	Length	Slope	,		Description			
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
	0.8	50	0.0170) 1.11		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.3	48	0.0170	2.65		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
		00	Tatal	1					

1.1 98 Total, Increased to minimum Tc = 5.0 min

Subcatchment P11: TO DP#1

Summary for Subcatchment P110: TO DCB#10

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.18 cfs @ 12.12 hrs, Volume= 0.014 af, Depth= 2.53" Routed to Reach DCB10 : TO DMH#106

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

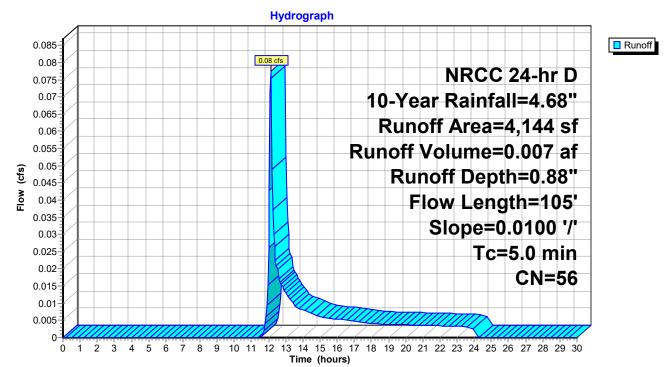
_	A	rea (sf)	CN	Description					
		907	907 39 >75% Grass cover, Good, HSG A						
_		1,920	98	B Paved parking, HSG A					
	2,827 79 Weighted Average								
		907		32.08% Pe	rvious Area	3			
	1,920 67.92% Impervious Area								
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	0.9	50	0.0100	0.90		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	4.4	405	Tatal						

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P110: TO DCB#10

Summary for Subcatchment P111: TO DCB#11

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.08 cfs @ 12.13 hrs, Volume= 0.007 af, Depth= 0.88" Routed to Reach DCB11 : TO DMH#103

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description	escription					
	2,953 39 >75% Grass cover, Good, HSG A									
_		1,191	98 Paved parking, HSG A							
	4,144 56 Weighted Average									
		2,953		71.26% Pe	rvious Area	1				
	1,191 28.74% Impervious Area									
	Tc	Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.9	50	0.0100	0.90		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	4 4	405	T ()			T 60 :				

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P111: TO DCB#11

Summary for Subcatchment P112: TO DCB#12

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.84 cfs @ 12.11 hrs, Volume= 0.069 af, Depth= 3.99" Routed to Reach DCB12 : TO DMH#12

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

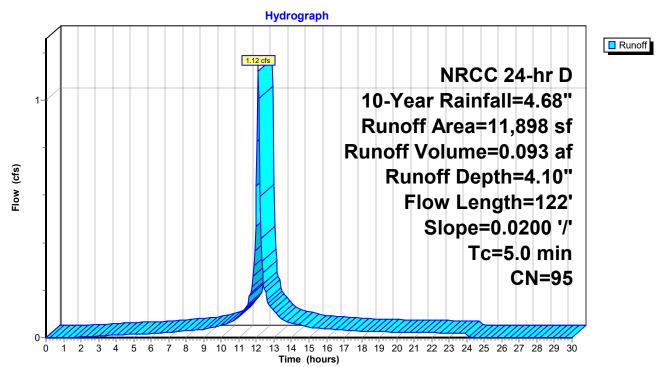
_	A	rea (sf)	CN	Description	escription						
		575	39	39 >75% Grass cover, Good, HSG A							
_		8,479	98	Paved park	aved parking, HSG A						
		9,054 94 Weighted Average									
		575		6.35% Perv	ious Area						
	8,479 93.65% Impervious Area										
	Tc	Length	Slope			Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.8	50	0.0130	1.00		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.7	100	0.0130	2.31		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	4 5	450	T 1 1			T 50 '					

1.5 150 Total, Increased to minimum Tc = 5.0 min

Subcatchment P112: TO DCB#12

Summary for Subcatchment P113: TO DCB#13

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.12 cfs @ 12.11 hrs, Volume= 0.093 af, Depth= 4.10" Routed to Reach DCB13 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

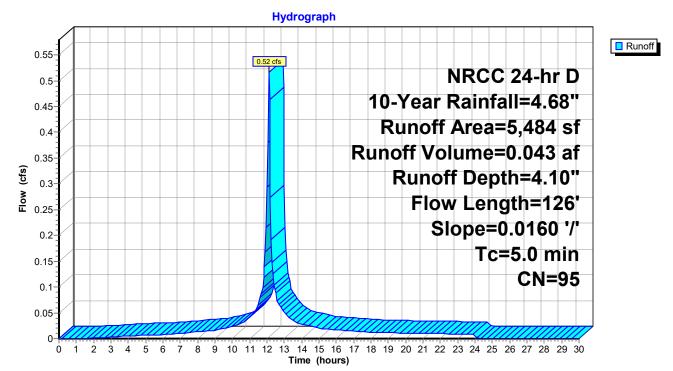
_	A	rea (sf)	CN I	Description	escription						
		656 39 >75% Grass cover, Good, HSG A									
_		11,242	98	Paved park	ing, HSG A						
	11,898 95 Weighted Average										
		656	!	5.51% Perv	vious Area						
	11,242 94.49% Impervious Area										
	_				. .						
	Tc	Length	Slope	,		Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.7	50	0.0200	1.18		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.4	72	0.0200	2.87		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
		400	- · ·								

1.1 122 Total, Increased to minimum Tc = 5.0 min

Subcatchment P113: TO DCB#13

Summary for Subcatchment P114: TO DCB#14

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.52 cfs @ 12.11 hrs, Volume= 0.043 af, Depth= 4.10" Routed to Reach DCB14 : TO DMH#109

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

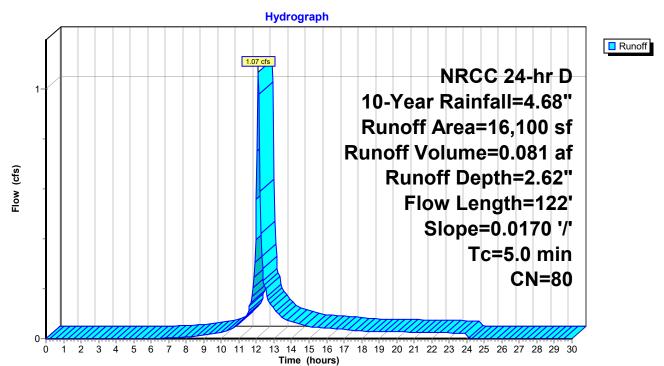
_	A	rea (sf)	CN	Description	escription						
		306	39	>75% Grass cover, Good, HSG A							
_		5,178	98	Paved park	ting, HSG A	Α					
		5,484 95 Weighted Average									
		306		5.58% Perv	ious Area						
	5,178 94.42% Impervious Area										
	_										
	Tc	Length	Slope	,	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.8	50	0.0160	1.08		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.5	76	0.0160	2.57		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	4.0	400	— · ·			T = 5 0 1					

1.3 126 Total, Increased to minimum Tc = 5.0 min

Subcatchment P114: TO DCB#14

Summary for Subcatchment P115: TO DCB#15

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.07 cfs @ 12.12 hrs, Volume= 0.081 af, Depth= 2.62" Routed to Reach DCB15 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

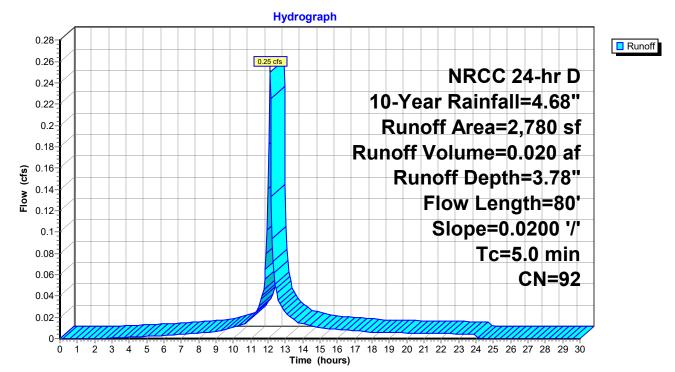
_	A	rea (sf)	CN	Description	escription						
		4,821 39 >75% Grass cover, Good, HSG A									
_		11,279	98	98 Paved parking, HSG A							
	16,100 80 Weighted Average										
		4,821		29.94% Pe	rvious Area						
	11,279 70.06% Impervious Area										
	Tc	Length	Slope	Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
_	0.8	50	0.0170	1.11		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.5	72	0.0170	2.65		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	4.0	400	T ()			T 50 1					

1.3 122 Total, Increased to minimum Tc = 5.0 min

Subcatchment P115: TO DCB#15

Summary for Subcatchment P116: TO DCB#25

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.25 cfs @ 12.11 hrs, Volume= 0.020 af, Depth= 3.78" Routed to Reach DCB25 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

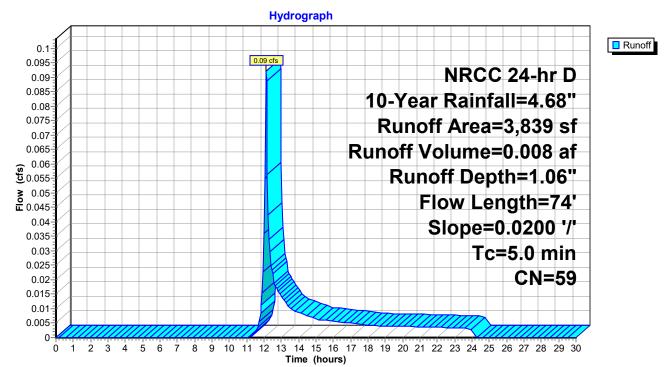
_	A	rea (sf)	CN	Description	escription					
		297	39	39 >75% Grass cover, Good, HSG A						
_		2,483	98	Paved park	Paved parking, HSG A					
	2,780 92 Weighted Average									
		297		10.68% Pe	rvious Area					
	2,483 89.32% Impervious Area									
	Tc	Length	Slope	,		Description				
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)					
	0.7	50	0.0200	1.18		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.2	30	0.0200	2.87		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	0.0	00	Tatal							

0.9 80 Total, Increased to minimum Tc = 5.0 min

Subcatchment P116: TO DCB#25

Summary for Subcatchment P117: TO DP#6

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.09 cfs @	12.13 hrs, V	/olume=	0.008 af,	Depth= 1.06"
Routed	to Rea	ch DP#6 : ŌF	FSITE LOW I	POINT		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

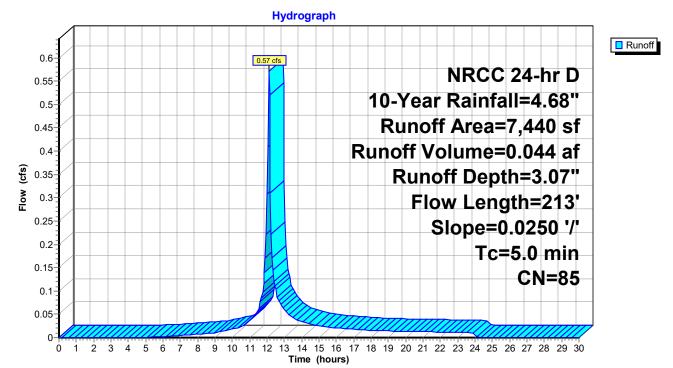
_	A	rea (sf)	CN	Description				
		2,555 39 >75% Grass cover, Good, HSG A						
_	1,284 98 Paved parking, HSG A							
	3,839 59 Weighted Average							
		2,555		66.55% Pe	rvious Area			
	1,284 33.45% Impervious Area							
	Tc	Length	Slope	,		Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	0.7	50	0.0200) 1.18		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.1	24	0.0200) 2.87		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	0.0	74	Tatal	lin ana a a a d				

0.8 74 Total, Increased to minimum Tc = 5.0 min

Subcatchment P117: TO DP#6

Summary for Subcatchment P119: TO DCB#19

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.57 cfs @ 12.11 hrs, Volume= 0.044 af, Depth= 3.07" Routed to Reach DCB19 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

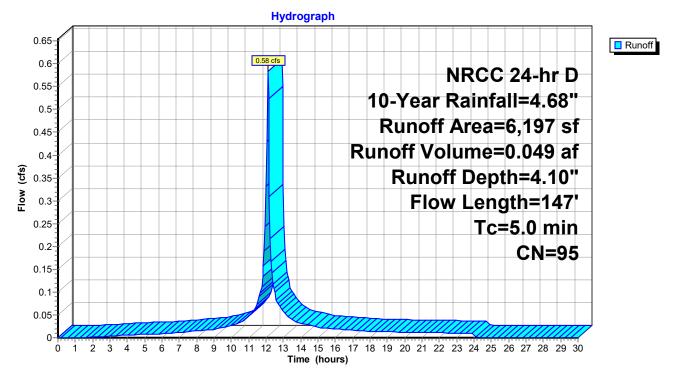
_	A	rea (sf)	CN I	Description	escription						
		1,625	39 :	>75% Grass cover, Good, HSG A							
_		5,815	98 I	Paved park	ting, HSG A	A					
	7,440 85 Weighted Average										
		1,625		21.84% Pe	rvious Area	ì					
	5,815 78.16% Impervious Area										
	Tc	Length	Slope	,		Description					
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	0.6	50	0.0250	1.29		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.8	163	0.0250	3.21		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
		040	T ()			T 50 :					

1.4 213 Total, Increased to minimum Tc = 5.0 min

Subcatchment P119: TO DCB#19

Summary for Subcatchment P12: TO DCB-A

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.58 cfs @ 12.11 hrs, Volume= 0.049 af, Depth= 4.10" Routed to Reach DCB-A : TO DMH-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

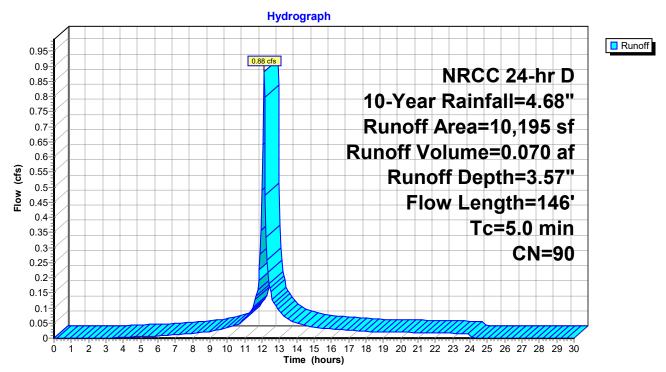
_	A	rea (sf)	CN	Description		
334 39 >75% Grass cover, Good, HSG A						
_		5,863	98	Paved park	ing, HSG A	
		6,197	95	Weighted A	verage	
		334		5.39% Perv	vious Area	
		5,863		94.61% Im	pervious Ar	ea
	Та	l anath	Clan	Valacity	Consoit	Description
	Tc (min)	Length (feet)	Slope (ft/ft	•	Capacity (cfs)	Description
_	1.5	8		//	(010)	Sheet Flow,
	1.0	Ũ	0.0100	0.00		Grass: Short n= 0.150 P2= 3.13"
	0.2	7	0.0150	0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.8	35	0.0080	0.76		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.9	97	0.0080) 1.82		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	21	1/7	Total	Inoropood	la minimum	$T_0 = 5.0 \text{ min}$

3.4 147 Total, Increased to minimum Tc = 5.0 min

Subcatchment P12: TO DCB-A

Summary for Subcatchment P120: TO DCB#20

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.88 cfs @ 12.11 hrs, Volume= 0.070 af, Depth= 3.57" Routed to Reach DCB20 : TO DMH#109

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

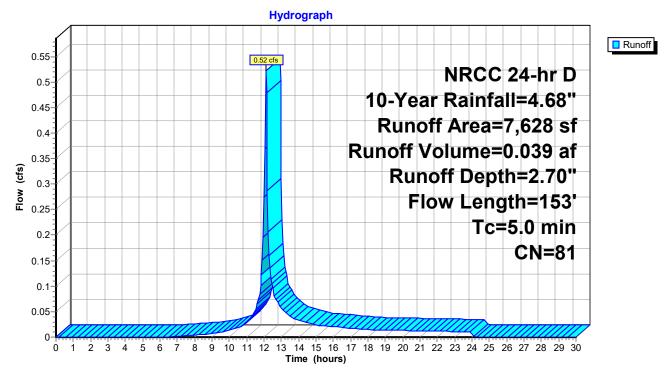
_	A	rea (sf)	CN	Description		
	1,453 39 >75% Grass cover, Good, HSG A					
		8,742	98	Paved park	ing, HSG A	
		10,195	90	Weighted A	verage	
		1,453		14.25% Pe	rvious Area	
		8,742		85.75% Im	pervious Ar	ea
	Tc	Length	Slope	,	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	0.9	5	0.0200	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.7	45	0.0150) 1.03		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.6	96	0.0150) 2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.0	110	Tatal			

2.2 146 Total, Increased to minimum Tc = 5.0 min

Subcatchment P120: TO DCB#20

Summary for Subcatchment P121: TO DCB#21

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.52 cfs @ 12.12 hrs, Volume= 0.039 af, Depth= 2.70" Routed to Reach DCB21 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

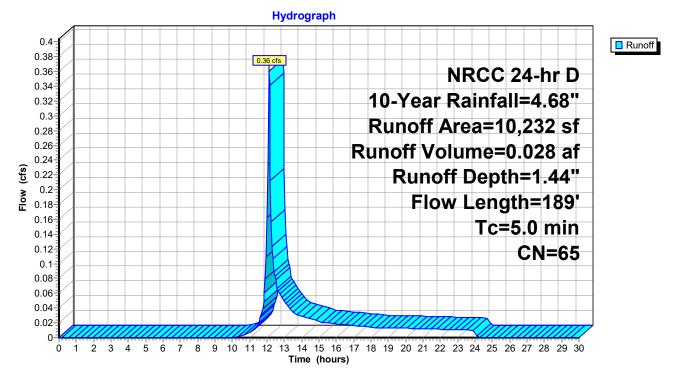
	Area (sf)	CN	Description		
2,211 39 >75% Grass cover, Good, HSG A					od, HSG A
	5,417	98	Paved park		
7,628 81 Weighted Average					
	2,211		28.99% Pe	rvious Area	
	5,417 71.01% Impervious Are			pervious Ar	ea
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
1.0	12	0.1000	0.21		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.7	38	0.0100	0.85		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
0.8	103	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.5	150	Takal	lin ana a a a d		$T_{a} = 5.0 \text{ min}$

2.5 153 Total, Increased to minimum Tc = 5.0 min

Subcatchment P121: TO DCB#21

Summary for Subcatchment P122: TO DCB#22

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.36 cfs @ 12.12 hrs, Volume= 0.028 af, Depth= 1.44" Routed to Reach DCB22 : TO DMH#111

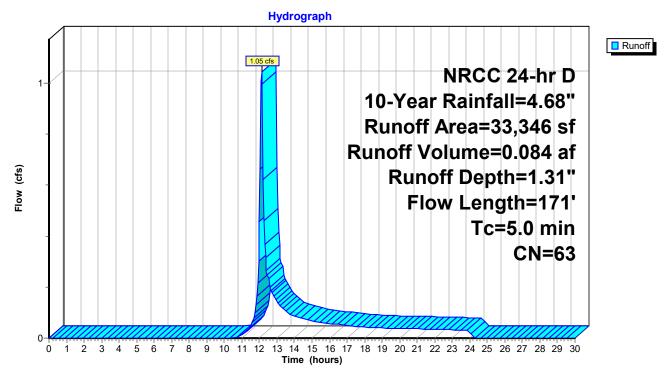
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description					
		5,643 39 >75% Grass cover, Good, HSG A							
_		4,589	98	Paved park	ing, HSG A				
		10,232	65	Weighted A	verage				
		5,643		55.15% Pe	rvious Area				
		4,589		44.85% Im	pervious Ar	ea			
	Тс	Length	Slop	,	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	3.0	50	0.100	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.13"			
	0.7	139	0.030	3.52		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	27	100	Total	Inoroood	to minimum	$T_{0} = 5.0 \text{ min}$			

3.7 189 Total, Increased to minimum Tc = 5.0 min

Subcatchment P122: TO DCB#22

Summary for Subcatchment P123: TO DCB#23


[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.05 cfs @ 12.12 hrs, Volume= 0.084 af, Depth= 1.31" Routed to Reach DCB23 : TO DMH#111

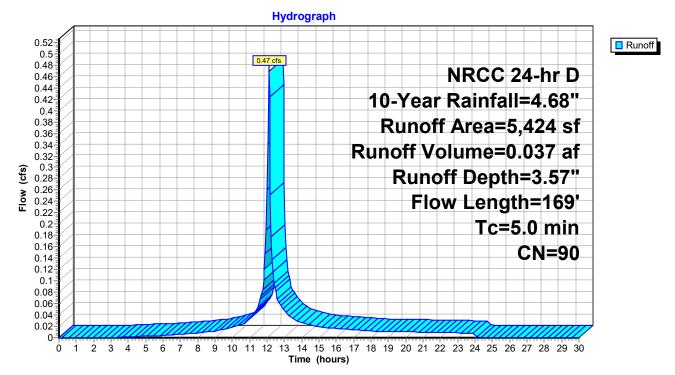
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

A	rea (sf)	CN	Description				
	20,008 39 >75% Grass cover, Good, HSG A						
	13,338	98	Paved park	ing, HSG A			
	33,346	63	Weighted A	verage			
	20,008		60.00% Pe	rvious Area			
	13,338		40.00% Imp	pervious Are	28		
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
2.5	40	0.1000	0.27		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.13"		
0.2	10	0.0200	0.86		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 3.13"		
0.7	121	0.0200	2.87		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
3.4	171	Total,	Increased t	o minimum	Tc = 5.0 min		

Subcatchment P123: TO DCB#23

Summary for Subcatchment P14: TO DCB-B

[49] Hint: Tc<2dt may require smaller dt

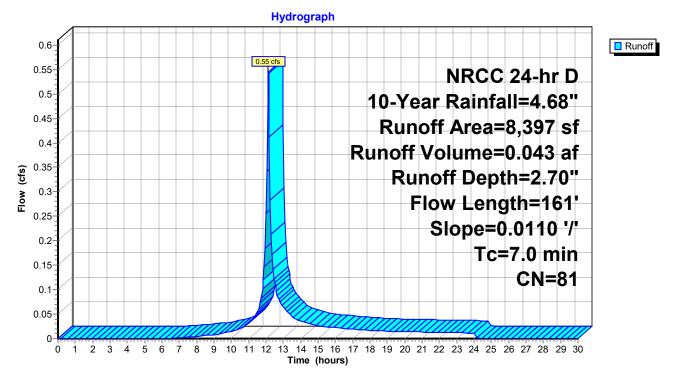

Runoff = 0.47 cfs @ 12.11 hrs, Volume= 0.037 af, Depth= 3.57" Routed to Reach DCB-B : TO DMH-E

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description		
692 39 >75% Grass cover, Good, HSG A						bod, HSG A
_		4,732	98	Paved park	ting, HSG A	
		5,424	90	Weighted A	verage	
		692		12.76% Pe	rvious Area	
		4,732		87.24% Im	pervious Ar	ea
	-		01		.	
	Tc		Slope			Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	1.8	10	0.0150	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	7	0.0150	0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.7	33	0.0080	0.76		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.1	119	0.0080) 1.82		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	20	160	Total	Inoropeod	to minimum	$T_{0} = 50$ min

3.8 169 Total, Increased to minimum Tc = 5.0 min

Subcatchment P14: TO DCB-B


Summary for Subcatchment P15: TO DCB-C

Runoff = 0.55 cfs @ 12.14 hrs, Volume= 0.043 af, Depth= 2.70" Routed to Reach DCB-C : TO TRUNKLINE

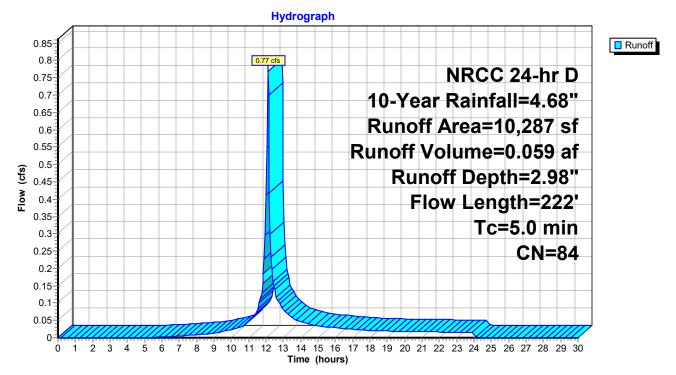
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

A	rea (sf)	CN	Description				
2,407 39 >75% Grass cover, Good, HSG A							
	5,990	98	Paved park	ing, HSG A			
8,397 81 Weighted Average							
	2,407		28.66% Pe	rvious Area			
	5,990		71.34% Imp	pervious Ar	ea		
Tc	Length	Slope			Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.8	38	0.0110	0.11		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.13"		
0.3	12	0.0110	0.70		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 3.13"		
0.9	111	0.0110	2.13		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
7.0	161	Total					

Subcatchment P15: TO DCB-C

Summary for Subcatchment P18: TO DCB-D

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.77 cfs @ 12.11 hrs, Volume= 0.059 af, Depth= 2.98" Routed to Reach DCB-D : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

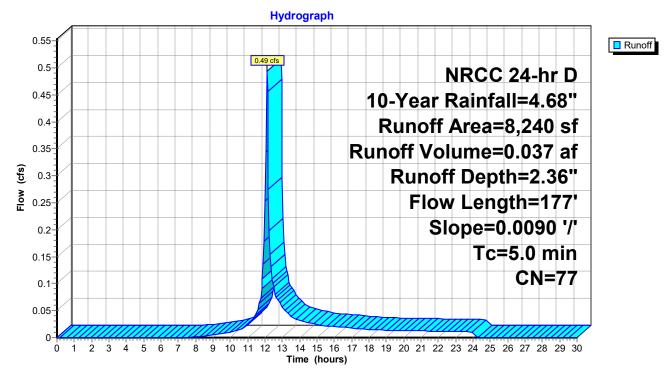
_	A	rea (sf)	CN	Description		
2,417 39 >75% Grass cover, Good, HSG A						
		7,870	98	Paved park	ing, HSG A	
		10,287	84	Weighted A	verage	
		2,417		23.50% Pe	rvious Area	
		7,870		76.50% Im	pervious Ar	ea
	Та	l anath	Clan	Valaaitu	Consoit	Description
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	1.6	9		//	(0.0)	Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	9	0.0150	0.75		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.7	32	0.007	5 0.73		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.6	172	0.007	5 1.76		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	11	222	Tatal	Increaded	ka maininaum	

4.1 222 Total, Increased to minimum Tc = 5.0 min

Subcatchment P18: TO DCB-D

Summary for Subcatchment P19: TO DCB-E

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.49 cfs @ 12.12 hrs, Volume= 0.037 af, Depth= 2.36" Routed to Reach DCB-E : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

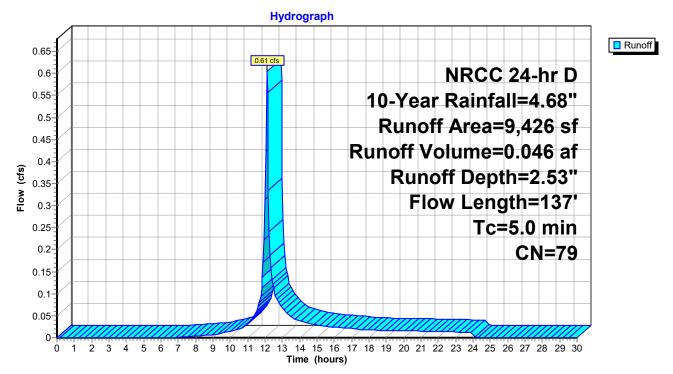
_	A	rea (sf)	CN	Description				
		2,944 39 >75% Grass cover, Good, HSG A						
_		5,296	98	Paved park	king, HSG A	Α		
		8,240	77	Weighted A	verage			
		2,944		35.73% Pe	rvious Area			
5,296 64.27% Impervious Area						ea		
	Tc	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	1.0	50	0.0090	0.86		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	1.1	127	0.0090) 1.93		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	0.4	477	Tatal	line and a second d				

2.1 177 Total, Increased to minimum Tc = 5.0 min

Subcatchment P19: TO DCB-E

Summary for Subcatchment P20: TO DP#3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.61 cfs @ 12.12 hrs, Volume= 0.046 af, Depth= 2.53" Routed to Reach DP3 : CATCHBASIN (FIRE STATION)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

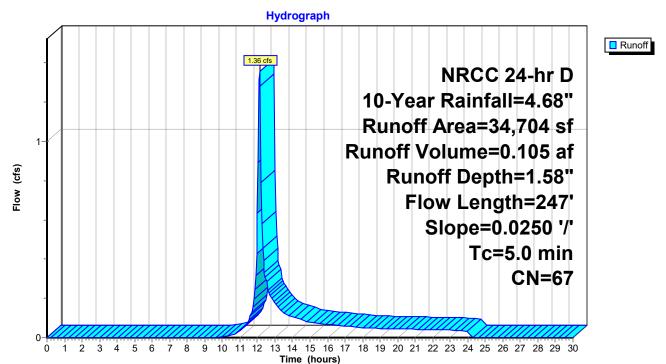
_	A	rea (sf)	CN	Description		
		3,009	39	>75% Gras	s cover, Go	ood, HSG A
_		6,417	98	Paved park	ing, HSG A	
		9,426	79	Weighted A	verage	
		3,009		31.92% Pe	rvious Area	
		6,417		68.08% Im	pervious Ar	ea
	Та	Longth	Clone	Volocity	Consoitu	Description
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
_	0.3	18	0.0300	//	(013)	Sheet Flow.
	0.0	10	0.0000	, 1.14		Smooth surfaces $n=0.011$ P2= 3.13"
	1.6	26	0.1300	0.27		Sheet Flow.
				•••=•		Grass: Short n= 0.150 P2= 3.13"
	0.1	6	0.0150	0.69		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.6	87	0.0150) 2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	26	107	Total	Inoropod	la minimum	$T_{0} = 5.0 \text{ min}$

2.6 137 Total, Increased to minimum Tc = 5.0 min

Subcatchment P20: TO DP#3

Summary for Subcatchment P24: TO DCB#24

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.36 cfs @ 12.12 hrs, Volume= 0.105 af, Depth= 1.58" Routed to Reach DCB24 : TO DMH#113

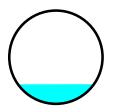
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 10-Year Rainfall=4.68"

_	A	rea (sf)	CN	Description		
		18,387	39	>75% Gras	s cover, Go	bod, HSG A
_		16,317	98	Paved park	ting, HSG A	
		34,704	67	Weighted A	verage	
		18,387		52.98% Pe	rvious Area	
		16,317		47.02% Im	pervious Ar	ea
	Tc	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
	0.6	50	0.0250	1.29		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.0	197	0.0250	3.21		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	10	047	Tatal	la sus a s s d i		

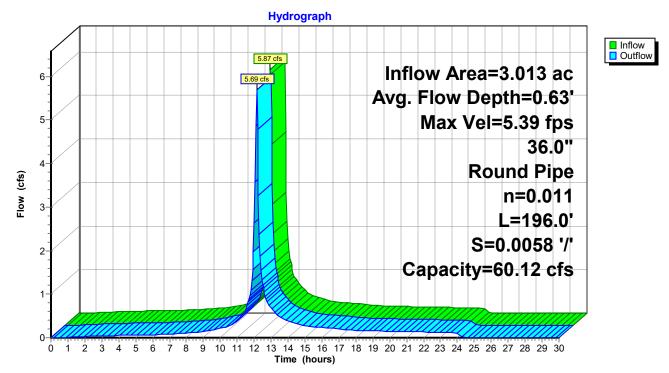
1.6 247 Total, Increased to minimum Tc = 5.0 min

Subcatchment P24: TO DCB#24

Summary for Reach CMH3: TO DMH-E


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH-F outlet invert by 0.63' @ 12.15 hrs

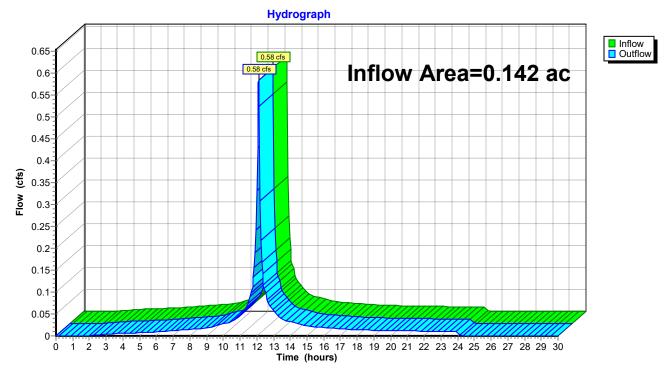
Inflow Area = 3.013 ac, 76.57% Impervious, Inflow Depth = 2.02" for 10-Year event Inflow = 5.87 cfs @ 12.13 hrs, Volume= 0.506 af Outflow = 5.69 cfs @ 12.15 hrs, Volume= 0.506 af, Atten= 3%, Lag= 0.8 min Routed to Reach DMH-E : TO DMH-D


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.39 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.82 fps, Avg. Travel Time= 1.8 min

Peak Storage= 213 cf @ 12.14 hrs Average Depth at Peak Storage= 0.63', Surface Width= 2.45' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.12 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 196.0' Slope= 0.0058 '/' Inlet Invert= 457.71', Outlet Invert= 456.57'

Reach CMH3: TO DMH-E

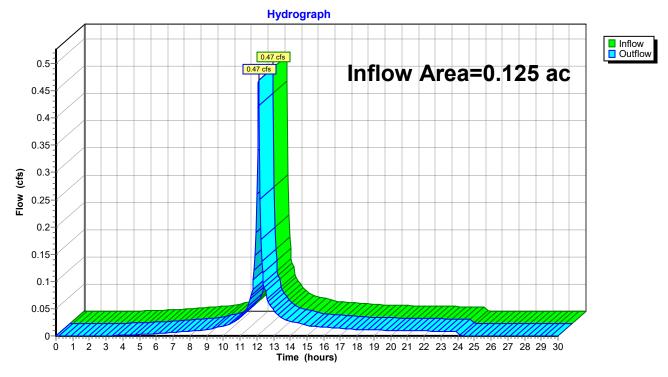


Summary for Reach DCB-A: TO DMH-D

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.142 ac, 94.61% Impervious, Inflow	Depth = 4.10" for 10-Year event							
Inflow =	0.58 cfs @ 12.11 hrs, Volume=	0.049 af							
Outflow =	0.58 cfs @ 12.11 hrs, Volume=	0.049 af, Atten= 0%, Lag= 0.0 min							
Routed to Reach DMH-D : TO DMH-C									

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

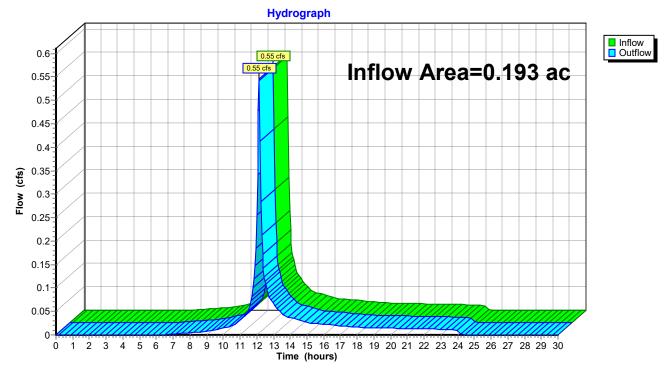

Reach DCB-A: TO DMH-D

Summary for Reach DCB-B: TO DMH-E

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.125 ac, 87.24% Impervious, Infl	low Depth = 3.57" for 10-Year event		
Inflow =	0.47 cfs @ 12.11 hrs, Volume=	0.037 af		
Outflow =	0.47 cfs @ 12.11 hrs, Volume=	0.037 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-E : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DCB-B: TO DMH-E

Summary for Reach DCB-C: TO TRUNKLINE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.193 ac, 71.34% Impervious, Inflov	v Depth = 2.70" for 10-Year event		
Inflow =	0.55 cfs @ 12.14 hrs, Volume=	0.043 af		
Outflow =	0.55 cfs @ 12.14 hrs, Volume=	0.043 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-E : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

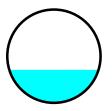
Reach DCB-C: TO TRUNKLINE

Summary for Reach DCB-D: TO DMH-A

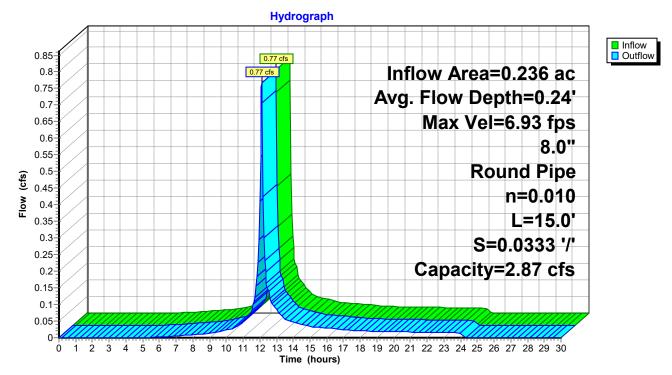
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.236 ac, 76.50% Impervious, Inflow Depth =
 2.98" for 10-Year event

 Inflow =
 0.77 cfs @
 12.11 hrs, Volume=
 0.059 af


 Outflow =
 0.77 cfs @
 12.12 hrs, Volume=
 0.059 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH-A* : TO DMH-B
 0.059 af, Atten= 0%, Lag= 0.1 min
 0.059 af, Atten= 0%, Lag= 0.1 min

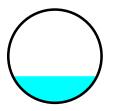

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.93 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.47 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.24', Surface Width= 0.64' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.87 cfs

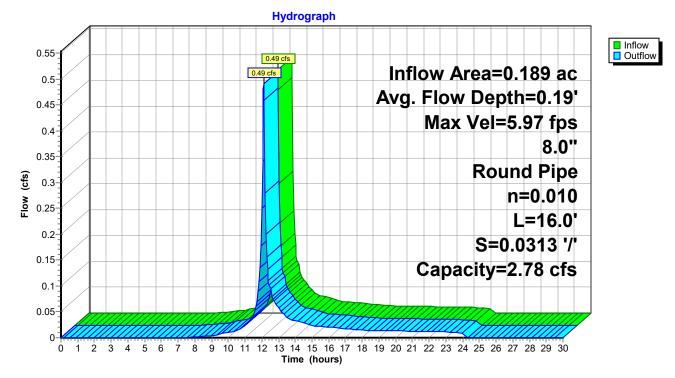
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 15.0' Slope= 0.0333 '/' Inlet Invert= 468.00', Outlet Invert= 467.50'

Reach DCB-D: TO DMH-A

Summary for Reach DCB-E: TO DMH-A


[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =0.189 ac, 64.27% Impervious, Inflow Depth =2.36" for 10-Year eventInflow =0.49 cfs @12.12 hrs, Volume=0.037 afOutflow =0.49 cfs @12.12 hrs, Volume=0.037 af, Atten= 1%, Lag= 0.1 minRouted to Reach DMH-A* : TO DMH-B


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.97 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.21 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.19', Surface Width= 0.60' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.78 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 16.0' Slope= 0.0313 '/' Inlet Invert= 468.00', Outlet Invert= 467.50'

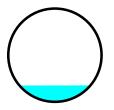
Reach DCB-E: TO DMH-A

Summary for Reach DCB10: TO DMH#106

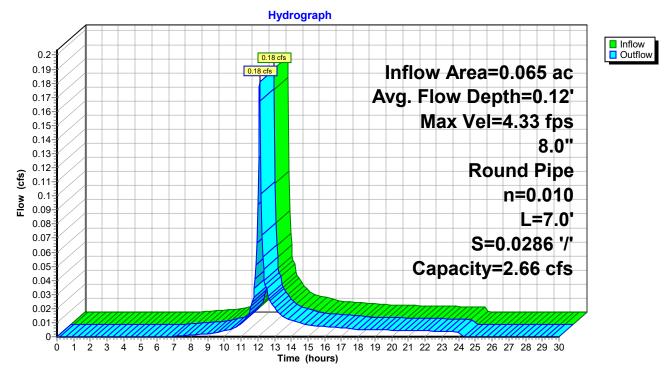
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.065 ac, 67.92% Impervious, Inflow Depth =
 2.53" for 10-Year event

 Inflow =
 0.18 cfs @
 12.12 hrs, Volume=
 0.014 af


 Outflow =
 0.18 cfs @
 12.12 hrs, Volume=
 0.014 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH106 : TO DMH#105
 TO DMH#105
 10.014 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.33 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.57 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.12 hrs Average Depth at Peak Storage= 0.12', Surface Width= 0.51' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.66 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 7.0' Slope= 0.0286 '/' Inlet Invert= 470.30', Outlet Invert= 470.10'

Reach DCB10: TO DMH#106

Summary for Reach DCB11: TO DMH#103

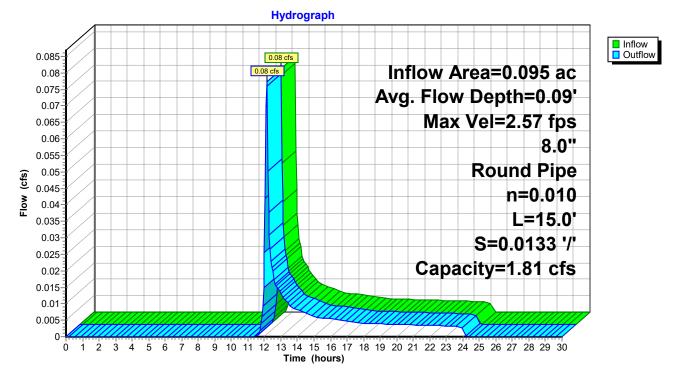
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.095 ac, 28.74% Impervious, Inflow Depth =
 0.88" for 10-Year event

 Inflow =
 0.08 cfs @
 12.13 hrs, Volume=
 0.007 af

 Outflow =
 0.08 cfs @
 12.13 hrs, Volume=
 0.007 af, Atten= 0%, Lag= 0.2 min

 Routed to Reach DMH106 : TO DMH#105
 0.007 af, Atten= 0%, Lag= 0.2 min
 0.007 af, Atten= 0%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.57 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.16 fps, Avg. Travel Time= 0.2 min

Peak Storage= 0 cf @ 12.13 hrs Average Depth at Peak Storage= 0.09', Surface Width= 0.46' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.81 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 15.0' Slope= 0.0133 '/' Inlet Invert= 470.30', Outlet Invert= 470.10'

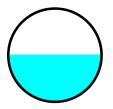
Reach DCB11: TO DMH#103

Summary for Reach DCB12: TO DMH#12

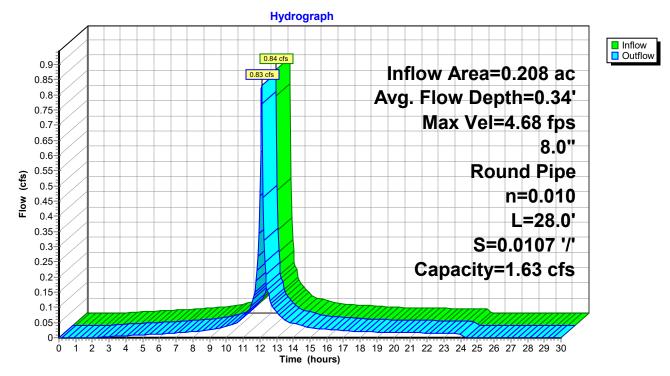
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.208 ac, 93.65% Impervious, Inflow Depth =
 3.99" for 10-Year event

 Inflow =
 0.84 cfs @
 12.11 hrs, Volume=
 0.069 af


 Outflow =
 0.83 cfs @
 12.12 hrs, Volume=
 0.069 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH108 : TO DMH#107
 TO DMH#107
 0.069 af, Atten= 1%, Lag= 0.2 min

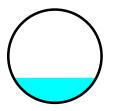

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.68 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.3 min

Peak Storage= 5 cf @ 12.11 hrs Average Depth at Peak Storage= 0.34', Surface Width= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.63 cfs

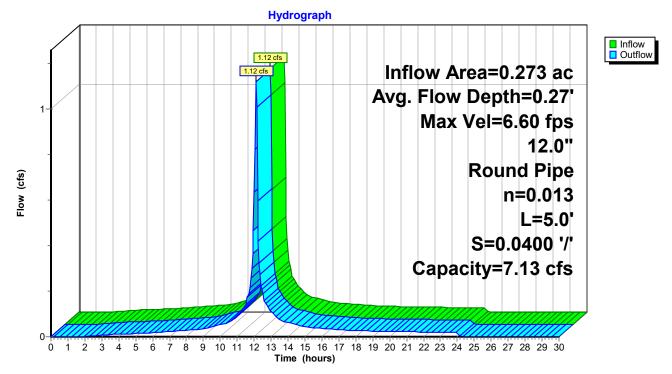
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 28.0' Slope= 0.0107 '/' Inlet Invert= 467.80', Outlet Invert= 467.50'

Reach DCB12: TO DMH#12

Summary for Reach DCB13: TO DMH#102


[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =0.273 ac, 94.49% Impervious, Inflow Depth =4.10" for 10-Year eventInflow =1.12 cfs @12.11 hrs, Volume=0.093 afOutflow =1.12 cfs @12.11 hrs, Volume=0.093 af, Atten= 0%, Lag= 0.0 minRouted to Reach DMH102 : TO UGS#1A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.60 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.29 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.27', Surface Width= 0.89' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 467.90', Outlet Invert= 467.70'

Reach DCB13: TO DMH#102

Summary for Reach DCB14: TO DMH#109

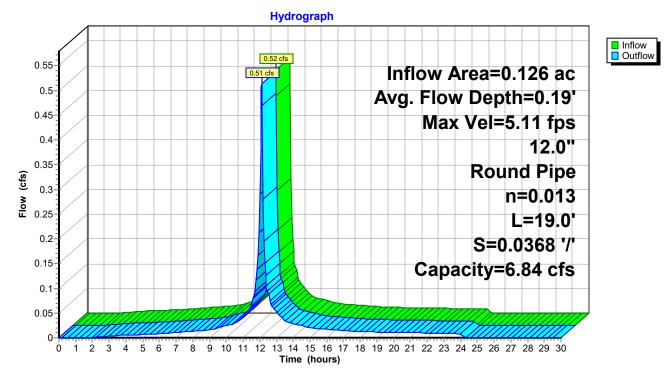
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.126 ac, 94.42% Impervious, Inflow Depth =
 4.10" for 10-Year event

 Inflow =
 0.52 cfs @
 12.11 hrs, Volume=
 0.043 af

 Outflow =
 0.51 cfs @
 12.11 hrs, Volume=
 0.043 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 10.043 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.11 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.77 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.19', Surface Width= 0.78' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.84 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 19.0' Slope= 0.0368 '/' Inlet Invert= 467.10', Outlet Invert= 466.40'

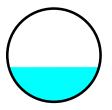
Reach DCB14: TO DMH#109

Summary for Reach DCB15: TO DMH#102

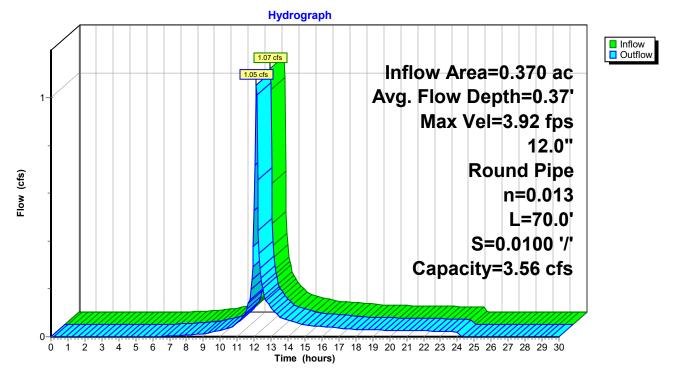
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.370 ac, 70.06% Impervious, Inflow Depth =
 2.62" for 10-Year event

 Inflow =
 1.07 cfs @
 12.12 hrs, Volume=
 0.081 af


 Outflow =
 1.05 cfs @
 12.13 hrs, Volume=
 0.081 af, Atten= 2%, Lag= 0.7 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.081 af, Atten= 2%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.92 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 0.8 min

Peak Storage= 19 cf @ 12.12 hrs Average Depth at Peak Storage= 0.37', Surface Width= 0.97' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 70.0' Slope= 0.0100 '/' Inlet Invert= 467.00', Outlet Invert= 466.30'

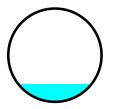
Reach DCB15: TO DMH#102

Summary for Reach DCB19: TO DMH#111

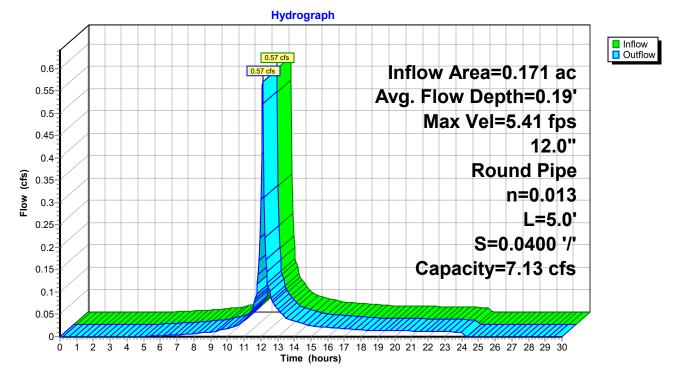
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.171 ac, 78.16% Impervious, Inflow Depth =
 3.07" for 10-Year event

 Inflow =
 0.57 cfs @
 12.11 hrs, Volume=
 0.044 af


 Outflow =
 0.57 cfs @
 12.11 hrs, Volume=
 0.044 af

 Routed to Reach DMH111 : TO DMH#112
 0.044 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.41 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.89 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.19', Surface Width= 0.79' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 463.80', Outlet Invert= 463.60'

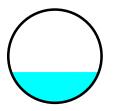
Reach DCB19: TO DMH#111

Summary for Reach DCB20: TO DMH#109

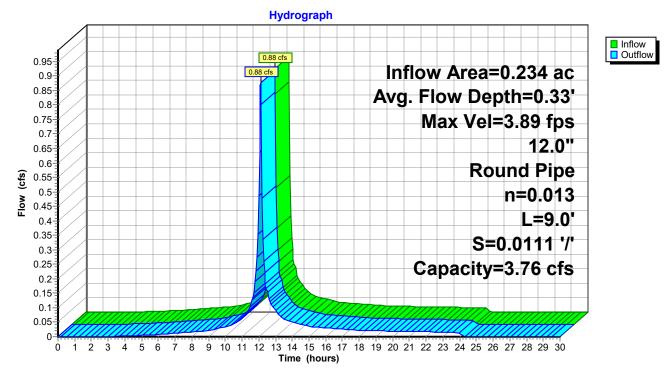
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.234 ac, 85.75% Impervious, Inflow Depth =
 3.57" for 10-Year event

 Inflow =
 0.88 cfs @
 12.11 hrs, Volume=
 0.070 af


 Outflow =
 0.88 cfs @
 12.11 hrs, Volume=
 0.070 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 0.070 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.89 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.35 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.33', Surface Width= 0.94' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.76 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 9.0' Slope= 0.0111 '/' Inlet Invert= 466.50', Outlet Invert= 466.40'

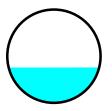
Reach DCB20: TO DMH#109

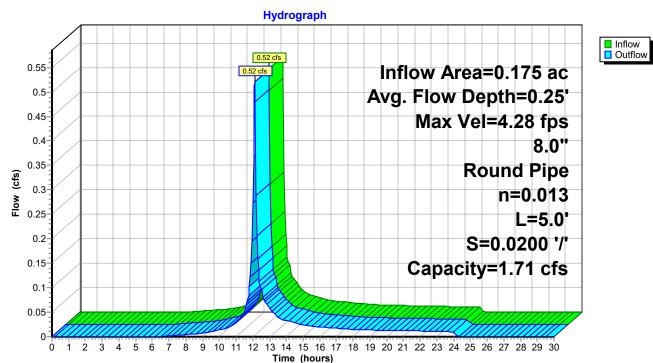
Summary for Reach DCB21: TO DMH#109A

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.175 ac, 71.01% Impervious, Inflow Depth =
 2.70" for 10-Year event

 Inflow =
 0.52 cfs @
 12.12 hrs, Volume=
 0.039 af


 Outflow =
 0.52 cfs @
 12.12 hrs, Volume=
 0.039 af, Atten= 0%, Lag= 0.0 min


 Routed to Reach DMH109A : TO DMH109
 TO DMH109
 10.039 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.28 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.55 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.25', Surface Width= 0.65' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 467.10', Outlet Invert= 467.00'

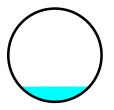
Reach DCB21: TO DMH#109A

Summary for Reach DCB22: TO DMH#111

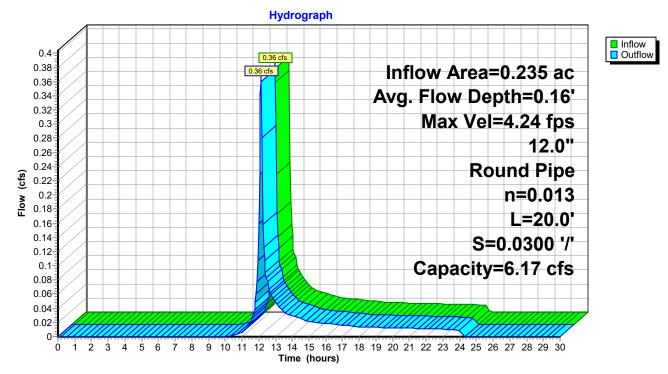
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.235 ac, 44.85% Impervious, Inflow Depth =
 1.44" for 10-Year event

 Inflow =
 0.36 cfs @
 12.12 hrs, Volume=
 0.028 af


 Outflow =
 0.36 cfs @
 12.13 hrs, Volume=
 0.028 af, Atten= 0%, Lag= 0.2 min

 Routed to Reach DMH111 : TO DMH#112
 0.028 af, Atten= 0%, Lag= 0.2 min
 0.028 af, Atten= 0%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.24 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.74 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.16', Surface Width= 0.74' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.17 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0300 '/' Inlet Invert= 464.20', Outlet Invert= 463.60'

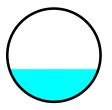
Reach DCB22: TO DMH#111

Summary for Reach DCB23: TO DMH#111

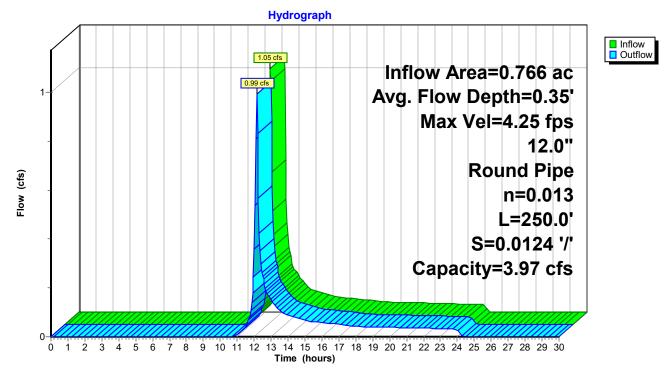
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.766 ac, 40.00% Impervious, Inflow Depth =
 1.31" for 10-Year event

 Inflow =
 1.05 cfs @
 12.12 hrs, Volume=
 0.084 af


 Outflow =
 0.99 cfs @
 12.15 hrs, Volume=
 0.084 af, Atten= 5%, Lag= 1.7 min

 Routed to Reach DMH111 : TO DMH#112
 12.12 hrs, Volume=
 0.084 af, Atten= 5%, Lag= 1.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.25 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.74 fps, Avg. Travel Time= 2.4 min

Peak Storage= 61 cf @ 12.14 hrs Average Depth at Peak Storage= 0.35', Surface Width= 0.95' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.97 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 250.0' Slope= 0.0124 '/' Inlet Invert= 466.70', Outlet Invert= 463.60'

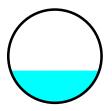
Reach DCB23: TO DMH#111

Summary for Reach DCB24: TO DMH#113

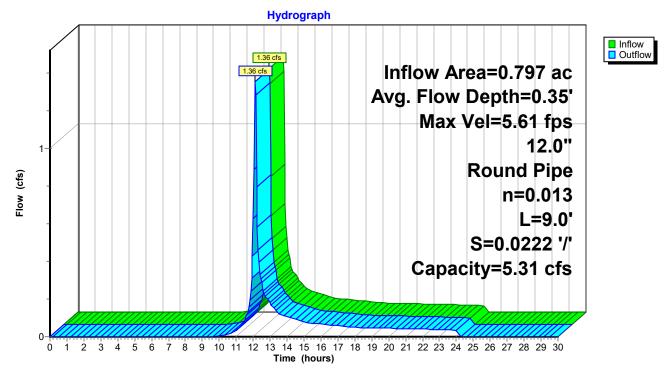
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.797 ac, 47.02% Impervious, Inflow Depth =
 1.58" for 10-Year event

 Inflow =
 1.36 cfs @
 12.12 hrs, Volume=
 0.105 af


 Outflow =
 1.36 cfs @
 12.12 hrs, Volume=
 0.105 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH113 : TO DMH#114
 1.4
 1.4


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.61 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.28 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.35' , Surface Width= 0.95' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.31 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 9.0' Slope= 0.0222 '/' Inlet Invert= 460.50', Outlet Invert= 460.30'

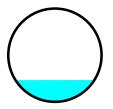
Reach DCB24: TO DMH#113

Summary for Reach DCB25: TO DMH#109A

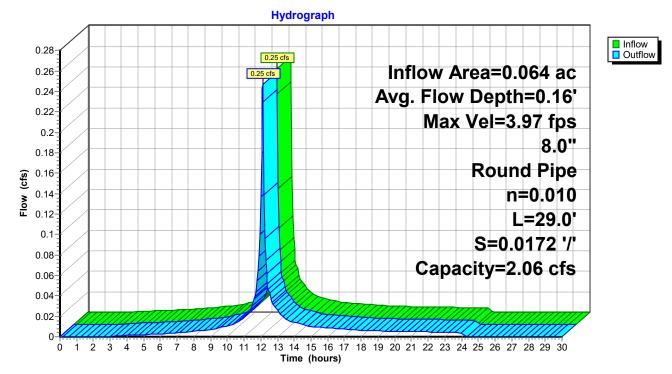
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.064 ac, 89.32% Impervious, Inflow Depth =
 3.78" for 10-Year event

 Inflow =
 0.25 cfs @
 12.11 hrs, Volume=
 0.020 af


 Outflow =
 0.25 cfs @
 12.12 hrs, Volume=
 0.020 af, Atten= 2%, Lag= 0.3 min

 Routed to Reach DMH109A : TO DMH109
 TO DMH109
 10.020 af, Atten= 2%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.97 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.38 fps, Avg. Travel Time= 0.4 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.16', Surface Width= 0.56' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.06 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 29.0' Slope= 0.0172 '/' Inlet Invert= 467.50', Outlet Invert= 467.00'

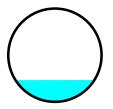
Reach DCB25: TO DMH#109A

Summary for Reach DCB5: TO DMH#108

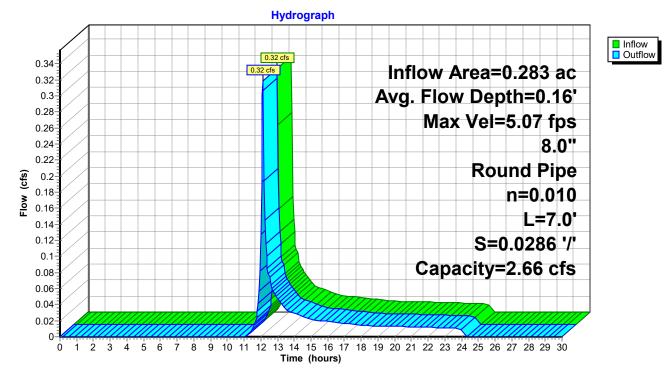
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.283 ac, 35.47% Impervious, Inflow Depth =
 1.12" for 10-Year event

 Inflow =
 0.32 cfs @
 12.13 hrs, Volume=
 0.026 af


 Outflow =
 0.32 cfs @
 12.13 hrs, Volume=
 0.026 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH108 : TO DMH#107
 TO DMH#107
 0.026 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.07 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.19 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.13 hrs Average Depth at Peak Storage= 0.16', Surface Width= 0.56' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.66 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 7.0' Slope= 0.0286 '/' Inlet Invert= 468.20', Outlet Invert= 468.00'

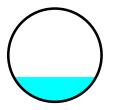
Reach DCB5: TO DMH#108

Summary for Reach DCB6: TO DMH#107

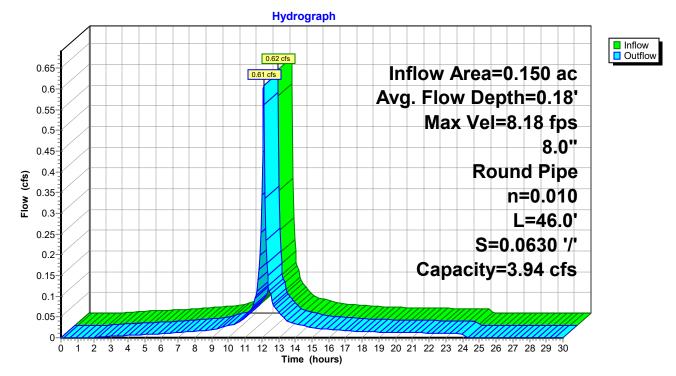
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.150 ac, 94.27% Impervious, Inflow Depth =
 4.10" for 10-Year event

 Inflow =
 0.62 cfs @
 12.11 hrs, Volume=
 0.051 af


 Outflow =
 0.61 cfs @
 12.11 hrs, Volume=
 0.051 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH107 : TO DMH#100
 0.051 af, Atten= 1%, Lag= 0.2 min
 0.051 af, Atten= 1%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.18 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.85 fps, Avg. Travel Time= 0.3 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.18', Surface Width= 0.59' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.94 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 46.0' Slope= 0.0630 '/' Inlet Invert= 469.80', Outlet Invert= 466.90'

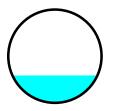
Reach DCB6: TO DMH#107

Summary for Reach DCB7: TO DMH#102

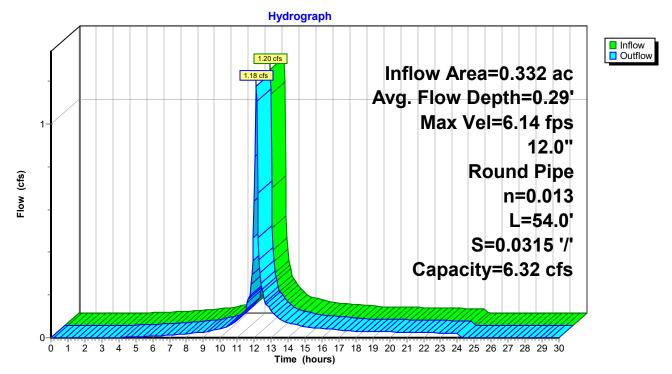
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.332 ac, 83.32% Impervious, Inflow Depth =
 3.37" for 10-Year event

 Inflow =
 1.20 cfs @
 12.11 hrs, Volume=
 0.093 af


 Outflow =
 1.18 cfs @
 12.12 hrs, Volume=
 0.093 af, Atten= 2%, Lag= 0.3 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.093 af, Atten= 2%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.14 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.14 fps, Avg. Travel Time= 0.4 min

Peak Storage= 10 cf @ 12.12 hrs Average Depth at Peak Storage= 0.29', Surface Width= 0.91' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 54.0' Slope= 0.0315 '/' Inlet Invert= 468.40', Outlet Invert= 466.70'

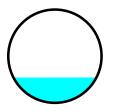
Reach DCB7: TO DMH#102

Summary for Reach DCB8: TO DMH#103

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.175 ac, 76.33% Impervious, Inflow Depth =
 2.98" for 10-Year event

 Inflow =
 0.57 cfs @
 12.11 hrs, Volume=
 0.043 af


 Outflow =
 0.57 cfs @
 12.11 hrs, Volume=
 0.043 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH104 : TO DMH#104
 10
 10


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.37 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.60 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 12.11 hrs Average Depth at Peak Storage= 0.18', Surface Width= 0.59' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.51 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 4.0' Slope= 0.0500 '/' Inlet Invert= 470.00', Outlet Invert= 469.80'

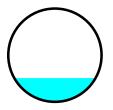
Reach DCB8: TO DMH#103

Summary for Reach DCB9: TO DMH#103

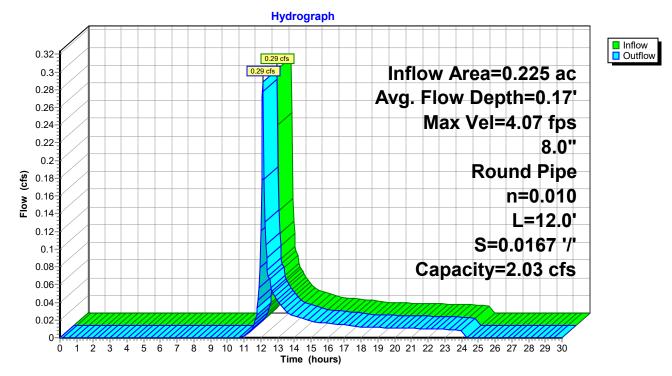
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.225 ac, 39.59% Impervious, Inflow Depth =
 1.25" for 10-Year event

 Inflow =
 0.29 cfs @
 12.13 hrs, Volume=
 0.023 af


 Outflow =
 0.29 cfs @
 12.13 hrs, Volume=
 0.023 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH104 : TO DMH#104
 10
 10

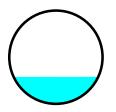

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.07 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.73 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.13 hrs Average Depth at Peak Storage= 0.17', Surface Width= 0.58' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.03 cfs

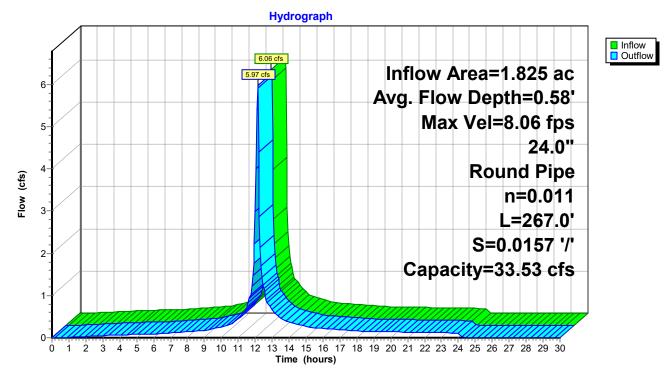
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 12.0' Slope= 0.0167 '/' Inlet Invert= 470.00', Outlet Invert= 469.80'

Reach DCB9: TO DMH#103

Summary for Reach DMH-A*: TO DMH-B


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH100 outlet invert by 0.47' @ 12.15 hrs

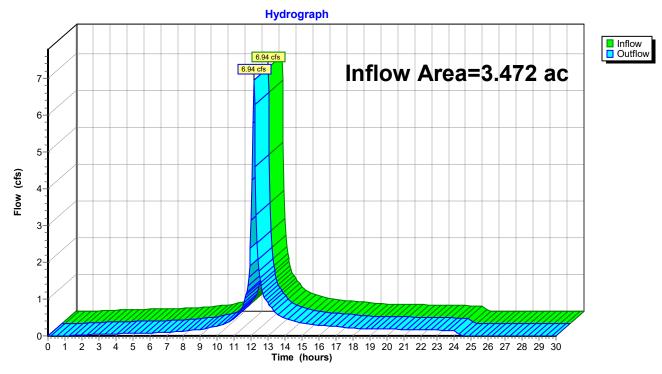
Inflow Area = 1.825 ac, 82.07% Impervious, Inflow Depth = 3.44" for 10-Year event Inflow = 6.06 cfs @ 12.12 hrs, Volume= 0.524 af Outflow = 5.97 cfs @ 12.14 hrs, Volume= 0.524 af, Atten= 1%, Lag= 0.9 min Routed to Reach DP2 : MUNICIPAL SYSTEM


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.06 fps, Min. Travel Time= 0.6 min Avg. Velocity = 2.78 fps, Avg. Travel Time= 1.6 min

Peak Storage= 201 cf @ 12.13 hrs Average Depth at Peak Storage= 0.58', Surface Width= 1.81' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 33.53 cfs

24.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 267.0' Slope= 0.0157 '/' Inlet Invert= 463.70', Outlet Invert= 459.50'

Reach DMH-A*: TO DMH-B



Summary for Reach DMH-C: TO DP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.472 ac, 77.40% Impervious, Inflow E	Depth = 2.20" for 10-Year event
Inflow =	6.94 cfs @ 12.16 hrs, Volume=	0.635 af
Outflow =	6.94 cfs @ 12.16 hrs, Volume=	0.635 af, Atten= 0%, Lag= 0.0 min
Routed to Reach DP2 : MUNICIPAL SYSTEM		

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

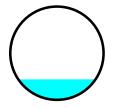
Reach DMH-C: TO DP#1

Summary for Reach DMH-D: TO DMH-C

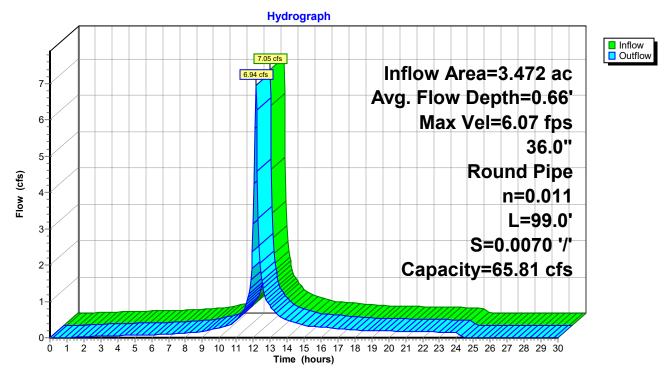
[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach DMH-E outlet invert by 0.66' @ 12.15 hrs
[79] Warning: Submerged Pond DMH-B Primary device # 1 OUTLET by 0.66'

 Inflow Area =
 3.472 ac, 77.40% Impervious, Inflow Depth =
 2.20" for 10-Year event

 Inflow =
 7.05 cfs @
 12.15 hrs, Volume=
 0.635 af


 Outflow =
 6.94 cfs @
 12.16 hrs, Volume=
 0.635 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach DMH-C : TO DP#1
 To DP#1
 0.635 af, Atten= 1%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.07 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.07 fps, Avg. Travel Time= 0.8 min

Peak Storage= 115 cf @ 12.15 hrs Average Depth at Peak Storage= 0.66', Surface Width= 2.49' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 65.81 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 99.0' Slope= 0.0070 '/' Inlet Invert= 455.90', Outlet Invert= 455.21'

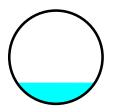
Reach DMH-D: TO DMH-C

Summary for Reach DMH-E: TO DMH-D

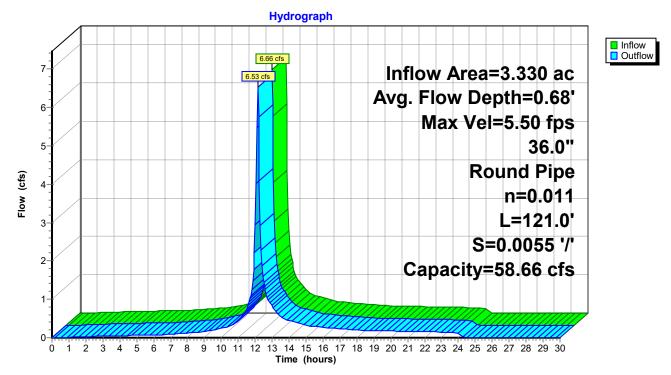
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach CMH3 OUTLET depth by 0.07' @ 12.20 hrs

 Inflow Area =
 3.330 ac, 76.67% Impervious, Inflow Depth =
 2.11" for 10-Year event

 Inflow =
 6.66 cfs @
 12.15 hrs, Volume=
 0.587 af


 Outflow =
 6.53 cfs @
 12.15 hrs, Volume=
 0.587 af, Atten= 2%, Lag= 0.5 min

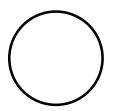
 Routed to Reach DMH-D : TO DMH-C
 TO DMH-C
 0.587 af, Atten= 2%, Lag= 0.5 min

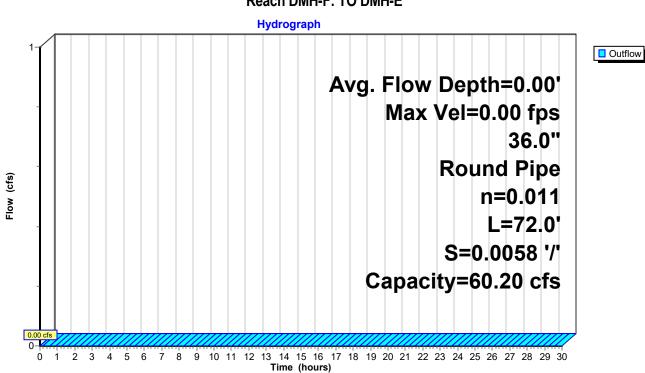

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.50 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.86 fps, Avg. Travel Time= 1.1 min

Peak Storage= 146 cf @ 12.15 hrs Average Depth at Peak Storage= 0.68', Surface Width= 2.51' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 58.66 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 121.0' Slope= 0.0055 '/' Inlet Invert= 456.57', Outlet Invert= 455.90'

Reach DMH-E: TO DMH-D




Summary for Reach DMH-F: TO DMH-E

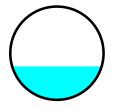
[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.20 cfs

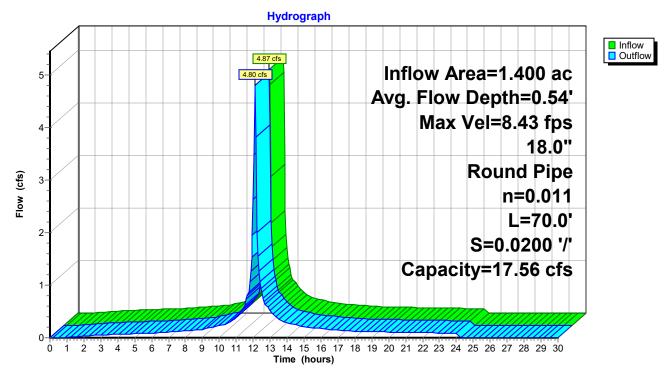
36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0058 '/' Inlet Invert= 458.13', Outlet Invert= 457.71'

Reach DMH-F: TO DMH-E

Summary for Reach DMH100: TO DMH-A


[52] Hint: Inlet/Outlet conditions not evaluated[61] Hint: Exceeded Reach DMH101 outlet invert by 0.43' @ 12.10 hrs[62] Hint: Exceeded Reach DMH107 OUTLET depth by 0.06' @ 12.10 hrsInflow Area =1.400 ac, 85.41% Impervious, Inflow Depth = 3.67" for 10-Year eventInflow =4.87 cfs @ 12.12 hrs, Volume=0.428 af0.428 afOutflow =4.80 cfs @ 12.12 hrs, Volume=0.428 af, Atten= 1%, Lag= 0.4 min

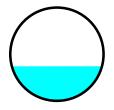
Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.43 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.00 fps, Avg. Travel Time= 0.4 min


Peak Storage= 40 cf @ 12.12 hrs Average Depth at Peak Storage= 0.54', Surface Width= 1.44' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 17.56 cfs

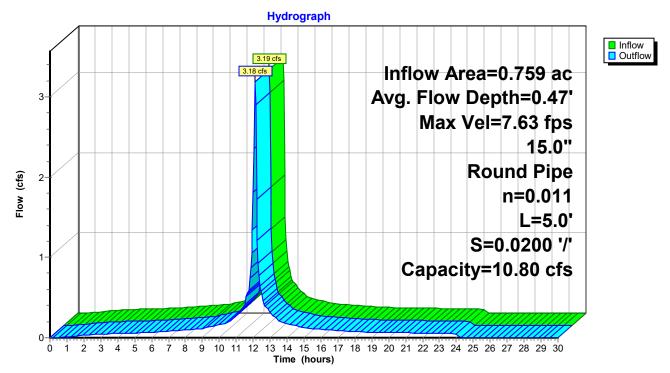
18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 70.0' Slope= 0.0200 '/' Inlet Invert= 465.20', Outlet Invert= 463.80'

Routed to Reach DMH-A* : TO DMH-B

Reach DMH100: TO DMH-A


Summary for Reach DMH101: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach RF1 outlet invert by 0.16' @ 12.10 hrs
[61] Hint: Exceeded Reach RF2 outlet invert by 0.16' @ 12.10 hrs
Inflow Area = 0.759 ac,100.00% Impervious, Inflow Depth = 4.44" for 10-Year event
Inflow = 3.19 cfs @ 12.11 hrs, Volume= 0.281 af
Outflow = 3.18 cfs @ 12.11 hrs, Volume= 0.281 af, Atten= 0%, Lag= 0.0 min
Routed to Reach DMH100 : TO DMH-A
Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.63 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.74 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.47', Surface Width= 1.21' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 10.80 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 465.40', Outlet Invert= 465.30'

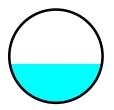
Reach DMH101: TO DMH#100

Summary for Reach DMH102: TO UGS#1A

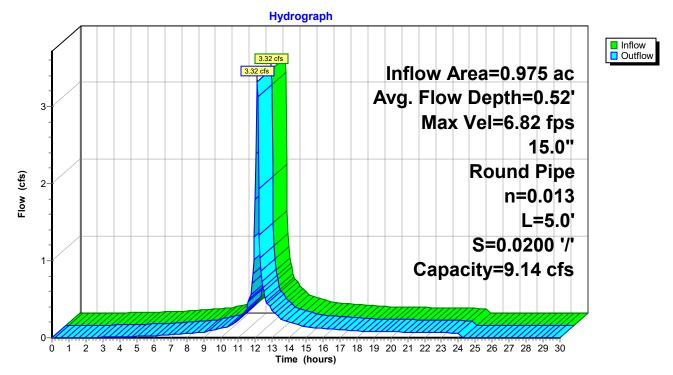
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DCB15 outlet invert by 0.32' @ 12.10 hrs

 Inflow Area =
 0.975 ac, 81.42% Impervious, Inflow Depth =
 3.29" for 10-Year event

 Inflow =
 3.32 cfs @
 12.12 hrs, Volume=
 0.267 af


 Outflow =
 3.32 cfs @
 12.12 hrs, Volume=
 0.267 af

 Routed to Reach UGS1A : TO UGS#1
 0.267 af
 0.267 af


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.82 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.31 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.52', Surface Width= 1.23' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 9.14 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 466.10', Outlet Invert= 466.00'

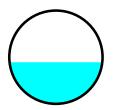
Reach DMH102: TO UGS#1A

Summary for Reach DMH103: TO CMH#2

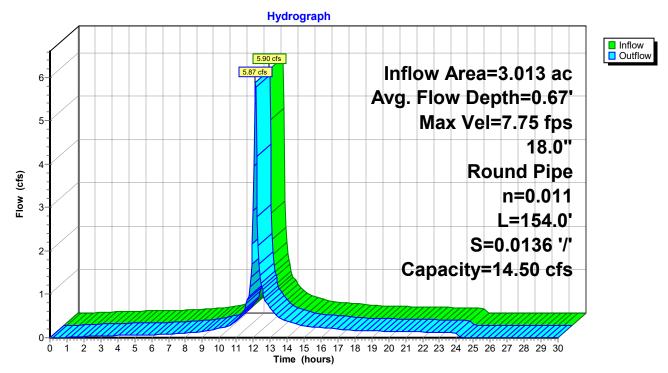
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach DMH104 OUTLET depth by 0.25' @ 12.15 hrs

 Inflow Area =
 3.013 ac, 76.57% Impervious, Inflow Depth =
 2.02" for 10-Year event

 Inflow =
 5.90 cfs @
 12.12 hrs, Volume=
 0.506 af


 Outflow =
 5.87 cfs @
 12.13 hrs, Volume=
 0.506 af, Atten= 0%, Lag= 0.6 min

 Routed to Reach CMH3 : TO DMH-E
 0
 0.506 af, Atten= 0%, Lag= 0.6 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.75 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.69 fps, Avg. Travel Time= 1.0 min

Peak Storage= 118 cf @ 12.13 hrs Average Depth at Peak Storage= 0.67', Surface Width= 1.49' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.50 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 154.0' Slope= 0.0136 '/' Inlet Invert= 464.10', Outlet Invert= 462.00'

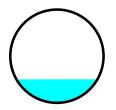
Reach DMH103: TO CMH#2

Summary for Reach DMH104: TO DMH#104

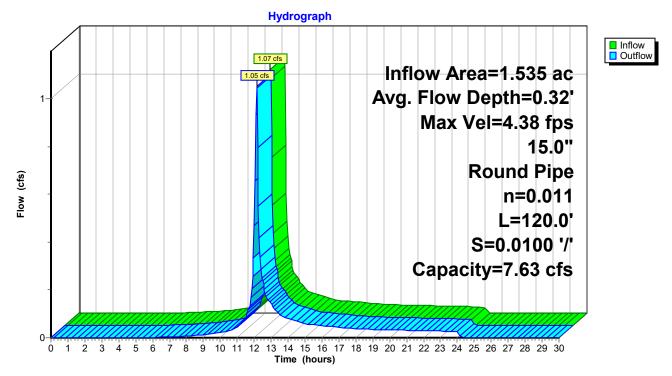
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach DMH105 OUTLET depth by 0.06' @ 12.15 hrs

 Inflow Area =
 1.535 ac, 70.86% Impervious, Inflow Depth =
 0.68" for 10-Year event

 Inflow =
 1.07 cfs @
 12.13 hrs, Volume=
 0.087 af


 Outflow =
 1.05 cfs @
 12.14 hrs, Volume=
 0.087 af, Atten= 2%, Lag= 0.8 min

 Routed to Reach DMH103 : TO CMH#2
 TO CMH#2
 0.087 af, Atten= 2%, Lag= 0.8 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.38 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.54 fps, Avg. Travel Time= 1.3 min

Peak Storage= 29 cf @ 12.14 hrs Average Depth at Peak Storage= 0.32', Surface Width= 1.09' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.63 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 120.0' Slope= 0.0100 '/' Inlet Invert= 465.40', Outlet Invert= 464.20'

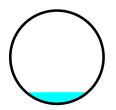
Reach DMH104: TO DMH#104

Summary for Reach DMH105: TO DMH#104

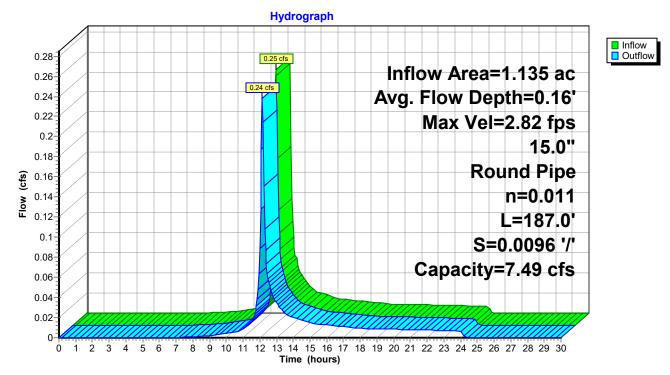
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach UGS1B OUTLET depth by 0.06' @ 12.15 hrs

 Inflow Area =
 1.135 ac, 76.23% Impervious, Inflow Depth =
 0.22" for 10-Year event

 Inflow =
 0.25 cfs @
 12.13 hrs, Volume=
 0.021 af


 Outflow =
 0.24 cfs @
 12.16 hrs, Volume=
 0.021 af, Atten= 7%, Lag= 1.7 min

 Routed to Reach DMH104 : TO DMH#104
 0.021 af, Atten= 7%, Lag= 1.7 min
 0.021 af, Atten= 7%, Lag= 1.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.82 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.05 fps, Avg. Travel Time= 3.0 min

Peak Storage= 17 cf @ 12.14 hrs Average Depth at Peak Storage= 0.16', Surface Width= 0.83' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.49 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 187.0' Slope= 0.0096 '/' Inlet Invert= 467.30', Outlet Invert= 465.50'

Reach DMH105: TO DMH#104

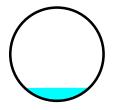
Summary for Reach DMH106: TO DMH#105

[52] Hint: Inlet/Outlet conditions not evaluated

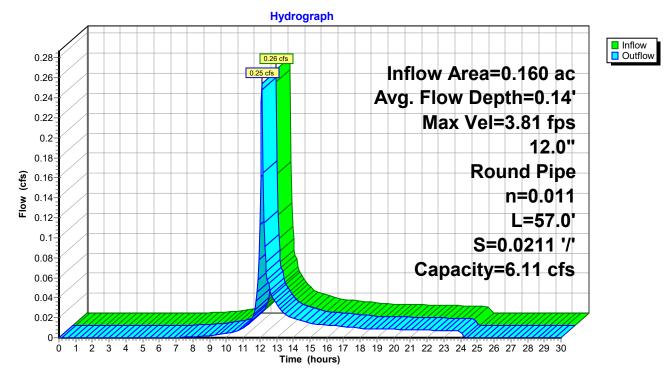
- [61] Hint: Exceeded Reach DCB10 outlet invert by 0.04' @ 12.15 hrs
- [61] Hint: Exceeded Reach DCB11 outlet invert by 0.04' @ 12.15 hrs

 Inflow Area =
 0.160 ac, 44.63% Impervious, Inflow Depth =
 1.55" for 10-Year event

 Inflow =
 0.26 cfs @
 12.12 hrs, Volume=
 0.021 af


 Outflow =
 0.25 cfs @
 12.13 hrs, Volume=
 0.021 af, Atten= 1%, Lag= 0.5 min

 Routed to Reach DMH105 : TO DMH#104
 TO DMH#104
 0.021 af, Atten= 1%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.81 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 0.7 min

Peak Storage= 4 cf @ 12.13 hrs Average Depth at Peak Storage= 0.14', Surface Width= 0.69' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.11 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 57.0' Slope= 0.0211 '/' Inlet Invert= 470.00', Outlet Invert= 468.80'

Reach DMH106: TO DMH#105

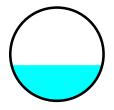
Summary for Reach DMH107: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated

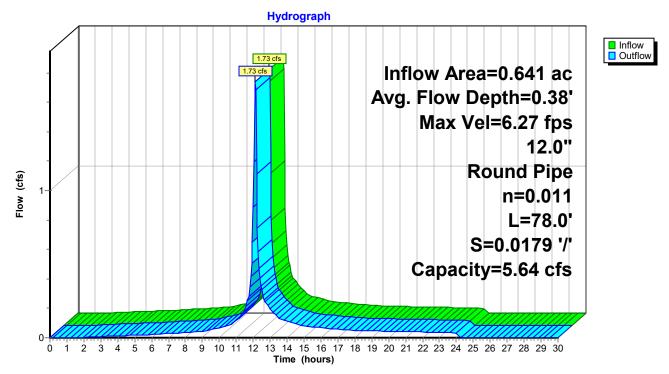
- [61] Hint: Exceeded Reach DCB6 outlet invert by 0.17' @ 12.15 hrs
- [61] Hint: Exceeded Reach DMH108 outlet invert by 0.17' @ 12.15 hrs

 Inflow Area =
 0.641 ac, 68.12% Impervious, Inflow Depth =
 2.75" for 10-Year event

 Inflow =
 1.73 cfs @
 12.12 hrs, Volume=
 0.147 af


 Outflow =
 1.73 cfs @
 12.13 hrs, Volume=
 0.147 af, Atten= 0%, Lag= 0.5 min

 Routed to Reach DMH100 : TO DMH-A
 TO DMH-A
 0.147 af, Atten= 0%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.27 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.21 fps, Avg. Travel Time= 0.6 min

Peak Storage= 22 cf @ 12.13 hrs Average Depth at Peak Storage= 0.38', Surface Width= 0.97' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.64 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 78.0' Slope= 0.0179 '/' Inlet Invert= 466.70', Outlet Invert= 465.30'

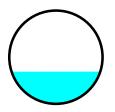
Reach DMH107: TO DMH#100

Summary for Reach DMH108: TO DMH#107

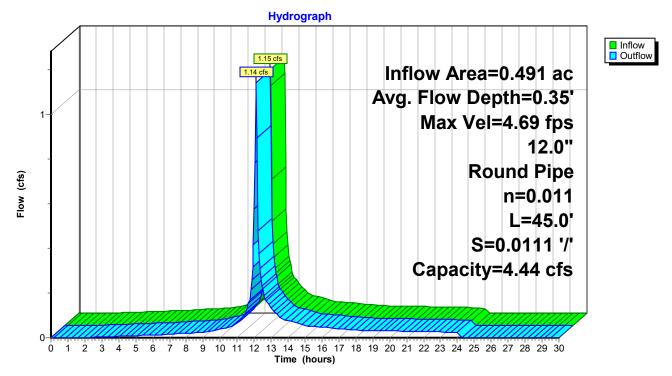
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DCB12 outlet invert by 0.24' @ 12.10 hrs

 Inflow Area =
 0.491 ac, 60.11% Impervious, Inflow Depth =
 2.34" for 10-Year event

 Inflow =
 1.15 cfs @
 12.12 hrs, Volume=
 0.096 af


 Outflow =
 1.14 cfs @
 12.13 hrs, Volume=
 0.096 af, Atten= 0%, Lag= 0.4 min

 Routed to Reach DMH107 : TO DMH#100
 TO DMH#100
 0.096 af, Atten= 0%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.69 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.65 fps, Avg. Travel Time= 0.5 min

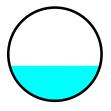
Peak Storage= 11 cf @ 12.12 hrs Average Depth at Peak Storage= 0.35', Surface Width= 0.95' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.44 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 45.0' Slope= 0.0111 '/' Inlet Invert= 467.40', Outlet Invert= 466.90'

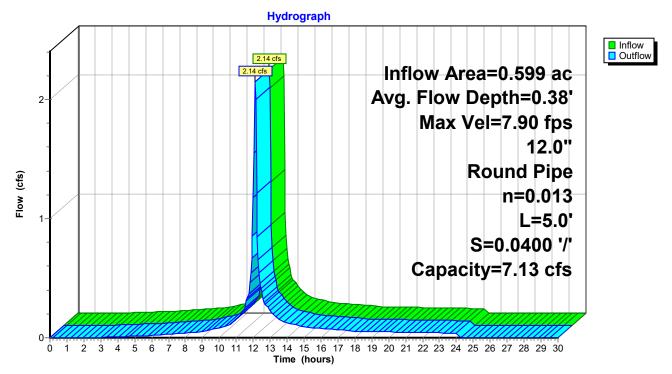
Reach DMH108: TO DMH#107

Summary for Reach DMH109: TO DMH#110

[52] Hint: Inlet/Outlet conditions not evaluated


- [61] Hint: Exceeded Reach DCB14 outlet invert by 0.17' @ 12.10 hrs
- [61] Hint: Exceeded Reach DCB20 outlet invert by 0.17' @ 12.10 hrs
- [61] Hint: Exceeded Reach DMH109A outlet invert by 0.17' @ 12.10 hrs

Inflow Area =0.599 ac, 83.64% Impervious, Inflow Depth =3.45" for 10-Year eventInflow =2.14 cfs @12.12 hrs, Volume=0.172 afOutflow =2.14 cfs @12.12 hrs, Volume=0.172 af, Atten= 0%, Lag= 0.0 minRouted to Reach DMH110 : TO UGS#2A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.90 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.68 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.38', Surface Width= 0.97' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 466.20', Outlet Invert= 466.00'

Reach DMH109: TO DMH#110

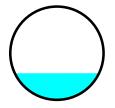
Summary for Reach DMH109A: TO DMH109

[52] Hint: Inlet/Outlet conditions not evaluated

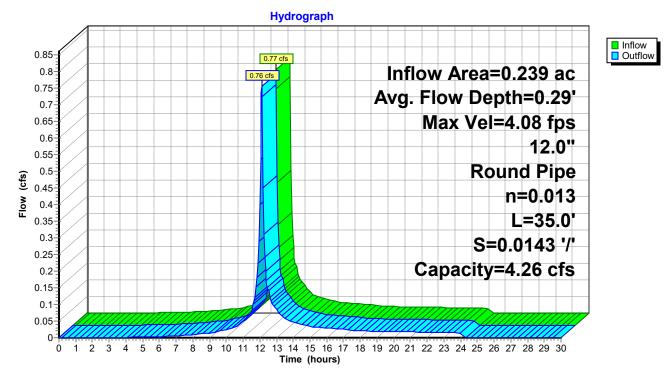
- [61] Hint: Exceeded Reach DCB21 outlet invert by 0.18' @ 12.10 hrs
- [62] Hint: Exceeded Reach DCB25 OUTLET depth by 0.03' @ 12.15 hrs

 Inflow Area =
 0.239 ac, 75.90% Impervious, Inflow Depth =
 2.99" for 10-Year event

 Inflow =
 0.77 cfs @
 12.12 hrs, Volume=
 0.060 af


 Outflow =
 0.76 cfs @
 12.12 hrs, Volume=
 0.060 af, Atten= 2%, Lag= 0.3 min

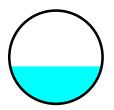
 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 0.060 af, Atten= 2%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.08 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.36 fps, Avg. Travel Time= 0.4 min

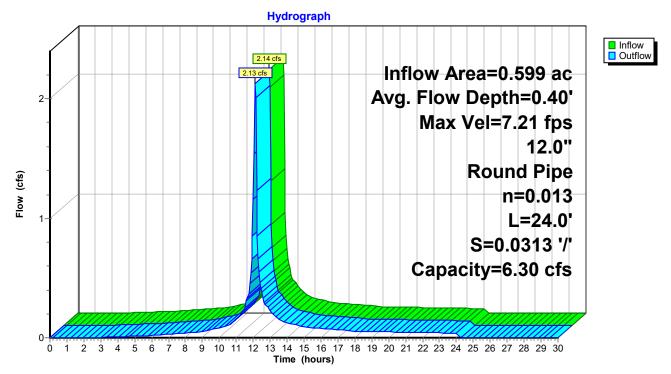
Peak Storage= 7 cf @ 12.12 hrs Average Depth at Peak Storage= 0.29', Surface Width= 0.90' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.26 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0143 '/' Inlet Invert= 466.90', Outlet Invert= 466.40'

Reach DMH109A: TO DMH109


Summary for Reach DMH110: TO UGS#2A

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH109 outlet invert by 0.15' @ 12.10 hrs


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.21 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.45 fps, Avg. Travel Time= 0.2 min

Peak Storage= 7 cf @ 12.12 hrs Average Depth at Peak Storage= 0.40', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.30 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 24.0' Slope= 0.0313 '/' Inlet Invert= 465.75', Outlet Invert= 465.00'

Reach DMH110: TO UGS#2A

Summary for Reach DMH111: TO DMH#112

[52] Hint: Inlet/Outlet conditions not evaluated

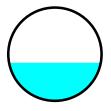
[62] Hint: Exceeded Reach DCB19 OUTLET depth by 0.12' @ 12.15 hrs

[62] Hint: Exceeded Reach DCB22 OUTLET depth by 0.15' @ 12.15 hrs

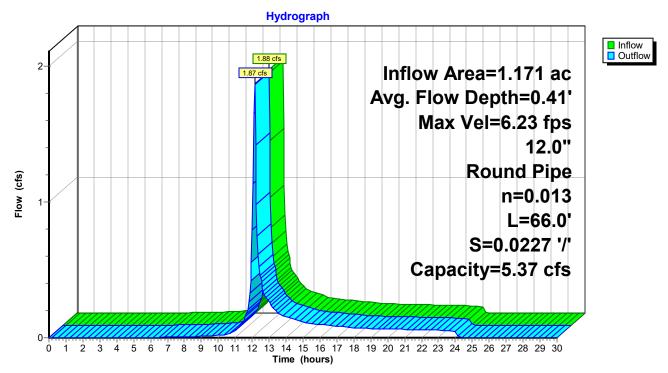
[61] Hint: Exceeded Reach DCB23 outlet invert by 0.31' @ 12.15 hrs

 Inflow Area =
 1.171 ac, 46.54% Impervious, Inflow Depth =
 1.59" for 10-Year event

 Inflow =
 1.88 cfs @
 12.14 hrs, Volume=
 0.156 af


 Outflow =
 1.87 cfs @
 12.14 hrs, Volume=
 0.156 af, Atten= 1%, Lag= 0.3 min

 Routed to Reach DMH112 : TO DMH#113
 To DMH#113
 1.156 af, Atten= 1%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.23 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.16 fps, Avg. Travel Time= 0.5 min

Peak Storage= 20 cf @ 12.14 hrs Average Depth at Peak Storage= 0.41', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.37 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 66.0' Slope= 0.0227 '/' Inlet Invert= 463.50', Outlet Invert= 462.00'

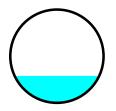
Reach DMH111: TO DMH#112

Summary for Reach DMH112: TO DMH#113

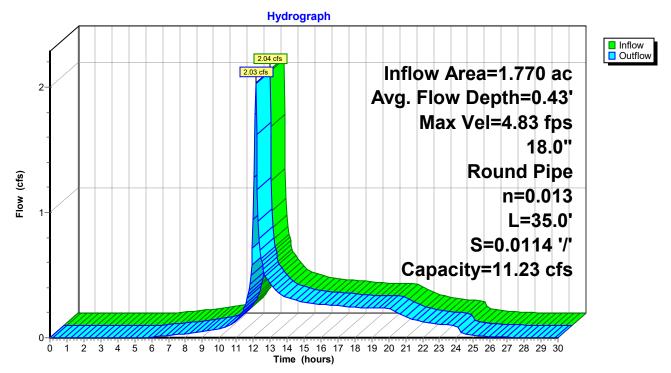
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach UGS2B OUTLET depth by 0.19' @ 12.15 hrs

 Inflow Area =
 1.770 ac, 59.09% Impervious, Inflow Depth > 2.21" for 10-Year event

 Inflow =
 2.04 cfs @
 12.14 hrs, Volume=
 0.325 af


 Outflow =
 2.03 cfs @
 12.14 hrs, Volume=
 0.325 af, Atten= 0%, Lag= 0.2 min

 Routed to Reach DMH113 : TO DMH#114
 TO DMH#114
 10.325 af, Atten= 0%, Lag= 0.2 min

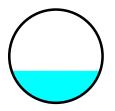

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.83 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.86 fps, Avg. Travel Time= 0.3 min

Peak Storage= 15 cf @ 12.14 hrs Average Depth at Peak Storage= 0.43', Surface Width= 1.36' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 11.23 cfs

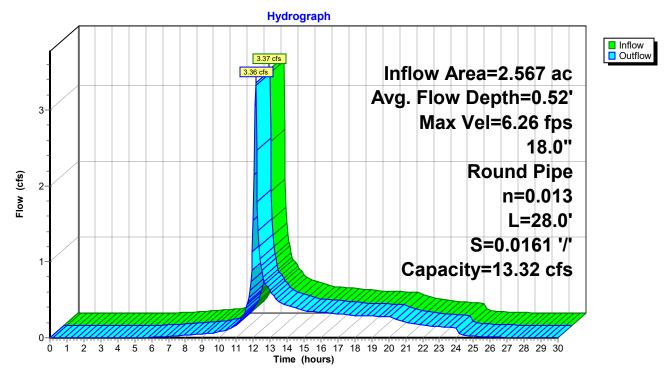
18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0114 '/' Inlet Invert= 460.20', Outlet Invert= 459.80'

Reach DMH112: TO DMH#113

Summary for Reach DMH113: TO DMH#114


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH112 outlet invert by 0.41' @ 12.15 hrs

Inflow Area = 2.567 ac, 55.34% Impervious, Inflow Depth = 2.01" for 10-Year event Inflow = 3.37 cfs @ 12.13 hrs, Volume= 0.430 af Outflow = 3.36 cfs @ 12.14 hrs, Volume= 0.430 af, Atten= 0%, Lag= 0.1 min Routed to Reach DMH114 : TO DMH-K1


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.26 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.23 fps, Avg. Travel Time= 0.2 min

Peak Storage= 15 cf @ 12.14 hrs Average Depth at Peak Storage= 0.52', Surface Width= 1.42' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 13.32 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 28.0' Slope= 0.0161 '/' Inlet Invert= 459.70', Outlet Invert= 459.25'

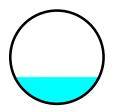
Reach DMH113: TO DMH#114

Summary for Reach DMH114: TO DMH-K1

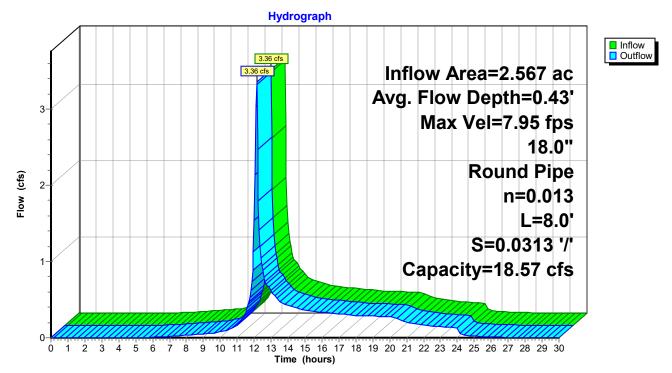
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH113 outlet invert by 0.18' @ 12.15 hrs

 Inflow Area =
 2.567 ac, 55.34% Impervious, Inflow Depth > 2.01" for 10-Year event

 Inflow =
 3.36 cfs @
 12.14 hrs, Volume=
 0.430 af


 Outflow =
 3.36 cfs @
 12.14 hrs, Volume=
 0.430 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DP4 : DMH-K1
 DMH-K1


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.95 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.83 fps, Avg. Travel Time= 0.0 min

Peak Storage= 3 cf @ 12.14 hrs Average Depth at Peak Storage= 0.43', Surface Width= 1.36' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 18.57 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 8.0' Slope= 0.0313 '/' Inlet Invert= 459.00', Outlet Invert= 458.75'

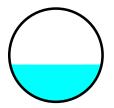
Reach DMH114: TO DMH-K1

Summary for Reach DMHR1: TO DMH#104

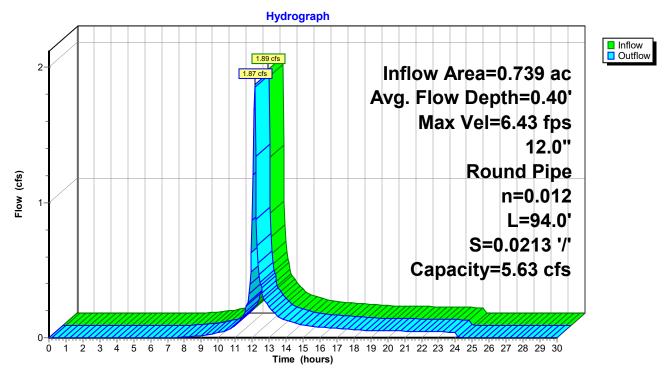
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMHR2 outlet invert by 0.30' @ 12.15 hrs

 Inflow Area =
 0.739 ac, 65.00% Impervious, Inflow Depth =
 2.36" for 10-Year event

 Inflow =
 1.89 cfs @
 12.13 hrs, Volume=
 0.145 af


 Outflow =
 1.87 cfs @
 12.14 hrs, Volume=
 0.145 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach DMH103 : TO CMH#2
 TO CMH#2
 0.145 af, Atten= 1%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.43 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.40 fps, Avg. Travel Time= 0.7 min

Peak Storage= 28 cf @ 12.13 hrs Average Depth at Peak Storage= 0.40', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.63 cfs

12.0" Round Pipe n= 0.012 Steel, smooth Length= 94.0' Slope= 0.0213 '/' Inlet Invert= 467.00', Outlet Invert= 465.00'

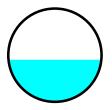
Reach DMHR1: TO DMH#104

Summary for Reach DMHR2: TO DMH#R2

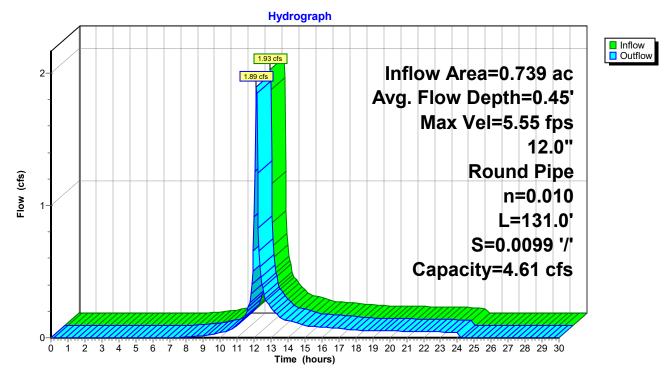
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.739 ac, 65.00% Impervious, Inflow Depth =
 2.36" for 10-Year event

 Inflow =
 1.93 cfs @
 12.12 hrs, Volume=
 0.145 af


 Outflow =
 1.89 cfs @
 12.13 hrs, Volume=
 0.145 af, Atten= 2%, Lag= 0.9 min

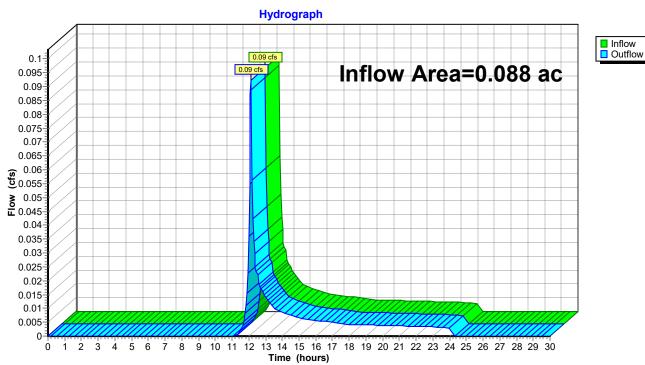
 Routed to Reach DMHR1 : TO DMH#104
 0.145 af, Atten= 2%, Lag= 0.9 min
 0.145 af, Atten= 2%, Lag= 0.9 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.55 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.09 fps, Avg. Travel Time= 1.0 min

Peak Storage= 45 cf @ 12.13 hrs Average Depth at Peak Storage= 0.45', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.61 cfs

12.0" Round Pipe n= 0.010 PVC, smooth interior Length= 131.0' Slope= 0.0099 '/' Inlet Invert= 468.40', Outlet Invert= 467.10'

Reach DMHR2: TO DMH#R2

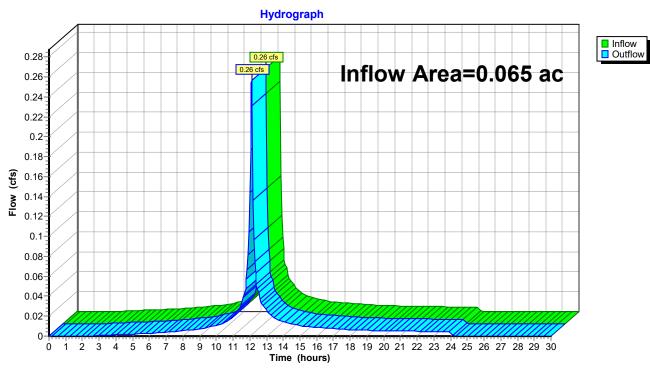


Summary for Reach DP#6: OFFSITE LOW POINT

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.088 ac, 33.45% Impervious, Inflow I	Depth = 1.06" for 10-Year event
Inflow =	0.09 cfs @ 12.13 hrs, Volume=	0.008 af
Outflow =	0.09 cfs @ 12.13 hrs, Volume=	0.008 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

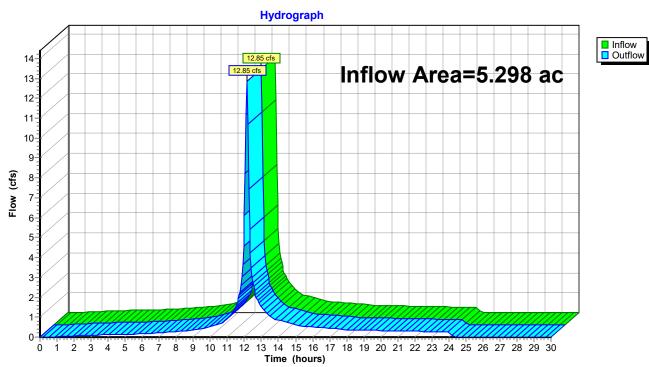

Reach DP#6: OFFSITE LOW POINT

Summary for Reach DP1: GUTTER POINT FRANKLIN (WEST)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.065 ac, 89.73% Impervious, Inflow D	epth = 3.78" for 10-Year event
Inflow =	0.26 cfs @ 12.11 hrs, Volume=	0.021 af
Outflow =	0.26 cfs @ 12.11 hrs, Volume=	0.021 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DP1: GUTTER POINT FRANKLIN (WEST)

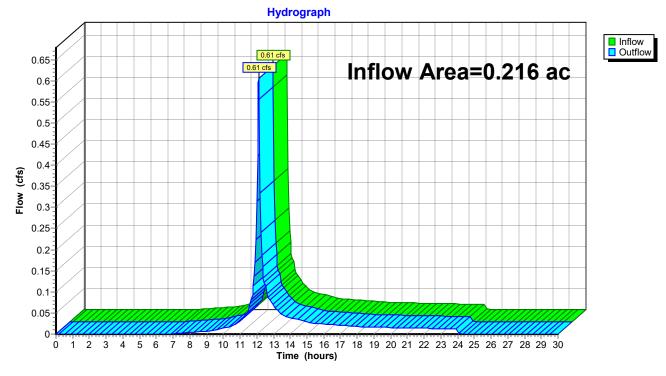
Summary for Reach DP2: MUNICIPAL SYSTEM

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	5.298 ac, 79.01% Impervious, Inflow	Depth = 2.63" for 10-Year event	
Inflow =	12.85 cfs @ 12.15 hrs, Volume=	1.159 af	
Outflow =	12.85 cfs @ 12.15 hrs, Volume=	1.159 af, Atten= 0%, Lag= 0.0 mi	in

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

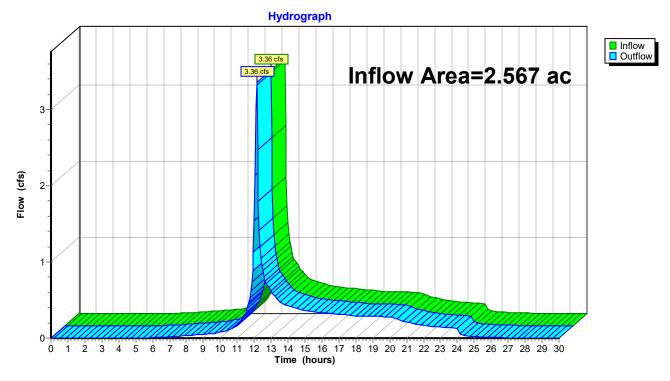
Reach DP2: MUNICIPAL SYSTEM


Summary for Reach DP3: CATCHBASIN (FIRE STATION)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.216 ac, 68.08% Impervious, Inflow D	epth = 2.53" for 10-Year event
Inflow =	0.61 cfs @ 12.12 hrs, Volume=	0.046 af
Outflow =	0.61 cfs @ 12.12 hrs, Volume=	0.046 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs



Summary for Reach DP4: DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	2.567 ac, 55.34% Impervious, Inflow I	Depth > 2.01" for 10-Year event
Inflow =	3.36 cfs @ 12.14 hrs, Volume=	0.430 af
Outflow =	3.36 cfs @ 12.14 hrs, Volume=	0.430 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP4: DMH-K1

Summary for Reach DP5: DCB-H

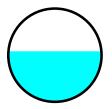
[40] Hint: Not Described (Outflow=Inflow)

Summary for Reach RF1: TO DMH#101

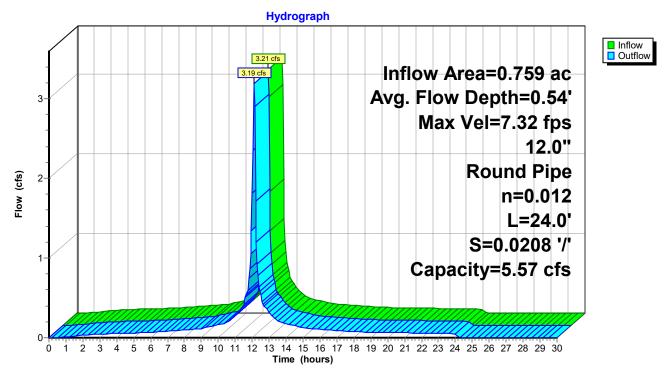
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.759 ac,100.00% Impervious, Inflow Depth =
 4.44" for 10-Year event

 Inflow =
 3.21 cfs @
 12.11 hrs, Volume=
 0.281 af


 Outflow =
 3.19 cfs @
 12.11 hrs, Volume=
 0.281 af, Atten= 1%, Lag= 0.1 min

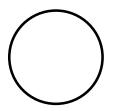
 Routed to Reach DMH101 : TO DMH#100
 10.281 af, Atten= 1%, Lag= 0.1 min
 10.281 af, Atten= 1%, Lag= 0.1 min

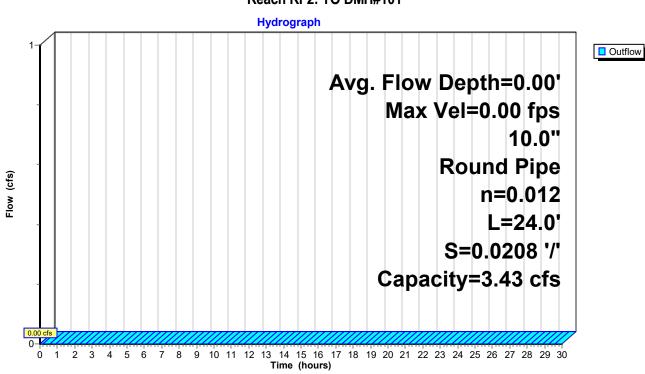

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.32 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.69 fps, Avg. Travel Time= 0.1 min

Peak Storage= 10 cf @ 12.11 hrs Average Depth at Peak Storage= 0.54', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.57 cfs

12.0" Round Pipe n= 0.012 Steel, smooth Length= 24.0' Slope= 0.0208 '/' Inlet Invert= 466.20', Outlet Invert= 465.70'

Reach RF1: TO DMH#101

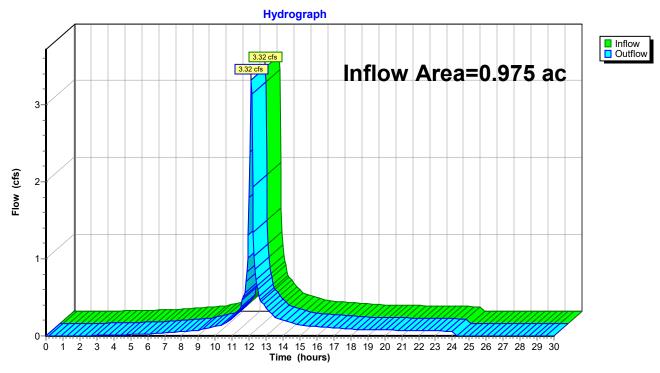



Summary for Reach RF2: TO DMH#101

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 0.83' Flow Area= 0.5 sf, Capacity= 3.43 cfs

10.0" Round Pipe n= 0.012 Steel, smooth Length= 24.0' Slope= 0.0208 '/' Inlet Invert= 466.20', Outlet Invert= 465.70'


Reach RF2: TO DMH#101

Summary for Reach UGS1A: TO UGS#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.975 ac, 81.42% Impervious, In	flow Depth = 3.29" for 10-Year event
Inflow =	3.32 cfs @ 12.12 hrs, Volume=	0.267 af
Outflow =	3.32 cfs @ 12.12 hrs, Volume=	0.267 af, Atten= 0%, Lag= 0.0 min
Routed to Pond	d UGS1 : TO DMH#106	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach UGS1A: TO UGS#1

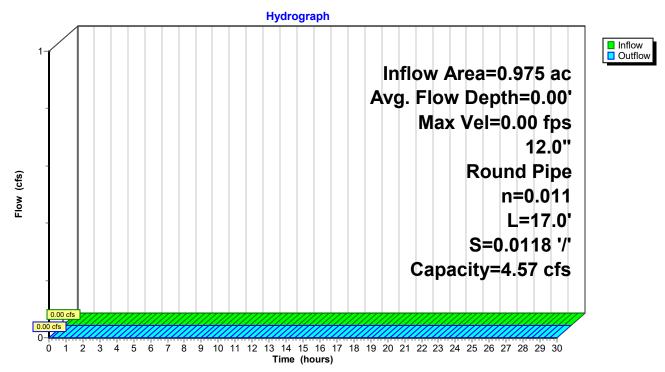
Summary for Reach UGS1B: TO DMH106

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.975 ac, 81.42% Impervious, Inflow Depth =
 0.00" for 10-Year event

 Inflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af

 Outflow =
 0.00 cfs @
 0.00 hrs, Volume=
 0.000 af, Atten= 0%, Lag= 0.0 min

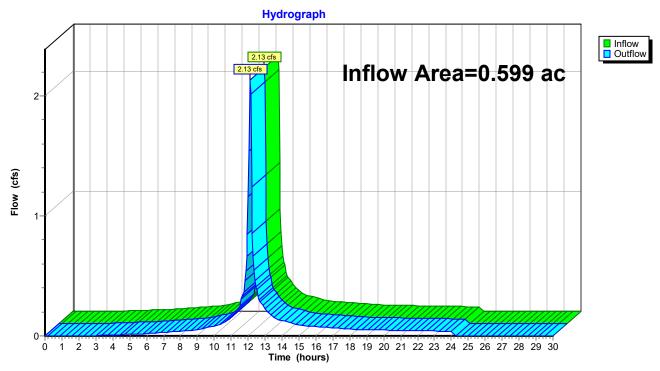

 Routed to Reach DMH105 : TO DMH#104
 0.000 af
 0.000 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 0.00 fps, Min. Travel Time= 0.0 min Avg. Velocity = 0.00 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 0.00 hrs Average Depth at Peak Storage= 0.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.57 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 17.0' Slope= 0.0118 '/' Inlet Invert= 467.60', Outlet Invert= 467.40'

Reach UGS1B: TO DMH106



Summary for Reach UGS2A: TO UGS#2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.599 ac, 83.64% Impervious, I	nflow Depth = 3.45" for 10-Year event
Inflow =	2.13 cfs @ 12.12 hrs, Volume=	0.172 af
Outflow =	2.13 cfs @ 12.12 hrs, Volume=	0.172 af, Atten= 0%, Lag= 0.0 min
Routed to Pone	d UGS2 : TO UGS#2B	_

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

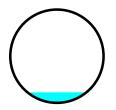
Reach UGS2A: TO UGS#2

Summary for Reach UGS2B: TO DMH#112

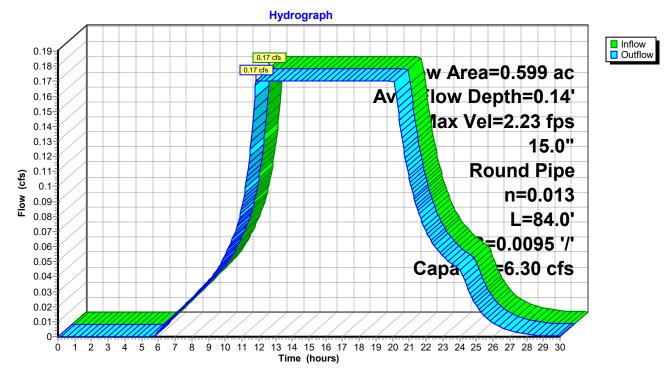
[52] Hint: Inlet/Outlet conditions not evaluated[78] Warning: Submerged Pond UGS2 Primary device # 2 by 0.09'

 Inflow Area =
 0.599 ac, 83.64% Impervious, Inflow Depth > 3.40" for 10-Year event

 Inflow =
 0.17 cfs @
 11.80 hrs, Volume=
 0.170 af


 Outflow =
 0.17 cfs @
 11.85 hrs, Volume=
 0.170 af, Atten= 0%, Lag= 3.0 min

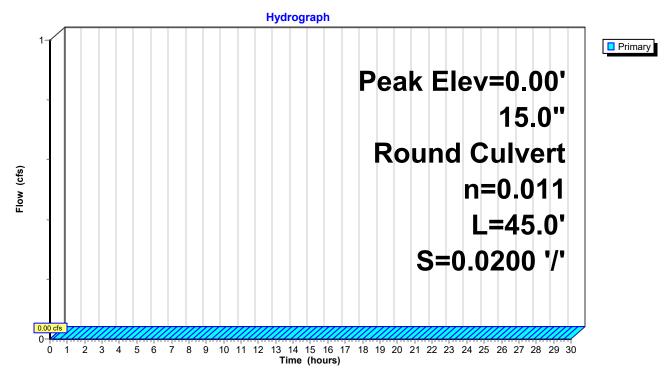
 Routed to Reach DMH112 : TO DMH#113
 TO DMH#113


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.23 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.58 fps, Avg. Travel Time= 0.9 min

Peak Storage= 6 cf @ 11.85 hrs Average Depth at Peak Storage= 0.14', Surface Width= 0.79' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.30 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 84.0' Slope= 0.0095 '/' Inlet Invert= 461.10', Outlet Invert= 460.30'

Reach UGS2B: TO DMH#112


Summary for Pond DMH-B: TO DMH-D

[43] Hint: Has no inflow (Outflow=Zero)

Device	Routing	Invert	Outlet Devices
#1	Primary	456.80'	15.0" Round Culvert L= 45.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 456.80' / 455.90' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf

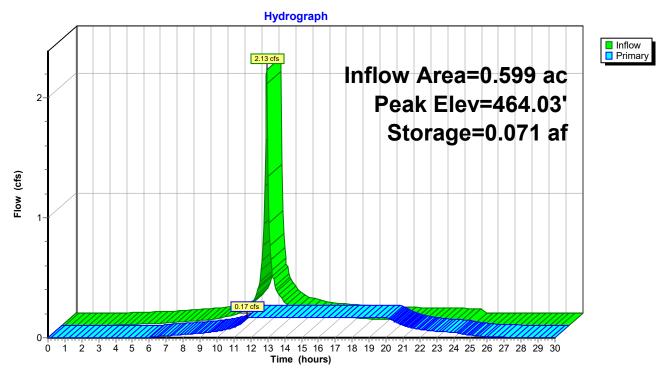
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

Pond DMH-B: TO DMH-D

Summary for Pond UGS1: TO DMH#106

Primary	= = ed = =	3.32 cfs @ 12.1 0.24 cfs @ 13.5 0.24 cfs @ 13.5	% Impervious, Inflow Depth = 3.29" for 10-Year event 12 hrs, Volume= 0.267 af 54 hrs, Volume= 0.267 af, Atten= 93%, Lag= 85.1 min 54 hrs, Volume= 0.267 af 10 hrs, Volume= 0.000 af MH106	
			pan= 0.00-30.00 hrs, dt= 0.05 hrs urf.Area= 0.065 ac Storage= 0.102 af	
	Plug-Flow detention time= 174.0 min calculated for 0.267 af (100% of inflow) Center-of-Mass det. time= 173.8 min (985.1 - 811.3)			
Volume	Inver	t Avail.Storage	e Storage Description	
#1	464.75		f 38.00'W x 74.00'L x 6.00'H Prismatoid	
			0.387 af Overall - 0.206 af Embedded = 0.181 af x 40.0% Voids	
#2	465.50	' 0.153 a	If Shea Leaching Chamber 4x4x4 x 144 Inside #1	
			Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf	
			Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf	
		0.226 a	f Total Available Storage	
Device	Routing	Invert (Dutlet Devices	
#1	Primary	467.75' 1	2.0" Vert. Orifice/Grate X 2.00 C= 0.600 Limited to weir flow at low heads	
#2	Discarded	464.75' 2	2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 460.00'	
		V Max=0.24 cfs Controls 0.24 cfs	@ 13.54 hrs HW=467.24' (Free Discharge) s)	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=464.75' (Free Discharge) —1=Orifice/Grate (Controls 0.00 cfs)


Time (hours)

Pond UGS1: TO DMH#106

Summary for Pond UGS2: TO UGS#2B

Inflow Area = 0.599 ac, 83.64% Impervious, Inflow Depth = 3.45" for 10-Year event Inflow = 2.13 cfs @ 12.12 hrs, Volume= 0.172 af Outflow = 0.17 cfs @ 11.80 hrs, Volume= 0.170 af, Atten= 92%, Lag= 0.0 min Primary = 0.17 cfs @ 11.80 hrs, Volume= 0.170 af Routed to Reach UGS2B : TO DMH#112 0.170 af				
			an= 0.00-30.00 hrs, dt= 0.05 hrs f.Area= 0.041 ac Storage= 0.071 af	
		time= 180.0 min time= 171.1 min	calculated for 0.170 af (99% of inflow) (977.0 - 805.9)	
Volume	Invert	Avail.Storage	Storage Description	
#1	461.00'	0.052 af	38.00'W x 47.00'L x 6.30'H Prismatoid	
			0.258 af Overall - 0.129 af Embedded = 0.130 af x 40.0% Voids	
#2	462.50'	0.096 af	0	
			Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf	
			Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf	
			90 Chambers in 10 Rows	
		0.148 af	Total Available Storage	
Device	Routing	Invert Ou	utlet Devices	
#1	Primary	464.25' 12	2.0" Vert. Orifice/Grate X 3.00 C= 0.600 Limited to weir flow at low heads	
#2	Primary		pecial & User-Defined	
			ead (feet) 0.00 1.00 15.00	
		Di	sch. (cfs) 0.000 0.170 0.170	
Primary OutFlow Max=0.17 cfs @ 11.80 hrs HW=462.17' (Free Discharge) 1=Orifice/Grate (Controls 0.00 cfs) -2=Special & User-Defined (Custom Controls 0.17 cfs)				

Pond UGS2: TO UGS#2B

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P100A: TO 12" ROOF DRAIN	Runoff Area=33,077 sf 100.00% Impervious Runoff Depth=5.64" Tc=5.0 min CN=98 Runoff=4.04 cfs 0.357 af
Subcatchment P100B: TO YARD DRAIN	Runoff Area=32,189 sf 65.00% Impervious Runoff Depth=3.37" Tc=5.0 min CN=77 Runoff=2.75 cfs 0.208 af
Subcatchment P100D: TO 12" ROOF DRAIN	Runoff Area=32,189 sf 100.00% Impervious Runoff Depth=5.64" Tc=5.0 min CN=98 Runoff=3.93 cfs 0.347 af
Subcatchment P105: TO DCB#5	Runoff Area=12,319 sf 35.47% Impervious Runoff Depth=1.84" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=60 Runoff=0.56 cfs 0.043 af
Subcatchment P106: TO DCB#6	Runoff Area=6,540 sf 94.27% Impervious Runoff Depth=5.29" Flow Length=101' Slope=0.0150 '/' Tc=5.0 min CN=95 Runoff=0.78 cfs 0.066 af
Subcatchment P107: TO DCB#7	Runoff Area=14,453 sf 83.32% Impervious Runoff Depth=4.51" Flow Length=126' Slope=0.0150 '/' Tc=5.0 min CN=88 Runoff=1.58 cfs 0.125 af
Subcatchment P108: TO DCB#8	Runoff Area=7,623 sf 76.33% Impervious Runoff Depth=4.08" Flow Length=156' Tc=5.0 min CN=84 Runoff=0.77 cfs 0.060 af
Subcatchment P109: TO DCB#9	Runoff Area=9,811 sf 39.59% Impervious Runoff Depth=2.01" Flow Length=156' Tc=5.1 min CN=62 Runoff=0.49 cfs 0.038 af
Subcatchment P11: TO DP#1	Runoff Area=2,852 sf 89.73% Impervious Runoff Depth=4.95" Flow Length=98' Slope=0.0170 '/' Tc=5.0 min CN=92 Runoff=0.33 cfs 0.027 af
Subcatchment P110: TO DCB#10	Runoff Area=2,827 sf 67.92% Impervious Runoff Depth=3.57" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=79 Runoff=0.25 cfs 0.019 af
Subcatchment P111: TO DCB#11	Runoff Area=4,144 sf 28.74% Impervious Runoff Depth=1.53" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=56 Runoff=0.15 cfs 0.012 af
Subcatchment P112: TO DCB#12	Runoff Area=9,054 sf 93.65% Impervious Runoff Depth=5.18" Flow Length=150' Slope=0.0130 '/' Tc=5.0 min CN=94 Runoff=1.07 cfs 0.090 af
Subcatchment P113: TO DCB#13	Runoff Area=11,898 sf 94.49% Impervious Runoff Depth=5.29" Flow Length=122' Slope=0.0200 '/' Tc=5.0 min CN=95 Runoff=1.43 cfs 0.120 af
Subcatchment P114: TO DCB#14	Runoff Area=5,484 sf 94.42% Impervious Runoff Depth=5.29" Flow Length=126' Slope=0.0160 '/' Tc=5.0 min CN=95 Runoff=0.66 cfs 0.056 af
Subcatchment P115: TO DCB#15	Runoff Area=16,100 sf 70.06% Impervious Runoff Depth=3.67" Flow Length=122' Slope=0.0170 '/' Tc=5.0 min CN=80 Runoff=1.49 cfs 0.113 af
Subcatchment P116: TO DCB#25	Runoff Area=2,780 sf 89.32% Impervious Runoff Depth=4.95" Flow Length=80' Slope=0.0200 '/' Tc=5.0 min CN=92 Runoff=0.32 cfs 0.026 af

3030-Post-R9

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Subcatchment P117: TO DP#6	Runoff Area=3,839 sf 33.45% Impervious Runoff Depth=1.76" Flow Length=74' Slope=0.0200 '/' Tc=5.0 min CN=59 Runoff=0.16 cfs 0.013 af
Subcatchment P119: TO DCB#19	Runoff Area=7,440 sf 78.16% Impervious Runoff Depth=4.19" Flow Length=213' Slope=0.0250 '/' Tc=5.0 min CN=85 Runoff=0.77 cfs 0.060 af
Subcatchment P12: TO DCB-A	Runoff Area=6,197 sf 94.61% Impervious Runoff Depth=5.29" Flow Length=147' Tc=5.0 min CN=95 Runoff=0.74 cfs 0.063 af
Subcatchment P120: TO DCB#20	Runoff Area=10,195 sf 85.75% Impervious Runoff Depth=4.73" Flow Length=146' Tc=5.0 min CN=90 Runoff=1.15 cfs 0.092 af
Subcatchment P121: TO DCB#21	Runoff Area=7,628 sf 71.01% Impervious Runoff Depth=3.77" Flow Length=153' Tc=5.0 min CN=81 Runoff=0.72 cfs 0.055 af
Subcatchment P122: TO DCB#22	Runoff Area=10,232 sf 44.85% Impervious Runoff Depth=2.26" Flow Length=189' Tc=5.0 min CN=65 Runoff=0.58 cfs 0.044 af
Subcatchment P123: TO DCB#23	Runoff Area=33,346 sf 40.00% Impervious Runoff Depth=2.09" Flow Length=171' Tc=5.0 min CN=63 Runoff=1.74 cfs 0.134 af
Subcatchment P14: TO DCB-B	Runoff Area=5,424 sf 87.24% Impervious Runoff Depth=4.73" Flow Length=169' Tc=5.0 min CN=90 Runoff=0.61 cfs 0.049 af
Subcatchment P15: TO DCB-C	Runoff Area=8,397 sf 71.34% Impervious Runoff Depth=3.77" Flow Length=161' Slope=0.0110 '/' Tc=7.0 min CN=81 Runoff=0.75 cfs 0.061 af
Subcatchment P18: TO DCB-D	Runoff Area=10,287 sf 76.50% Impervious Runoff Depth=4.08" Flow Length=222' Tc=5.0 min CN=84 Runoff=1.04 cfs 0.080 af
Subcatchment P19: TO DCB-E	Runoff Area=8,240 sf 64.27% Impervious Runoff Depth=3.37" Flow Length=177' Slope=0.0090 '/' Tc=5.0 min CN=77 Runoff=0.70 cfs 0.053 af
Subcatchment P20: TO DP#3	Runoff Area=9,426 sf 68.08% Impervious Runoff Depth=3.57" Flow Length=137' Tc=5.0 min CN=79 Runoff=0.85 cfs 0.064 af
Subcatchment P24: TO DCB#24	Runoff Area=34,704 sf 47.02% Impervious Runoff Depth=2.44" Flow Length=247' Slope=0.0250 '/' Tc=5.0 min CN=67 Runoff=2.14 cfs 0.162 af
Reach CMH3: TO DMH-E	Avg. Flow Depth=0.74' Max Vel=5.89 fps Inflow=7.98 cfs 0.707 af 36.0" Round Pipe n=0.011 L=196.0' S=0.0058 '/' Capacity=60.12 cfs Outflow=7.75 cfs 0.707 af
Reach DCB-A: TO DMH-D	Inflow=0.74 cfs 0.063 af Outflow=0.74 cfs 0.063 af
Reach DCB-B: TO DMH-E	Inflow=0.61 cfs 0.049 af Outflow=0.61 cfs 0.049 af
Reach DCB-C: TO TRUNKLINE	Inflow=0.75 cfs 0.061 af Outflow=0.75 cfs 0.061 af

3030-Post-R9

Reach DCB-D: TO DMH-A	Avg. Flow Depth=0.28' Max Vel=7.53 fps Inflow=1.04 cfs 0.080 af 8.0" Round Pipe n=0.010 L=15.0' S=0.0333 '/' Capacity=2.87 cfs Outflow=1.04 cfs 0.080 af
Reach DCB-E: TO DMH-A	Avg. Flow Depth=0.23' Max Vel=6.60 fps Inflow=0.70 cfs 0.053 af 8.0" Round Pipe n=0.010 L=16.0' S=0.0313 '/' Capacity=2.78 cfs Outflow=0.70 cfs 0.053 af
Reach DCB10: TO DMH#106	Avg. Flow Depth=0.14' Max Vel=4.78 fps Inflow=0.25 cfs 0.019 af 8.0" Round Pipe n=0.010 L=7.0' S=0.0286 '/' Capacity=2.66 cfs Outflow=0.25 cfs 0.019 af
Reach DCB11: TO DMH#103	Avg. Flow Depth=0.13' Max Vel=3.10 fps Inflow=0.15 cfs 0.012 af 8.0" Round Pipe n=0.010 L=15.0' S=0.0133 '/' Capacity=1.81 cfs Outflow=0.15 cfs 0.012 af
Reach DCB12: TO DMH#12	Avg. Flow Depth=0.39' Max Vel=4.96 fps Inflow=1.07 cfs 0.090 af 8.0" Round Pipe n=0.010 L=28.0' S=0.0107 '/' Capacity=1.63 cfs Outflow=1.06 cfs 0.090 af
Reach DCB13: TO DMH#102	Avg. Flow Depth=0.30' Max Vel=7.06 fps Inflow=1.43 cfs 0.120 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=1.42 cfs 0.120 af
Reach DCB14: TO DMH#109	Avg. Flow Depth=0.21' Max Vel=5.48 fps Inflow=0.66 cfs 0.056 af 12.0" Round Pipe n=0.013 L=19.0' S=0.0368 '/' Capacity=6.84 cfs Outflow=0.65 cfs 0.056 af
Reach DCB15: TO DMH#102	Avg. Flow Depth=0.45' Max Vel=4.29 fps Inflow=1.49 cfs 0.113 af 12.0" Round Pipe n=0.013 L=70.0' S=0.0100 '/' Capacity=3.56 cfs Outflow=1.46 cfs 0.113 af
Reach DCB19: TO DMH#111	Avg. Flow Depth=0.22' Max Vel=5.91 fps Inflow=0.77 cfs 0.060 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=0.77 cfs 0.060 af
Reach DCB20: TO DMH#109	Avg. Flow Depth=0.38' Max Vel=4.19 fps Inflow=1.15 cfs 0.092 af 12.0" Round Pipe n=0.013 L=9.0' S=0.0111 '/' Capacity=3.76 cfs Outflow=1.14 cfs 0.092 af
Reach DCB21: TO DMH#109A	Avg. Flow Depth=0.30' Max Vel=4.67 fps Inflow=0.72 cfs 0.055 af 8.0" Round Pipe n=0.013 L=5.0' S=0.0200 '/' Capacity=1.71 cfs Outflow=0.72 cfs 0.055 af
Reach DCB22: TO DMH#111	Avg. Flow Depth=0.21' Max Vel=4.89 fps Inflow=0.58 cfs 0.044 af 12.0" Round Pipe n=0.013 L=20.0' S=0.0300 '/' Capacity=6.17 cfs Outflow=0.58 cfs 0.044 af
Reach DCB23: TO DMH#111	Avg. Flow Depth=0.46' Max Vel=4.86 fps Inflow=1.74 cfs 0.134 af 12.0" Round Pipe n=0.013 L=250.0' S=0.0124 '/' Capacity=3.97 cfs Outflow=1.66 cfs 0.134 af
Reach DCB24: TO DMH#113	Avg. Flow Depth=0.44' Max Vel=6.35 fps Inflow=2.14 cfs 0.162 af 12.0" Round Pipe n=0.013 L=9.0' S=0.0222 '/' Capacity=5.31 cfs Outflow=2.13 cfs 0.162 af
Reach DCB25: TO DMH#109A	Avg. Flow Depth=0.18' Max Vel=4.28 fps Inflow=0.32 cfs 0.026 af 8.0" Round Pipe n=0.010 L=29.0' S=0.0172 '/' Capacity=2.06 cfs Outflow=0.32 cfs 0.026 af
Reach DCB5: TO DMH#108	Avg. Flow Depth=0.21' Max Vel=5.96 fps Inflow=0.56 cfs 0.043 af 8.0" Round Pipe n=0.010 L=7.0' S=0.0286 '/' Capacity=2.66 cfs Outflow=0.55 cfs 0.043 af
Reach DCB6: TO DMH#107	Avg. Flow Depth=0.20' Max Vel=8.76 fps Inflow=0.78 cfs 0.066 af 8.0" Round Pipe n=0.010 L=46.0' S=0.0630 '/' Capacity=3.94 cfs Outflow=0.77 cfs 0.066 af

303	0-Post-R9	
-----	-----------	--

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

V	· · · · · · · · · · · · · · · · · · ·
Reach DCB7: TO DMH#102	Avg. Flow Depth=0.34' Max Vel=6.65 fps Inflow=1.58 cfs 0.125 af 12.0" Round Pipe n=0.013 L=54.0' S=0.0315 '/' Capacity=6.32 cfs Outflow=1.55 cfs 0.125 af
Reach DCB8: TO DMH#103	Avg. Flow Depth=0.21' Max Vel=8.04 fps Inflow=0.77 cfs 0.060 af 8.0" Round Pipe n=0.010 L=4.0' S=0.0500 '/' Capacity=3.51 cfs Outflow=0.77 cfs 0.060 af
Reach DCB9: TO DMH#103	Avg. Flow Depth=0.22' Max Vel=4.72 fps Inflow=0.49 cfs 0.038 af 8.0" Round Pipe n=0.010 L=12.0' S=0.0167 '/' Capacity=2.03 cfs Outflow=0.48 cfs 0.038 af
Reach DMH-A*: TO DMH-B	Avg. Flow Depth=0.67' Max Vel=8.70 fps Inflow=7.96 cfs 0.690 af 24.0" Round Pipe n=0.011 L=267.0' S=0.0157 '/' Capacity=33.53 cfs Outflow=7.86 cfs 0.690 af
Reach DMH-C: TO DP#1	Inflow=9.45 cfs 0.879 af Outflow=9.45 cfs 0.879 af
Reach DMH-D: TO DMH-C	Avg. Flow Depth=0.77' Max Vel=6.63 fps Inflow=9.57 cfs 0.879 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=9.45 cfs 0.879 af
Reach DMH-E: TO DMH-D	Avg. Flow Depth=0.80' Max Vel=6.02 fps Inflow=9.07 cfs 0.816 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=8.91 cfs 0.816 af
Reach DMH-F: TO DMH-E	Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=72.0' S=0.0058 '/' Capacity=60.20 cfs Outflow=0.00 cfs 0.000 af
Reach DMH100: TO DMH-A	Avg. Flow Depth=0.62' Max Vel=9.05 fps Inflow=6.31 cfs 0.556 af 18.0" Round Pipe n=0.011 L=70.0' S=0.0200 '/' Capacity=17.56 cfs Outflow=6.23 cfs 0.556 af
Reach DMH101: TO DMH#100	Avg. Flow Depth=0.53' Max Vel=8.12 fps Inflow=4.01 cfs 0.357 af 15.0" Round Pipe n=0.011 L=5.0' S=0.0200 '/' Capacity=10.80 cfs Outflow=4.01 cfs 0.357 af
Reach DMH102: TO UGS#1A	Avg. Flow Depth=0.61' Max Vel=7.34 fps Inflow=4.41 cfs 0.358 af 15.0" Round Pipe n=0.013 L=5.0' S=0.0200 '/' Capacity=9.14 cfs Outflow=4.41 cfs 0.358 af
Reach DMH103: TO CMH#2	Avg. Flow Depth=0.80' Max Vel=8.37 fps Inflow=8.00 cfs 0.707 af 18.0" Round Pipe n=0.011 L=154.0' S=0.0136 '/' Capacity=14.50 cfs Outflow=7.98 cfs 0.707 af
Reach DMH104: TO DMH#104	Avg. Flow Depth=0.39' Max Vel=4.90 fps Inflow=1.60 cfs 0.151 af 15.0" Round Pipe n=0.011 L=120.0' S=0.0100 '/' Capacity=7.63 cfs Outflow=1.58 cfs 0.151 af
Reach DMH105: TO DMH#104	Avg. Flow Depth=0.19' Max Vel=3.23 fps Inflow=0.40 cfs 0.054 af 15.0" Round Pipe n=0.011 L=187.0' S=0.0096 '/' Capacity=7.49 cfs Outflow=0.38 cfs 0.054 af
Reach DMH106: TO DMH#105	Avg. Flow Depth=0.17' Max Vel=4.34 fps Inflow=0.40 cfs 0.031 af 12.0" Round Pipe n=0.011 L=57.0' S=0.0211 '/' Capacity=6.11 cfs Outflow=0.40 cfs 0.031 af
Reach DMH107: TO DMH#100	Avg. Flow Depth=0.45' Max Vel=6.80 fps Inflow=2.36 cfs 0.199 af 12.0" Round Pipe n=0.011 L=78.0' S=0.0179 '/' Capacity=5.64 cfs Outflow=2.36 cfs 0.199 af
Reach DMH108: TO DMH#107	Avg. Flow Depth=0.42' Max Vel=5.16 fps Inflow=1.61 cfs 0.133 af 12.0" Round Pipe n=0.011 L=45.0' S=0.0111 '/' Capacity=4.44 cfs Outflow=1.59 cfs 0.133 af

3030-Post-R9

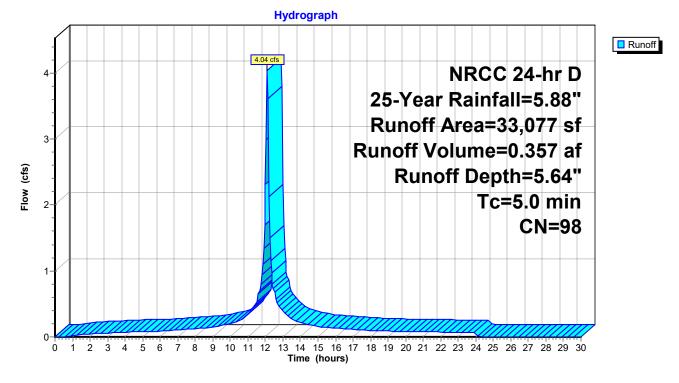
Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Reach DMH109: TO DMH#110	Avg. Flow Depth=0.44' Max Vel=8.50 fps Inflow=2.82 cfs 0.229 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=2.81 cfs 0.229 af
Reach DMH109A: TO DMH109	Avg. Flow Depth=0.34' Max Vel=4.44 fps Inflow=1.04 cfs 0.081 af 12.0" Round Pipe n=0.013 L=35.0' S=0.0143 '/' Capacity=4.26 cfs Outflow=1.02 cfs 0.081 af
Reach DMH110: TO UGS#2A	Avg. Flow Depth=0.47' Max Vel=7.75 fps Inflow=2.81 cfs 0.229 af 12.0" Round Pipe n=0.013 L=24.0' S=0.0313 '/' Capacity=6.30 cfs Outflow=2.80 cfs 0.229 af
Reach DMH111: TO DMH#112	Avg. Flow Depth=0.53' Max Vel=6.99 fps Inflow=2.96 cfs 0.237 af 12.0" Round Pipe n=0.013 L=66.0' S=0.0227 '/' Capacity=5.37 cfs Outflow=2.95 cfs 0.237 af
Reach DMH112: TO DMH#113	Avg. Flow Depth=0.54' Max Vel=5.43 fps Inflow=3.12 cfs 0.464 af 18.0" Round Pipe n=0.013 L=35.0' S=0.0114 '/' Capacity=11.23 cfs Outflow=3.11 cfs 0.464 af
Reach DMH113: TO DMH#114	Avg. Flow Depth=0.65' Max Vel=7.04 fps Inflow=5.20 cfs 0.626 af 18.0" Round Pipe n=0.013 L=28.0' S=0.0161 '/' Capacity=13.32 cfs Outflow=5.19 cfs 0.626 af
Reach DMH114: TO DMH-K1	Avg. Flow Depth=0.54' Max Vel=8.97 fps Inflow=5.19 cfs 0.626 af 18.0" Round Pipe n=0.013 L=8.0' S=0.0313 '/' Capacity=18.57 cfs Outflow=5.19 cfs 0.626 af
Reach DMHR1: TO DMH#104	Avg. Flow Depth=0.49' Max Vel=7.05 fps Inflow=2.70 cfs 0.208 af 12.0" Round Pipe n=0.012 L=94.0' S=0.0213 '/' Capacity=5.63 cfs Outflow=2.67 cfs 0.208 af
Reach DMHR2: TO DMH#R2	Avg. Flow Depth=0.55' Max Vel=6.06 fps Inflow=2.75 cfs 0.208 af 12.0" Round Pipe n=0.010 L=131.0' S=0.0099 '/' Capacity=4.61 cfs Outflow=2.70 cfs 0.208 af
Reach DP#6: OFFSITE LOW POINT	Inflow=0.16 cfs 0.013 af Outflow=0.16 cfs 0.013 af
Reach DP1: GUTTER POINT FRANKL	IN (WEST) Inflow=0.33 cfs 0.027 af Outflow=0.33 cfs 0.027 af
Reach DP2: MUNICIPAL SYSTEM	Inflow=17.23 cfs 1.569 af Outflow=17.23 cfs 1.569 af
Reach DP3: CATCHBASIN (FIRE STA	Inflow=0.85 cfs 0.064 af Outflow=0.85 cfs 0.064 af
Reach DP4: DMH-K1	Inflow=5.19 cfs 0.626 af Outflow=5.19 cfs 0.626 af
Reach DP5: DCB-H	
Reach RF1: TO DMH#101	Avg. Flow Depth=0.63' Max Vel=7.71 fps Inflow=4.04 cfs 0.357 af 12.0" Round Pipe n=0.012 L=24.0' S=0.0208 '/' Capacity=5.57 cfs Outflow=4.01 cfs 0.357 af
Reach RF2: TO DMH#101	Avg. Flow Depth=0.00' Max Vel=0.00 fps 10.0" Round Pipe n=0.012 L=24.0' S=0.0208 '/' Capacity=3.43 cfs Outflow=0.00 cfs 0.000 af

3030-Post-R9 Prepared by Hannigan Engineering In HydroCAD® 10.20-3g s/n 00840 © 2023 Hy	
Reach UGS1A: TO UGS#1	Inflow=4.41 cfs 0.358 af Outflow=4.41 cfs 0.358 af
Reach UGS1B: TO DMH106	Avg. Flow Depth=0.17' Max Vel=3.22 fps Inflow=0.28 cfs 0.023 af 12.0" Round Pipe n=0.011 L=17.0' S=0.0118 '/' Capacity=4.57 cfs Outflow=0.28 cfs 0.023 af
Reach UGS2A: TO UGS#2	Inflow=2.80 cfs 0.229 af Outflow=2.80 cfs 0.229 af
Reach UGS2B: TO DMH#112	Avg. Flow Depth=0.26' Max Vel=3.26 fps Inflow=0.62 cfs 0.227 af 15.0" Round Pipe n=0.013 L=84.0' S=0.0095 '/' Capacity=6.30 cfs Outflow=0.61 cfs 0.227 af
Pond DMH-B: TO DMH-D	Peak Elev=0.00' 15.0" Round Culvert n=0.011 L=45.0' S=0.0200 '/' Primary=0.00 cfs 0.000 af
Pond UGS1: TO DMH#106	Peak Elev=467.93' Storage=0.135 af Inflow=4.41 cfs 0.358 af Discarded=0.26 cfs 0.336 af Primary=0.28 cfs 0.023 af Outflow=0.54 cfs 0.358 af
Pond UGS2: TO UGS#2B	Peak Elev=464.42' Storage=0.082 af Inflow=2.80 cfs 0.229 af Outflow=0.62 cfs 0.227 af

Total Runoff Area = 8.235 acRunoff Volume = 2.638 af
29.06% Pervious = 2.393 acAverage Runoff Depth = 3.84"
70.94% Impervious = 5.842 ac

Summary for Subcatchment P100A: TO 12" ROOF DRAIN


[49] Hint: Tc<2dt may require smaller dt

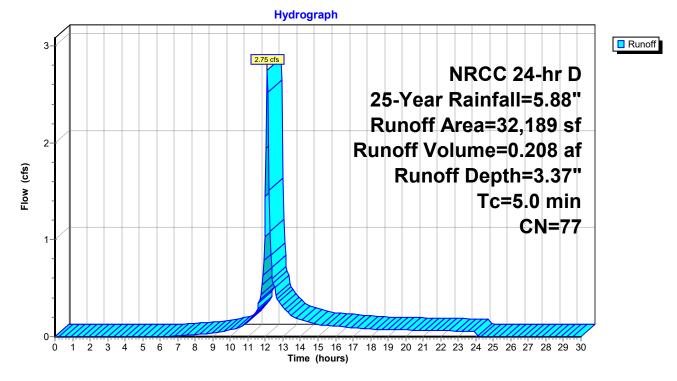
Runoff = 4.04 cfs @ 12.11 hrs, Volume= 0.357 af, Depth= 5.64" Routed to Reach RF1 : TO DMH#101

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

Area	(sf)	CN I	Description				
33,	077	98 I	Paved park	ing, HSG A			
33,	077	100.00% Impervious Area					
	ngth feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
5.0					Direct Entry,		

Subcatchment P100A: TO 12" ROOF DRAIN

Summary for Subcatchment P100B: TO YARD DRAIN


[49] Hint: Tc<2dt may require smaller dt

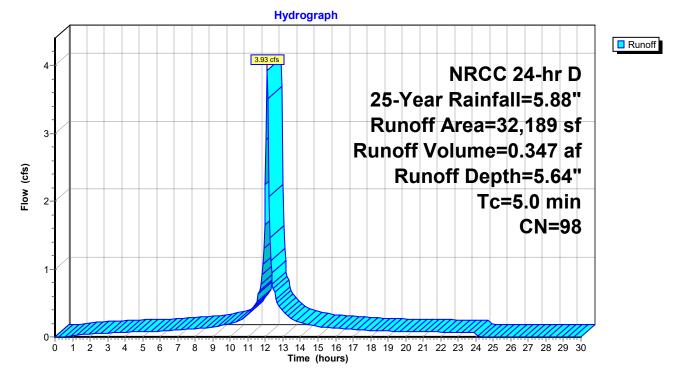
Runoff = 2.75 cfs @ 12.12 hrs, Volume= 0.208 af, Depth= 3.37" Routed to Reach DMHR2 : TO DMH#R2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

Area (sf)	CN	Description					
32,189	77	1/8 acre lots	s, 65% imp	, HSG A			
11,266			35.00% Pervious Area				
20,923		65.00% Imp	65.00% Impervious Area				
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description			
5.0				Direct Entry,			

Subcatchment P100B: TO YARD DRAIN

Summary for Subcatchment P100D: TO 12" ROOF DRAIN


[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.93 cfs @ 12.11 hrs, Volume= 0.347 af, Depth= 5.64" Routed to Reach DMH103 : TO CMH#2

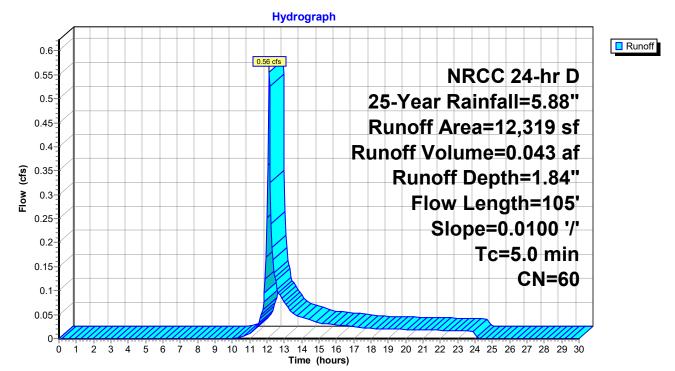
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

Area (sf)	CN	Description		
32,189	98	Paved park	ing, HSG A	
32,189		100.00% In	npervious A	vrea
Tc Length (min) (feet)	Slop (ft/f		Capacity (cfs)	Description
5.0		<i>,</i> , , , ,		Direct Entry,

Subcatchment P100D: TO 12" ROOF DRAIN

Summary for Subcatchment P105: TO DCB#5

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.56 cfs @ 12.12 hrs, Volume= 0.043 af, Depth= 1.84" Routed to Reach DCB5 : TO DMH#108

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

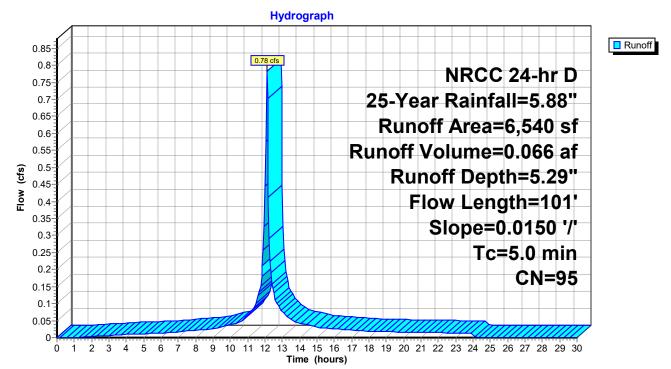
_	A	rea (sf)	CN	Description					
		7,950	39	39 >75% Grass cover, Good, HSG A					
_		4,369	98	3 Paved parking, HSG A					
		12,319	60 Weighted Average						
		7,950		64.53% Pe	rvious Area	l			
		4,369 35.47% Impervious Area							
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.9	50	0.0100	0.90		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
		405	T ()			T 60 :			

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P105: TO DCB#5

Summary for Subcatchment P106: TO DCB#6

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.78 cfs @ 12.11 hrs, Volume= 0.066 af, Depth= 5.29" Routed to Reach DCB6 : TO DMH#107

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

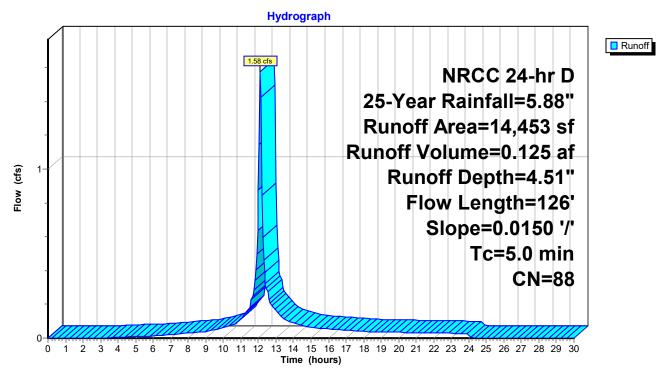
_	A	rea (sf)	CN	Description				
		375	39	39 >75% Grass cover, Good, HSG A				
_		6,165	98	Paved parking, HSG A				
	6,540 95 Weighted Average							
	375 5.73% Pervious Area							
	6,165 94.27% Impervious Area							
	Tc	Length	Slope	,		Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.8	50	0.0150	1.06		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.3	51	0.0150	2.49		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
		404	T ()			T 60 :		

1.1 101 Total, Increased to minimum Tc = 5.0 min

Subcatchment P106: TO DCB#6

Summary for Subcatchment P107: TO DCB#7

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.58 cfs @ 12.11 hrs, Volume= 0.125 af, Depth= 4.51" Routed to Reach DCB7 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

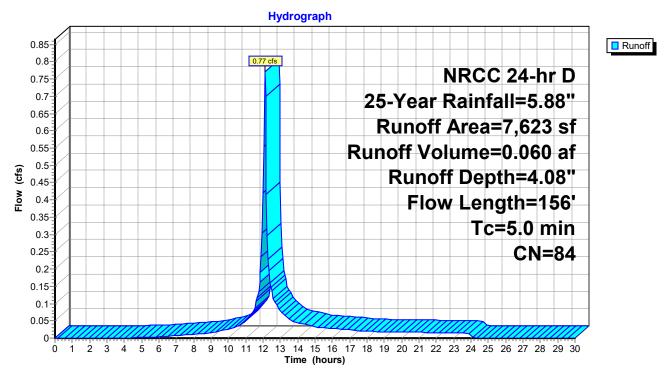
_	A	rea (sf)	CN	Description					
	2,411 39 >75% Grass cover, Good, HSG A								
_		12,042 98 Paved parking, HSG A							
	14,453 88 Weighted Average								
	2,411 16.68% Pervious Area								
	12,042 83.32% Impervious Area								
	_								
	Tc	Length	Slope	,		Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	1.5	8	0.0150	0.09		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.13"			
	0.7	42	0.0150) 1.02		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.5	76	0.0150) 2.49		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	27	106	Total	Increased	to minimum	$T_{0} = 5.0 \text{ min}$			

2.7 126 Total, Increased to minimum Tc = 5.0 min

Subcatchment P107: TO DCB#7

Summary for Subcatchment P108: TO DCB#8

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.77 cfs @ 12.11 hrs, Volume= 0.060 af, Depth= 4.08" Routed to Reach DCB8 : TO DMH#103

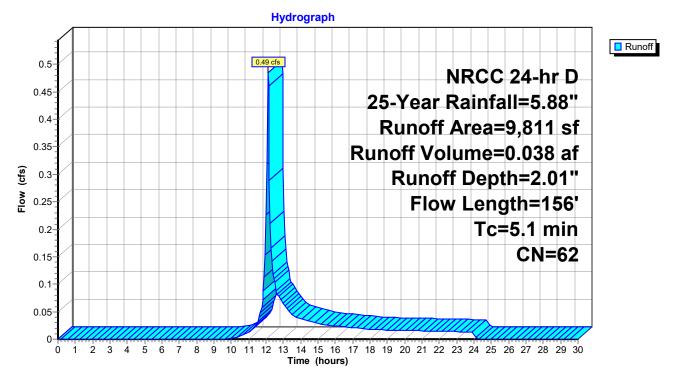
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

_	A	rea (sf)	CN	Description			
	1,804 39 >75% Grass cover, Good, HSG A						
_	5,819 98 Paved parking, HSG A						
	7,623 84 Weighted Average						
	1,804 23.67% Pervious Area						
	5,819 76.33% Impervious Area						
	Tc	Length	Slope	,	Capacity	Description	
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)		
	2.6	16	0.0150	0.10		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.13"	
	0.7	34	0.0100	0.83		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.9	106	0.0100	2.03		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	10	150	Tatal				

4.2 156 Total, Increased to minimum Tc = 5.0 min

Subcatchment P108: TO DCB#8

Summary for Subcatchment P109: TO DCB#9


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.49 cfs @ 12.12 hrs, Volume= 0.038 af, Depth= 2.01" Routed to Reach DCB9 : TO DMH#103

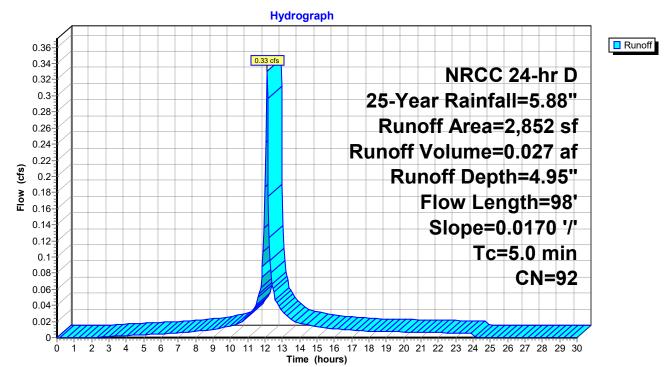
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

	A	rea (sf)	CN	Description			
5,927 39 >75% Grass cover, Good, HSG A						od, HSG A	
3,884 98 Paved parking, HSG A							
	9,811 62 Weighted Average						
		5,927		60.41% Pe	rvious Area		
		3,884		39.59% Imp	pervious Are	ea	
	_						
		Length	Slope	•	Capacity	Description	
(n	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	3.7	25	0.0150	0.11		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.13"	
	0.5	25	0.0100) 0.78		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.9	106	0.0100) 2.03		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	5.1	156	Total				

Subcatchment P109: TO DCB#9

Summary for Subcatchment P11: TO DP#1

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.33 cfs @ 12.11 hrs, Volume= 0.027 af, Depth= 4.95" Routed to Reach DP1 : GUTTER POINT FRANKLIN (WEST)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

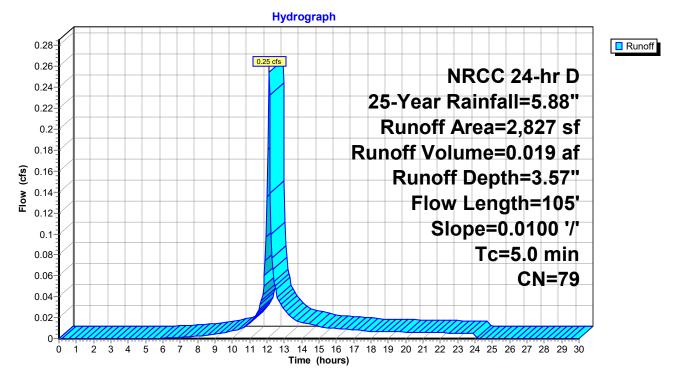
_	A	rea (sf)	CN	Description					
		293	39	39 >75% Grass cover, Good, HSG A					
_		2,559	98	Paved parking, HSG A					
	2,852 92 Weighted Average								
	293 10.27% Pervious Area								
	2,559 89.73% Impervious Area								
	Tc	Length	Slope	,		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.8	50	0.0170	1.11		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.3	48	0.0170	2.65		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
		00	T - 4 - 1	المحمد محمد الأ					

1.1 98 Total, Increased to minimum Tc = 5.0 min

Subcatchment P11: TO DP#1

Summary for Subcatchment P110: TO DCB#10

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.25 cfs @ 12.11 hrs, Volume= 0.019 af, Depth= 3.57" Routed to Reach DCB10 : TO DMH#106

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

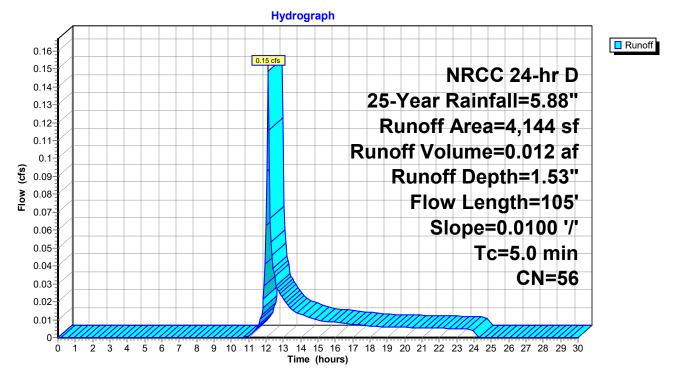
_	A	rea (sf)	CN	Description				
		907 39 >75% Grass cover, Good, HSG A						
_		1,920	98	98 Paved parking, HSG A				
	2,827 79 Weighted Average							
		907		32.08% Pe	rvious Area	1		
	1,920 67.92% Impervious Area							
	Tc	Length	Slope	 Velocity 	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.9	50	0.0100	0.90		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
		405	T ()			T 60 :		

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P110: TO DCB#10

Summary for Subcatchment P111: TO DCB#11

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.15 cfs @ 12.12 hrs, Volume= 0.012 af, Depth= 1.53" Routed to Reach DCB11 : TO DMH#103

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

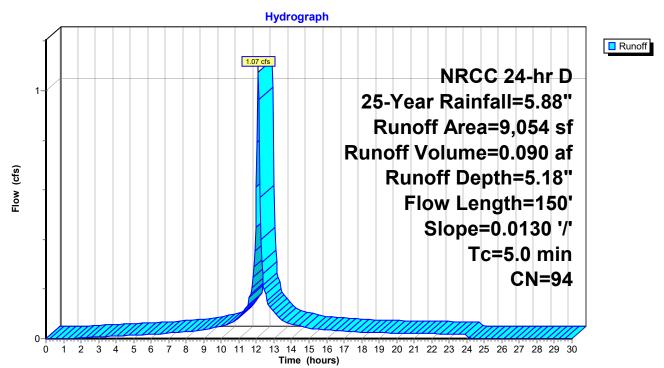
_	A	rea (sf)	CN	Description				
	2,953 39 >75% Grass cover, Good, HSG A							
_		1,191	98 Paved parking, HSG A					
	4,144 56 Weighted Average							
	2,953 71.26% Pervious Area							
		1,191		28.74% Im	pervious Ar	ea		
	Tc	Length	Slope	,		Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.9	50	0.0100	0.90		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	4 4	405	T ()			T 60 :		

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P111: TO DCB#11

Summary for Subcatchment P112: TO DCB#12

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.07 cfs @ 12.11 hrs, Volume= 0.090 af, Depth= 5.18" Routed to Reach DCB12 : TO DMH#12

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

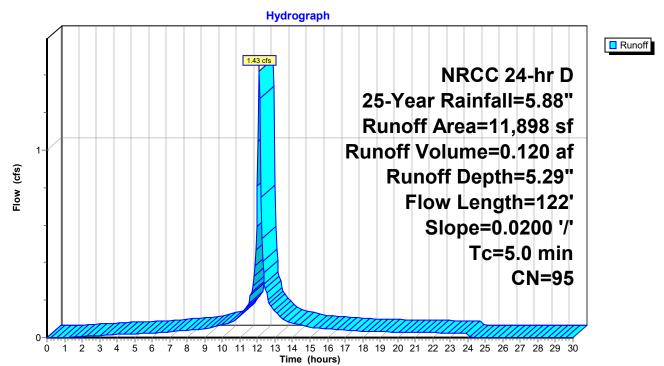
_	A	rea (sf)	CN	Description				
		575	39	39 >75% Grass cover, Good, HSG A				
_		8,479	98	Paved parking, HSG A				
	9,054 94 Weighted Average							
	575 6.35% Pervious Area							
	8,479 93.65% Impervious Area							
	Tc	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.8	50	0.0130	1.00		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.7	100	0.0130	2.31		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	4 -	450	T ()			T 60 :		

1.5 150 Total, Increased to minimum Tc = 5.0 min

Subcatchment P112: TO DCB#12

Summary for Subcatchment P113: TO DCB#13

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.43 cfs @ 12.11 hrs, Volume= 0.120 af, Depth= 5.29" Routed to Reach DCB13 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

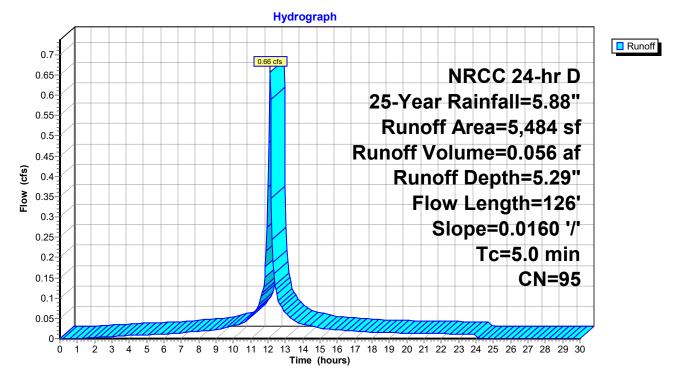
_	A	rea (sf)	CN	Description						
	656 39 >75% Grass cover, Good, HSG A									
_		11,242	98 Paved parking, HSG A							
	11,898 95 Weighted Average									
	656 5.51% Pervious Área									
	11,242 94.49% Impervious Area									
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.7	50	0.0200	1.18		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.4	72	0.0200	2.87		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
		400	— · ·			T = 5 0 1				

1.1 122 Total, Increased to minimum Tc = 5.0 min

Subcatchment P113: TO DCB#13

Summary for Subcatchment P114: TO DCB#14

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.66 cfs @ 12.11 hrs, Volume= 0.056 af, Depth= 5.29" Routed to Reach DCB14 : TO DMH#109

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

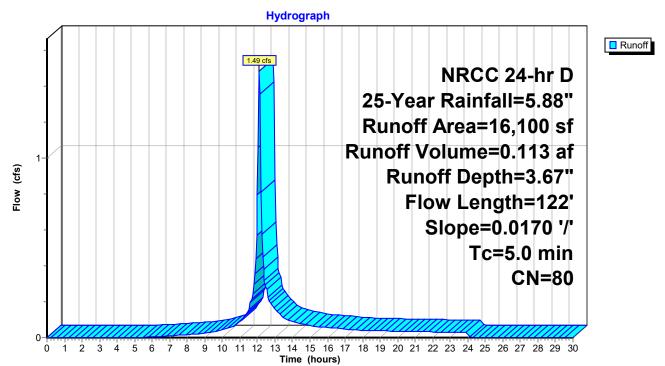
_	A	rea (sf)	CN I	Description						
		306	39 :	9 >75% Grass cover, Good, HSG A						
_		5,178	98 I	Paved park	aved parking, HSG A					
		5,484 95 Weighted Average								
	306 5.58% Pervious Area									
	5,178 94.42% Impervious Area									
	Tc	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.8	50	0.0160	1.08		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.5	76	0.0160	2.57		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	10	400	T ()			T 50 1				

1.3 126 Total, Increased to minimum Tc = 5.0 min

Subcatchment P114: TO DCB#14

Summary for Subcatchment P115: TO DCB#15

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.49 cfs @ 12.11 hrs, Volume= 0.113 af, Depth= 3.67" Routed to Reach DCB15 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

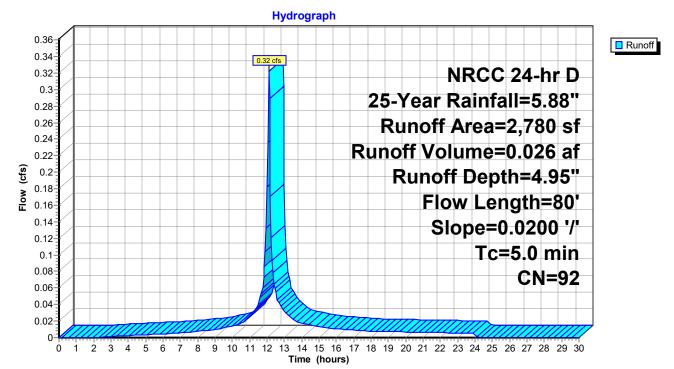
_	A	rea (sf)	CN	Description					
		4,821 39 >75% Grass cover, Good, HSG A							
_		11,279	98 Paved parking, HSG A						
	16,100 80 Weighted Average								
	4,821 29.94% Pervious Area								
11,279 70.06% Impervious Area									
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
_	0.8	50	0.0170	1.11		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.5	72	0.0170	2.65		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
	4.0	400	T ()			T 50 1			

1.3 122 Total, Increased to minimum Tc = 5.0 min

Subcatchment P115: TO DCB#15

Summary for Subcatchment P116: TO DCB#25

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.32 cfs @ 12.11 hrs, Volume= 0.026 af, Depth= 4.95" Routed to Reach DCB25 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

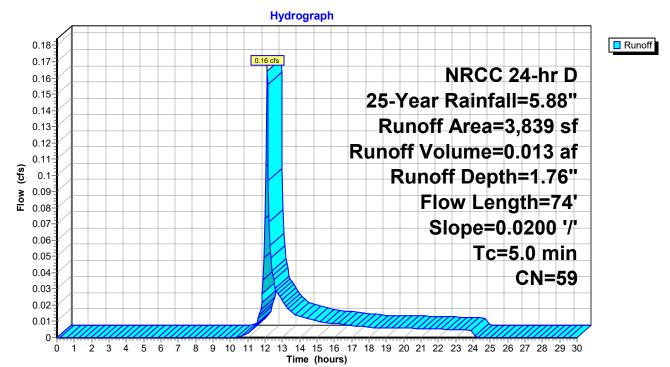
_	A	rea (sf)	CN	Description				
	297 39 >75% Grass cover, Good, HSG A							
_	2,483 98 Paved parking, HSG A							
		2,780	92	Weighted A	verage			
		297		10.68% Pe	rvious Area			
		2,483		89.32% Im	pervious Ar	ea		
	Tc	Length	Slope			Description		
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)			
	0.7	50	0.0200	1.18		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.2	30	0.0200	2.87		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	0.0	00	T . 4 . 1					

0.9 80 Total, Increased to minimum Tc = 5.0 min

Subcatchment P116: TO DCB#25

Summary for Subcatchment P117: TO DP#6

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.16 cfs @	12.12 hrs, Volu	me=	0.013 af,	Depth= 1.76"
Routed	I to Rea	ch DP#6 : OF	FSITE LOW PO	NT		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

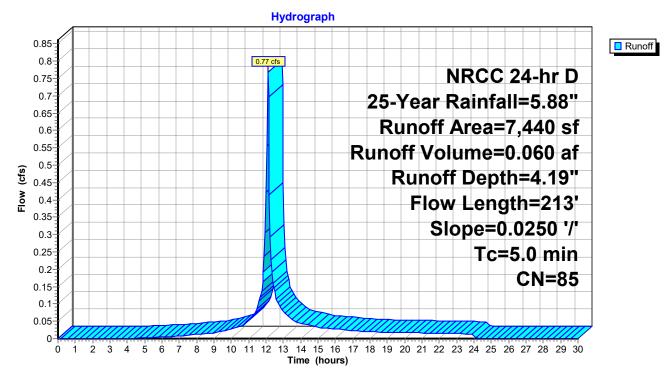
_	A	rea (sf)	CN	Description				
	2,555 39 >75% Grass cover, Good, HSG A							
_	1,284 98 Paved parking, HSG A							
	3,839 59 Weighted Average							
		2,555		66.55% Pe	rvious Area			
		1,284		33.45% Im	pervious Are	a		
	Tc	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	0.7	50	0.020) 1.18		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.1	24	0.020) 2.87		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
	0 0	74	Tatal	Inoroood	to minimum			

0.8 74 Total, Increased to minimum Tc = 5.0 min

Subcatchment P117: TO DP#6

Summary for Subcatchment P119: TO DCB#19

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.77 cfs @ 12.11 hrs, Volume= 0.060 af, Depth= 4.19" Routed to Reach DCB19 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

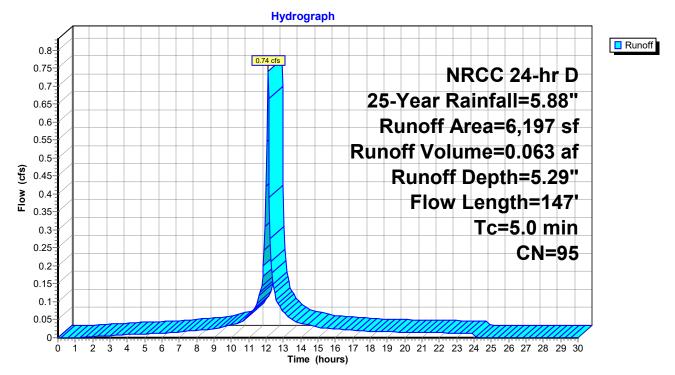
_	A	rea (sf)	CN	Description				
	1,625 39 >75% Grass cover, Good, HSG A							
_	5,815 98 Paved parking, HSG A							
	7,440 85 Weighted Average							
		1,625		21.84% Pe	rvious Area	l		
		5,815		78.16% Im	pervious Ar	ea		
	Tc	Length	Slope	,		Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.6	50	0.0250	1.29		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.8	163	0.0250	3.21		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
		040	T ()			T 60 :		

1.4 213 Total, Increased to minimum Tc = 5.0 min

Subcatchment P119: TO DCB#19

Summary for Subcatchment P12: TO DCB-A

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.74 cfs @ 12.11 hrs, Volume= 0.063 af, Depth= 5.29" Routed to Reach DCB-A : TO DMH-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

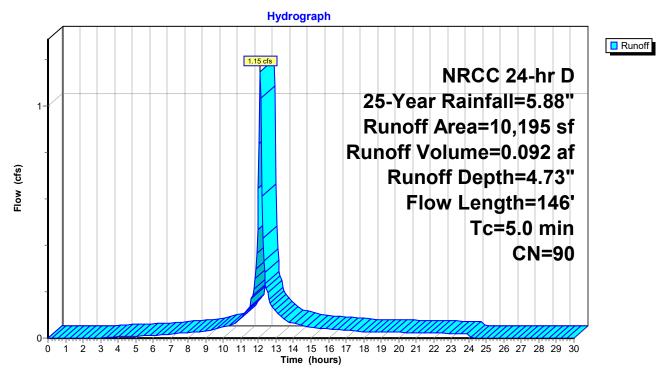
_	A	rea (sf)	CN	Description		
334 39 >75% Grass cover, Good, HSG A						bod, HSG A
5,863 98 Paved parking, HSG A						
		6,197	95	Weighted A	verage	
		334		5.39% Perv	vious Area	
		5,863		94.61% Im	pervious Ar	ea
	Tc	Length	Slope	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	1.5	8	0.0150	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	7	0.0150	0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.8	35	0.0080	0.76		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.9	97	0.0080) 1.82		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	21	1/7	Total	Ingraacad	la minimum	$T_{0} = 5.0 \text{ min}$

3.4 147 Total, Increased to minimum Tc = 5.0 min

Subcatchment P12: TO DCB-A

Summary for Subcatchment P120: TO DCB#20

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.15 cfs @ 12.11 hrs, Volume= 0.092 af, Depth= 4.73" Routed to Reach DCB20 : TO DMH#109

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

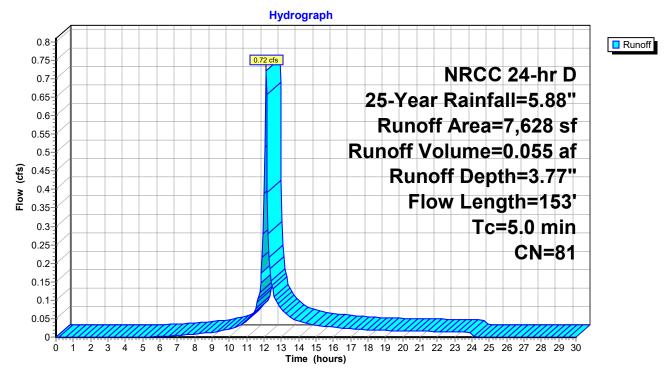
	Area (sf)	CN	Description					
	1,453 39 >75% Grass cover, Good, HSG A							
	8,742 98 Paved parking, HSG A							
	10,195 90 Weighted Average							
	1,453		14.25% Pe	rvious Area				
	8,742		85.75% Im	pervious Are	ea			
_								
Т	· · J·	Slope			Description			
(min) (feet)	(ft/ft) (ft/sec)	(cfs)				
0.9	95	0.0200	0.09		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.	7 45	0.0150) 1.03		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
0.0	5 96	0.0150) 2.49		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
	2 1/6	Total	Inorogood	to minimum	$T_0 = 5.0 \text{ min}$			

2.2 146 Total, Increased to minimum Tc = 5.0 min

Subcatchment P120: TO DCB#20

Summary for Subcatchment P121: TO DCB#21

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.72 cfs @ 12.11 hrs, Volume= 0.055 af, Depth= 3.77" Routed to Reach DCB21 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

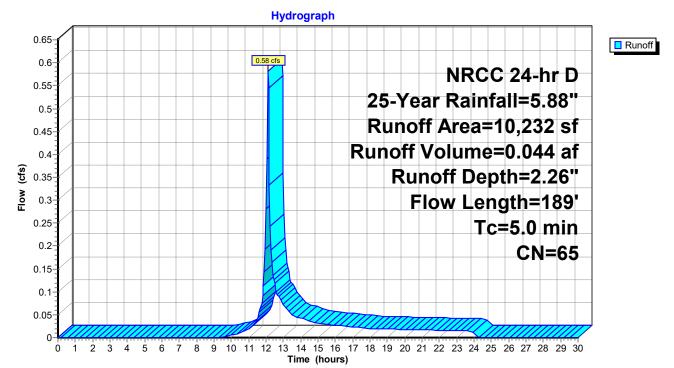
A	Area (sf)	CN	Description					
	2,211 39 >75% Grass cover, Good, HSG A							
	5,417 98 Paved parking, HSG A							
	7,628	81	Weighted A	verage				
	2,211		28.99% Pe	rvious Area				
	5,417		71.01% Im	pervious Ar	ea			
_								
Tc	Length	Slope			Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
1.0	12	0.1000	0.21		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.13"			
0.7	38	0.0100	0.85		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.13"			
0.8	103	0.0100	2.03		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
0.5	150	Tatal	lin ana a a a d					

2.5 153 Total, Increased to minimum Tc = 5.0 min

Subcatchment P121: TO DCB#21

Summary for Subcatchment P122: TO DCB#22

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.58 cfs @ 12.12 hrs, Volume= 0.044 af, Depth= 2.26" Routed to Reach DCB22 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

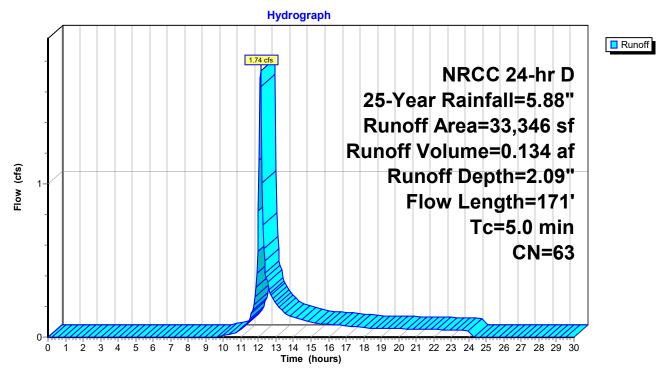
_	A	rea (sf)	CN	Description				
		5,643 39 >75% Grass cover, Good, HSG A						
_	4,589 98 Paved parking, HSG A							
		10,232	65	Weighted A	verage			
		5,643		55.15% Pe	rvious Area			
		4,589		44.85% Im	pervious Ar	rea		
	Tc	Length	Slope		Capacity	Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	3.0	50	0.1000	0.28		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.13"		
	0.7	139	0.0300) 3.52		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	2.7	400	Tatal	la sus a sud i				

3.7 189 Total, Increased to minimum Tc = 5.0 min

Subcatchment P122: TO DCB#22

Summary for Subcatchment P123: TO DCB#23

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.74 cfs @ 12.12 hrs, Volume= 0.134 af, Depth= 2.09" Routed to Reach DCB23 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

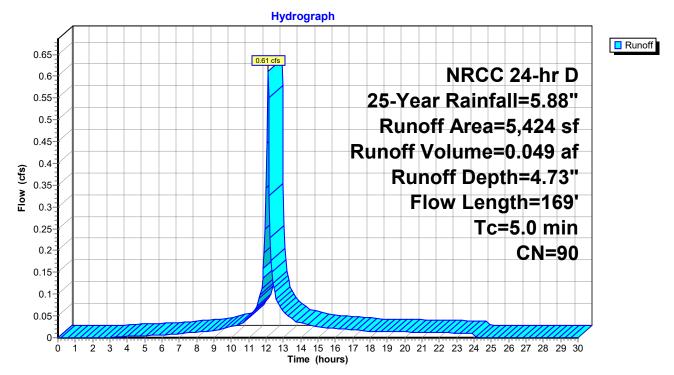
_	A	rea (sf)	CN	Description				
	20,008 39 >75% Grass cover, Good, HSG A							
_	13,338 98 Paved parking, HSG A							
	33,346 63 Weighted Average							
		20,008		60.00% Per	vious Area			
		13,338		40.00% Imp	pervious Are	a		
	_				•			
	Tc	Length	Slope		Capacity	Description		
-	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	2.5	40	0.1000	0.27		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.13"		
	0.2	10	0.0200	0.86		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.7	121	0.0200) 2.87		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	3 /	171	Total	Incroscod t	o minimum	$T_{c} = 5.0 \text{ min}$		

3.4 171 Total, Increased to minimum Tc = 5.0 min

Subcatchment P123: TO DCB#23

Summary for Subcatchment P14: TO DCB-B

[49] Hint: Tc<2dt may require smaller dt

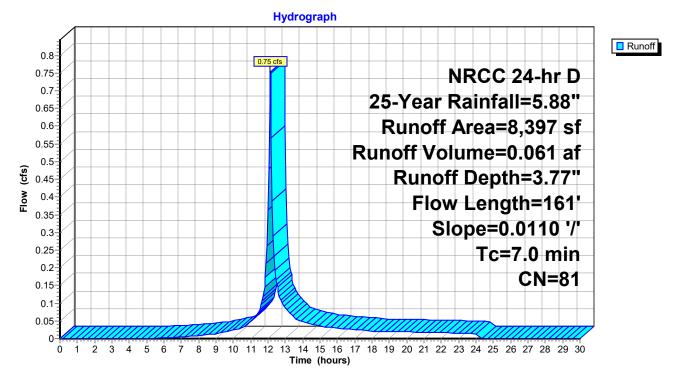

Runoff = 0.61 cfs @ 12.11 hrs, Volume= 0.049 af, Depth= 4.73" Routed to Reach DCB-B : TO DMH-E

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

_	A	rea (sf)	CN	Description		
692 39 >75% Grass cover, Good, HSG A						bod, HSG A
_		4,732	98	Paved park		
5,424 90 Weighted Average						
		692		12.76% Pe	rvious Area	
		4,732		87.24% Im	pervious Ar	ea
	_		•			
	Tc	Length	Slop			Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	1.8	10	0.015	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	7	0.015	0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.7	33	0.008	0.76		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.1	119	0.008) 1.82		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	20	160	Total	Ingraged	to minimum	$T_{0} = 5.0 \text{ min}$

3.8 169 Total, Increased to minimum Tc = 5.0 min

Subcatchment P14: TO DCB-B


Summary for Subcatchment P15: TO DCB-C

Runoff = 0.75 cfs @ 12.14 hrs, Volume= 0.061 af, Depth= 3.77" Routed to Reach DCB-C : TO TRUNKLINE

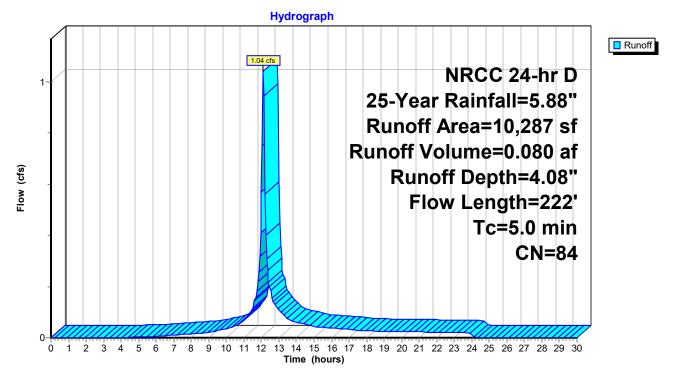
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

A	rea (sf)	CN	Description				
2,407 39 >75% Grass cover, Good, HSG A							
5,990 98 Paved parking, HSG A							
	8,397 81 Weighted Average						
	2,407		28.66% Pe	rvious Area			
	5,990		71.34% Imp	pervious Ar	ea		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
5.8	38	0.0110	0.11		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.13"		
0.3	12	0.0110	0.70		Sheet Flow,		
					Smooth surfaces n= 0.011 P2= 3.13"		
0.9	111	0.0110	2.13		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
7.0	161	Total					

Subcatchment P15: TO DCB-C

Summary for Subcatchment P18: TO DCB-D

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.04 cfs @ 12.11 hrs, Volume= 0.080 af, Depth= 4.08" Routed to Reach DCB-D : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

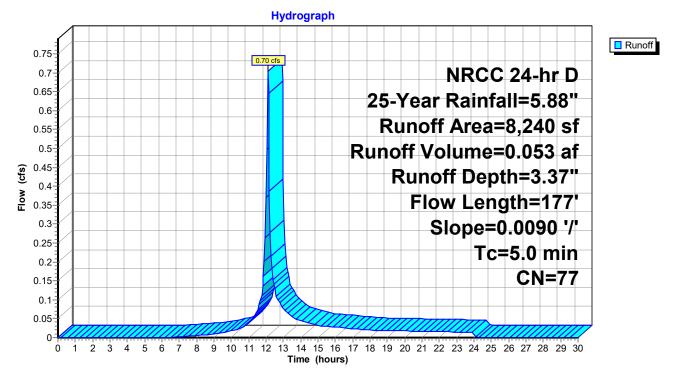
_	A	rea (sf)	CN	Description			
2,417 39 >75% Grass cover, Good, HSG A							
7,870 98 Paved parking, HSG A							
		10,287	84	Weighted A	verage		
		2,417		23.50% Pe	rvious Area		
		7,870		76.50% Im	pervious Ar	ea	
	Та	l anath	Clan	Valaaitu	Consoit	Description	
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
	1.6	9		//	(0.0)	Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.13"	
	0.2	9	0.0150	0.75		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.7	32	0.007	5 0.73		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	1.6	172	0.007	5 1.76		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	11	222	Tatal	Increaded	ka maininaum		

4.1 222 Total, Increased to minimum Tc = 5.0 min

Subcatchment P18: TO DCB-D

Summary for Subcatchment P19: TO DCB-E

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.70 cfs @ 12.12 hrs, Volume= 0.053 af, Depth= 3.37" Routed to Reach DCB-E : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

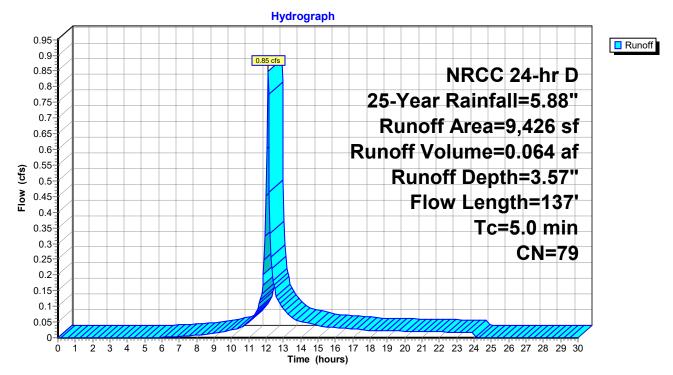
_	A	rea (sf)	CN	Description		
2,944 39 >75% Grass cover, Good, HSG A					bod, HSG A	
_		5,296	98	Paved park	king, HSG A	Α
		8,240	77	Weighted A	Verage	
		2,944		35.73% Pe	rvious Area	
5,296 64.27% Impervious Area						ea
	Tc	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	1.0	50	0.0090	0.86		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.1	127	0.0090) 1.93		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
_	0.4	477	Tatal	la sus a sud i		

2.1 177 Total, Increased to minimum Tc = 5.0 min

Subcatchment P19: TO DCB-E

Summary for Subcatchment P20: TO DP#3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.85 cfs @ 12.11 hrs, Volume= 0.064 af, Depth= 3.57" Routed to Reach DP3 : CATCHBASIN (FIRE STATION)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

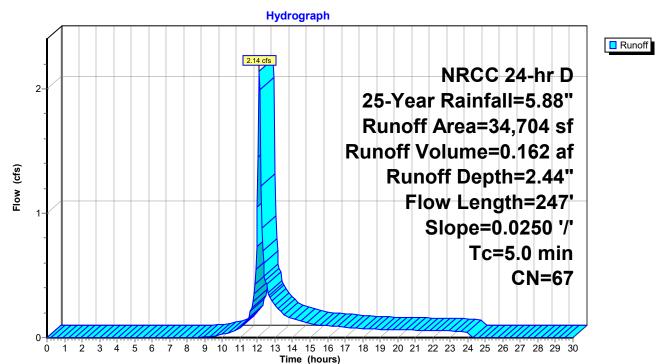
_	A	rea (sf)	CN	Description		
		3,009	39	>75% Gras	s cover, Go	ood, HSG A
_		6,417	98	Paved park	ting, HSG A	
		9,426	79	Weighted A	verage	
		3,009		31.92% Pe	rvious Area	
	6,417 68.08% Impervious Are			68.08% Im	pervious Ar	ea
	То	Longth	Clone	Volocity	Consoitu	Description
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
-	0.3	18	0.0300	//	(010)	Sheet Flow.
	0.0	10	0.0000	, 1.14		Smooth surfaces $n=0.011$ P2= 3.13"
	1.6	26	0.1300	0.27		Sheet Flow.
	-	-				Grass: Short n= 0.150 P2= 3.13"
	0.1	6	0.0150	0.69		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.6	87	0.0150) 2.49		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	26	107	Total	Increased	to minimum	$T_0 = 5.0 \text{ min}$

2.6 137 Total, Increased to minimum Tc = 5.0 min

Subcatchment P20: TO DP#3

Summary for Subcatchment P24: TO DCB#24

[49] Hint: Tc<2dt may require smaller dt


Runoff = 2.14 cfs @ 12.12 hrs, Volume= 0.162 af, Depth= 2.44" Routed to Reach DCB24 : TO DMH#113

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 25-Year Rainfall=5.88"

_	A	rea (sf)	CN	Description		
		18,387	39	>75% Gras	s cover, Go	bod, HSG A
16,317 98 Paved parking, HSG A						
		34,704	67	Weighted A	verage	
		18,387		52.98% Pe	rvious Area	l
16,317 47.02% Impervious Area						ea
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
	0.6	50	0.0250	1.29		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.0	197	0.0250	3.21		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	10	047	Tatal	المحمد محما ا		

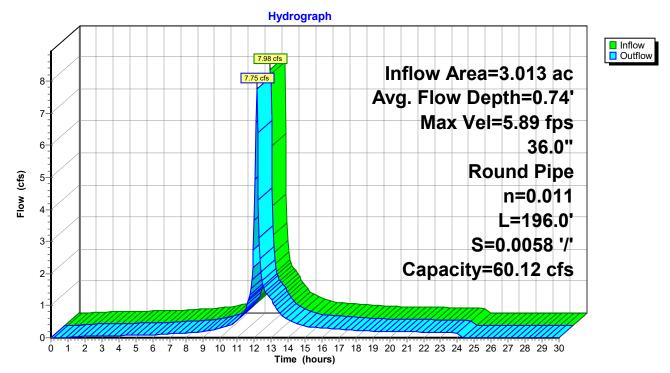
1.6 247 Total, Increased to minimum Tc = 5.0 min

Subcatchment P24: TO DCB#24

Summary for Reach CMH3: TO DMH-E

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH-F outlet invert by 0.73' @ 12.15 hrs

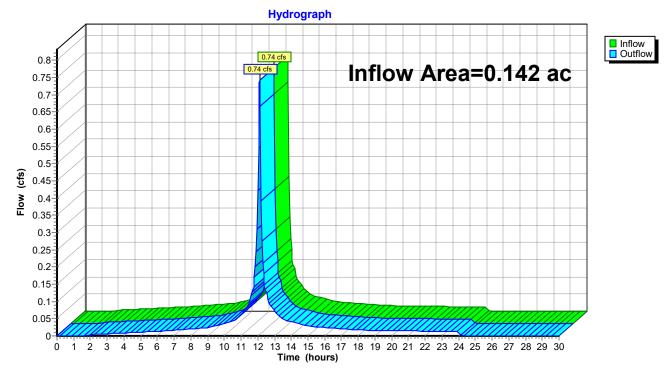
Inflow Area = 3.013 ac, 76.57% Impervious, Inflow Depth = 2.81" for 25-Year event Inflow = 7.98 cfs @ 12.13 hrs, Volume= 0.707 af Outflow = 7.75 cfs @ 12.15 hrs, Volume= 0.707 af, Atten= 3%, Lag= 0.8 min Routed to Reach DMH-E : TO DMH-D


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.89 fps, Min. Travel Time= 0.6 min Avg. Velocity = 2.00 fps, Avg. Travel Time= 1.6 min

Peak Storage= 264 cf @ 12.14 hrs Average Depth at Peak Storage= 0.74', Surface Width= 2.58' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.12 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 196.0' Slope= 0.0058 '/' Inlet Invert= 457.71', Outlet Invert= 456.57'

Reach CMH3: TO DMH-E

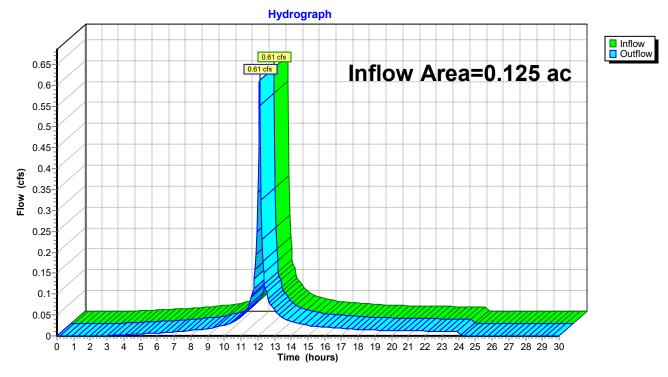


Summary for Reach DCB-A: TO DMH-D

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.142 ac, 94.61% Impervious, Inflow	Depth = 5.29" for 25-Year event					
Inflow =	0.74 cfs @ 12.11 hrs, Volume=	0.063 af					
Outflow =	0.74 cfs @ 12.11 hrs, Volume=	0.063 af, Atten= 0%, Lag= 0.0 min					
Routed to Reach DMH-D : TO DMH-C							

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

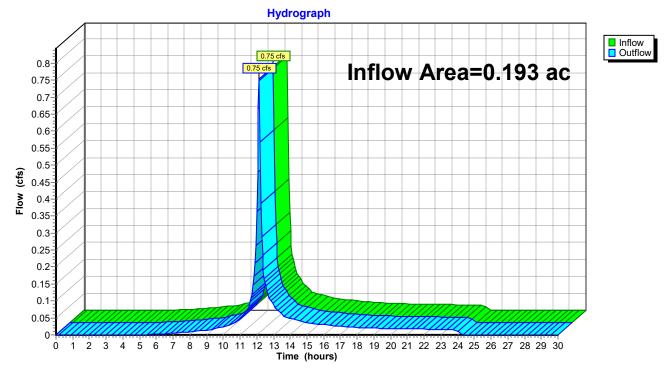

Reach DCB-A: TO DMH-D

Summary for Reach DCB-B: TO DMH-E

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.125 ac, 87.24% Impervious, Inflo	w Depth = 4.73" for 25-Year event					
Inflow =	0.61 cfs @ 12.11 hrs, Volume=	0.049 af					
Outflow =	0.61 cfs @ 12.11 hrs, Volume=	0.049 af, Atten= 0%, Lag= 0.0 min					
Routed to Reach DMH-E : TO DMH-D							

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DCB-B: TO DMH-E

Summary for Reach DCB-C: TO TRUNKLINE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.193 ac, 71.34% Impervious, Inflo	w Depth = 3.77"	for 25-Year event				
Inflow =	0.75 cfs @ 12.14 hrs, Volume=	0.061 af					
Outflow =	0.75 cfs @ 12.14 hrs, Volume=	0.061 af, Atte	en= 0%, Lag= 0.0 min				
Routed to Reach DMH-E : TO DMH-D							

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

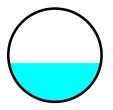
Reach DCB-C: TO TRUNKLINE

Summary for Reach DCB-D: TO DMH-A

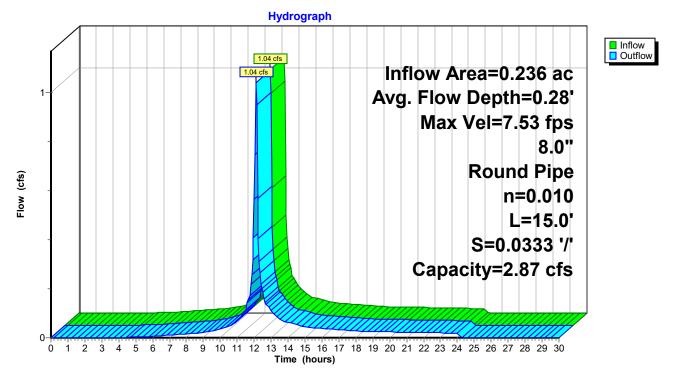
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.236 ac, 76.50% Impervious, Inflow Depth =
 4.08" for 25-Year event

 Inflow =
 1.04 cfs @
 12.11 hrs, Volume=
 0.080 af


 Outflow =
 1.04 cfs @
 12.11 hrs, Volume=
 0.080 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH-A* : TO DMH-B
 TO DMH-B
 0.080 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.53 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.67 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.28', Surface Width= 0.66' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.87 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 15.0' Slope= 0.0333 '/' Inlet Invert= 468.00', Outlet Invert= 467.50'

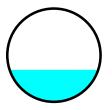
Reach DCB-D: TO DMH-A

Summary for Reach DCB-E: TO DMH-A

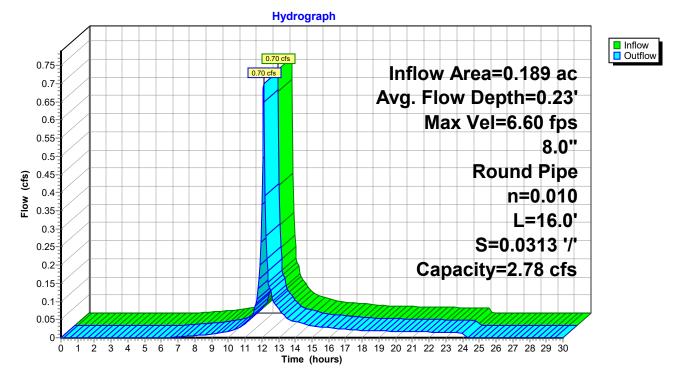
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.189 ac, 64.27% Impervious, Inflow Depth =
 3.37" for 25-Year event

 Inflow =
 0.70 cfs @
 12.12 hrs, Volume=
 0.053 af


 Outflow =
 0.70 cfs @
 12.12 hrs, Volume=
 0.053 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH-A* : TO DMH-B
 0.053 af, Atten= 1%, Lag= 0.1 min
 0.053 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.60 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.39 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.23', Surface Width= 0.63' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.78 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 16.0' Slope= 0.0313 '/' Inlet Invert= 468.00', Outlet Invert= 467.50'

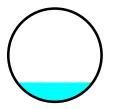
Reach DCB-E: TO DMH-A

Summary for Reach DCB10: TO DMH#106

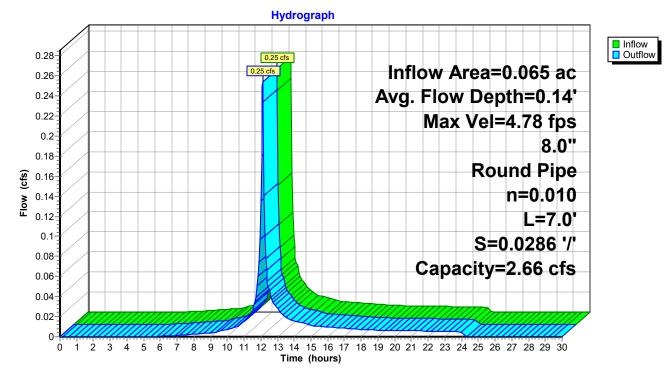
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.065 ac, 67.92% Impervious, Inflow Depth =
 3.57" for 25-Year event

 Inflow =
 0.25 cfs @
 12.11 hrs, Volume=
 0.019 af


 Outflow =
 0.25 cfs @
 12.12 hrs, Volume=
 0.019 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH106 : TO DMH#105
 TO DMH#105
 10.019 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.78 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.70 fps, Avg. Travel Time= 0.1 min

Peak Storage= 0 cf @ 12.12 hrs Average Depth at Peak Storage= 0.14', Surface Width= 0.54' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.66 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 7.0' Slope= 0.0286 '/' Inlet Invert= 470.30', Outlet Invert= 470.10'

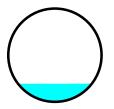
Reach DCB10: TO DMH#106

Summary for Reach DCB11: TO DMH#103

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.095 ac, 28.74% Impervious, Inflow Depth =
 1.53" for 25-Year event

 Inflow =
 0.15 cfs @
 12.12 hrs, Volume=
 0.012 af


 Outflow =
 0.15 cfs @
 12.13 hrs, Volume=
 0.012 af, Atten= 0%, Lag= 0.2 min

 Routed to Reach DMH106 : TO DMH#105
 TO DMH#105
 10.012 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.10 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.32 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.13 hrs Average Depth at Peak Storage= 0.13', Surface Width= 0.53' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.81 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 15.0' Slope= 0.0133 '/' Inlet Invert= 470.30', Outlet Invert= 470.10'

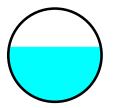
Reach DCB11: TO DMH#103

Summary for Reach DCB12: TO DMH#12

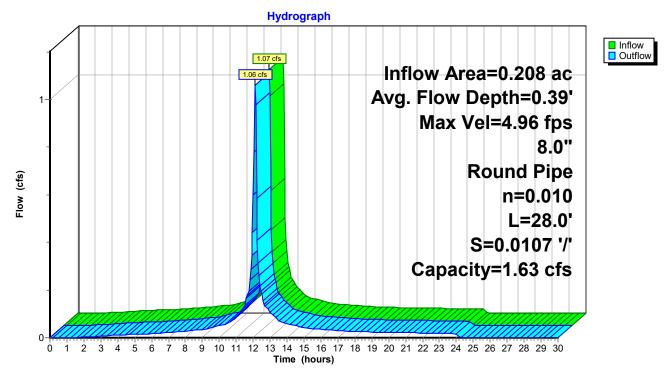
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.208 ac, 93.65% Impervious, Inflow Depth =
 5.18" for 25-Year event

 Inflow =
 1.07 cfs @
 12.11 hrs, Volume=
 0.090 af


 Outflow =
 1.06 cfs @
 12.11 hrs, Volume=
 0.090 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH108 : TO DMH#107
 5.18
 5.18


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.96 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.81 fps, Avg. Travel Time= 0.3 min

Peak Storage= 6 cf @ 12.11 hrs Average Depth at Peak Storage= 0.39', Surface Width= 0.66' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.63 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 28.0' Slope= 0.0107 '/' Inlet Invert= 467.80', Outlet Invert= 467.50'

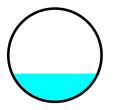
Reach DCB12: TO DMH#12

Summary for Reach DCB13: TO DMH#102

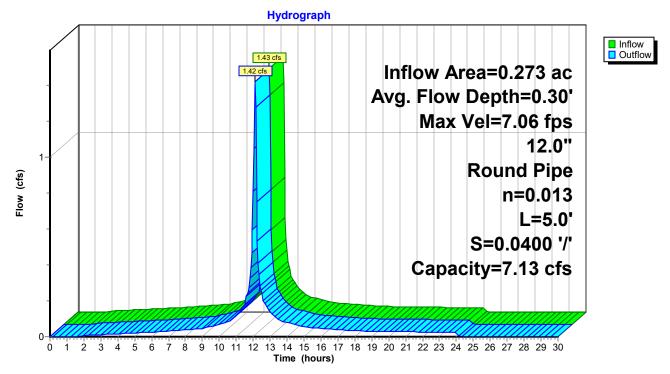
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.273 ac, 94.49% Impervious, Inflow Depth =
 5.29" for 25-Year event

 Inflow =
 1.43 cfs @
 12.11 hrs, Volume=
 0.120 af


 Outflow =
 1.42 cfs @
 12.11 hrs, Volume=
 0.120 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.120 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.06 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.48 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.30', Surface Width= 0.92' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 467.90', Outlet Invert= 467.70'

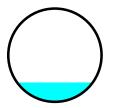
Reach DCB13: TO DMH#102

Summary for Reach DCB14: TO DMH#109

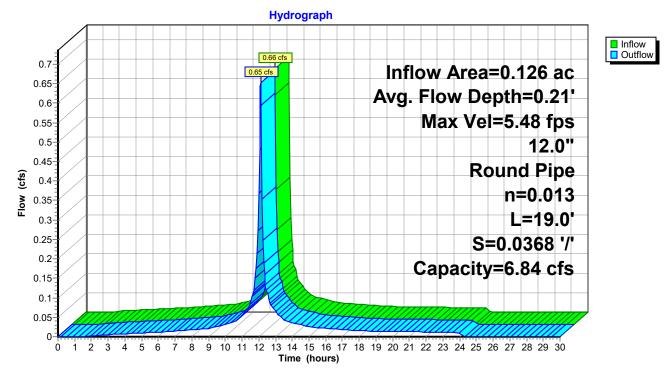
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.126 ac, 94.42% Impervious, Inflow Depth =
 5.29" for 25-Year event

 Inflow =
 0.66 cfs @
 12.11 hrs, Volume=
 0.056 af


 Outflow =
 0.65 cfs @
 12.11 hrs, Volume=
 0.056 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH109 : TO DMH#110
 50.056 af, Atten= 1%, Lag= 0.1 min
 50.056 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.48 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.91 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.81' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.84 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 19.0' Slope= 0.0368 '/' Inlet Invert= 467.10', Outlet Invert= 466.40'

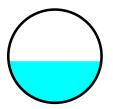
Reach DCB14: TO DMH#109

Summary for Reach DCB15: TO DMH#102

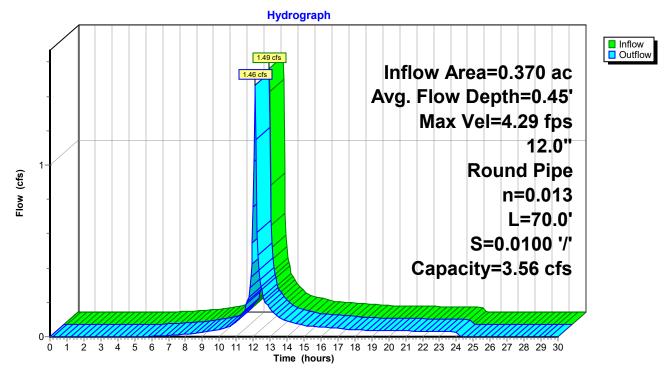
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.370 ac, 70.06% Impervious, Inflow Depth =
 3.67" for 25-Year event

 Inflow =
 1.49 cfs @
 12.11 hrs, Volume=
 0.113 af


 Outflow =
 1.46 cfs @
 12.13 hrs, Volume=
 0.113 af, Atten= 2%, Lag= 0.7 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.113 af, Atten= 2%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.29 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.55 fps, Avg. Travel Time= 0.8 min

Peak Storage= 24 cf @ 12.12 hrs Average Depth at Peak Storage= 0.45', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 70.0' Slope= 0.0100 '/' Inlet Invert= 467.00', Outlet Invert= 466.30'

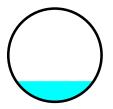
Reach DCB15: TO DMH#102

Summary for Reach DCB19: TO DMH#111

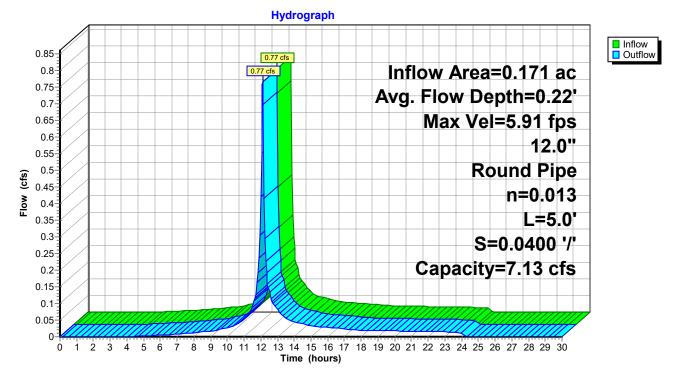
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.171 ac, 78.16% Impervious, Inflow Depth =
 4.19" for 25-Year event

 Inflow =
 0.77 cfs @
 12.11 hrs, Volume=
 0.060 af


 Outflow =
 0.77 cfs @
 12.11 hrs, Volume=
 0.060 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH111 : TO DMH#112
 0.060 af, Atten= 0%, Lag= 0.0 min
 0.060 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.91 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.05 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.22', Surface Width= 0.83' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 463.80', Outlet Invert= 463.60'

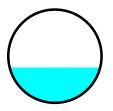
Reach DCB19: TO DMH#111

Summary for Reach DCB20: TO DMH#109

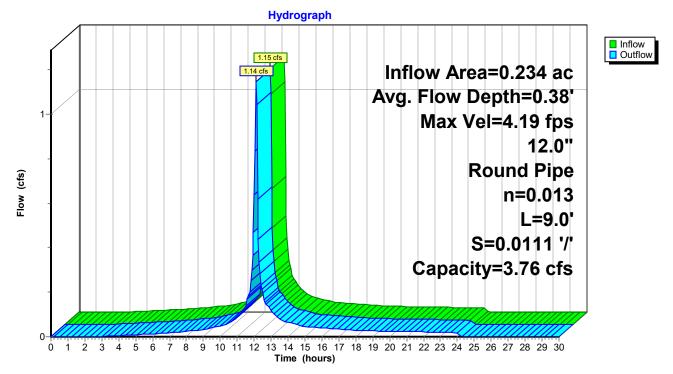
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.234 ac, 85.75% Impervious, Inflow Depth =
 4.73"
 for 25-Year event

 Inflow =
 1.15 cfs @
 12.11 hrs, Volume=
 0.092 af


 Outflow =
 1.14 cfs @
 12.11 hrs, Volume=
 0.092 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 0.092 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.19 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.47 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.38', Surface Width= 0.97' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.76 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 9.0' Slope= 0.0111 '/' Inlet Invert= 466.50', Outlet Invert= 466.40'

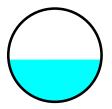
Reach DCB20: TO DMH#109

Summary for Reach DCB21: TO DMH#109A

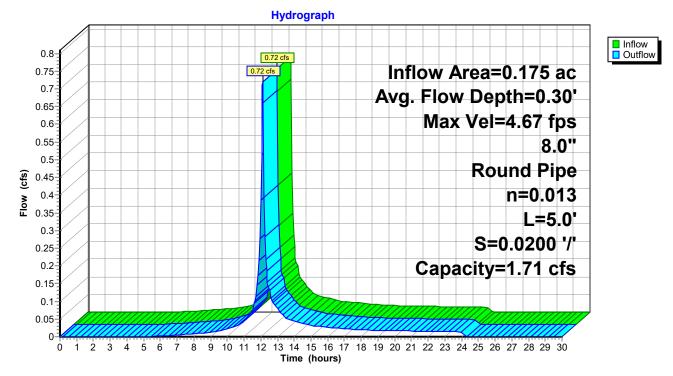
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.175 ac, 71.01% Impervious, Inflow Depth =
 3.77"
 for 25-Year event

 Inflow =
 0.72 cfs @
 12.11 hrs, Volume=
 0.055 af


 Outflow =
 0.72 cfs @
 12.11 hrs, Volume=
 0.055 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH109A : TO DMH109
 TO DMH109
 10.055 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.67 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.30', Surface Width= 0.66' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 467.10', Outlet Invert= 467.00'

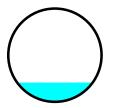
Reach DCB21: TO DMH#109A

Summary for Reach DCB22: TO DMH#111

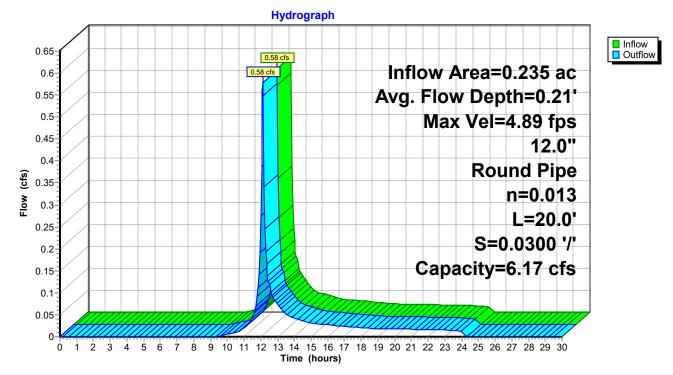
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.235 ac, 44.85% Impervious, Inflow Depth =
 2.26" for 25-Year event

 Inflow =
 0.58 cfs @
 12.12 hrs, Volume=
 0.044 af


 Outflow =
 0.58 cfs @
 12.12 hrs, Volume=
 0.044 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH111 : TO DMH#112
 20.044 af, Atten= 1%, Lag= 0.2 min
 20.044 af, Atten= 1%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.89 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.91 fps, Avg. Travel Time= 0.2 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.81' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.17 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0300 '/' Inlet Invert= 464.20', Outlet Invert= 463.60'

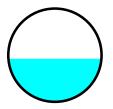
Reach DCB22: TO DMH#111

Summary for Reach DCB23: TO DMH#111

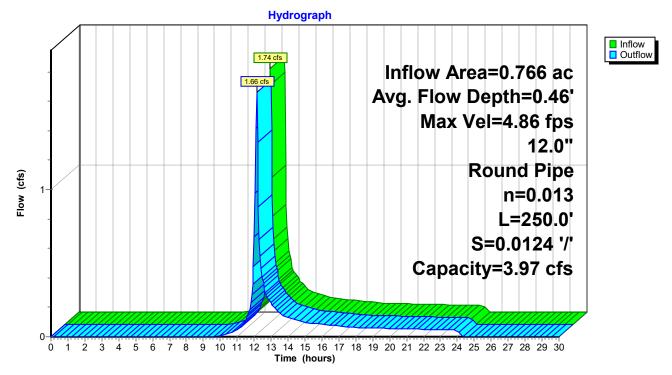
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.766 ac, 40.00% Impervious, Inflow Depth =
 2.09" for 25-Year event

 Inflow =
 1.74 cfs @
 12.12 hrs, Volume=
 0.134 af


 Outflow =
 1.66 cfs @
 12.15 hrs, Volume=
 0.134 af, Atten= 4%, Lag= 1.5 min

 Routed to Reach DMH111 : TO DMH#112
 20.134 af, Atten= 4%, Lag= 1.5 min
 20.134 af, Atten= 4%, Lag= 1.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.86 fps, Min. Travel Time= 0.9 min Avg. Velocity = 1.93 fps, Avg. Travel Time= 2.2 min

Peak Storage= 89 cf @ 12.14 hrs Average Depth at Peak Storage= 0.46', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.97 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 250.0' Slope= 0.0124 '/' Inlet Invert= 466.70', Outlet Invert= 463.60'

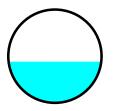
Reach DCB23: TO DMH#111

Summary for Reach DCB24: TO DMH#113

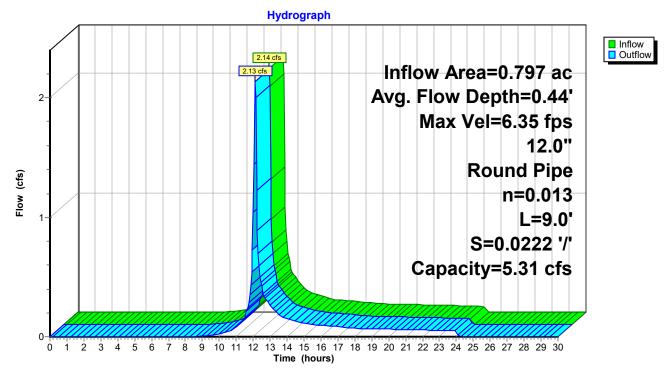
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.797 ac, 47.02% Impervious, Inflow Depth =
 2.44" for 25-Year event

 Inflow =
 2.14 cfs @
 12.12 hrs, Volume=
 0.162 af


 Outflow =
 2.13 cfs @
 12.12 hrs, Volume=
 0.162 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH113 : TO DMH#114
 2.12 hrs, Volume=
 0.162 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.35 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.49 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.12 hrs Average Depth at Peak Storage= 0.44', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.31 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 9.0' Slope= 0.0222 '/' Inlet Invert= 460.50', Outlet Invert= 460.30'

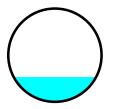
Reach DCB24: TO DMH#113

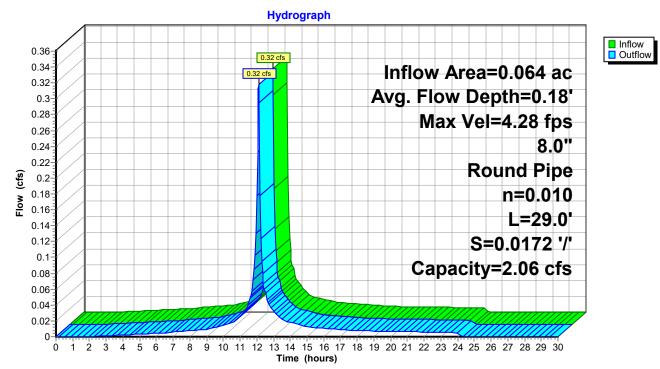
Summary for Reach DCB25: TO DMH#109A

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.064 ac, 89.32% Impervious, Inflow Depth =
 4.95" for 25-Year event

 Inflow =
 0.32 cfs @
 12.11 hrs, Volume=
 0.026 af


 Outflow =
 0.32 cfs @
 12.12 hrs, Volume=
 0.026 af, Atten= 1%, Lag= 0.2 min


 Routed to Reach DMH109A : TO DMH109
 TO DMH109
 10.026 af, Atten= 1%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.28 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.49 fps, Avg. Travel Time= 0.3 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.18', Surface Width= 0.59' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.06 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 29.0' Slope= 0.0172 '/' Inlet Invert= 467.50', Outlet Invert= 467.00'

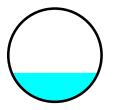
Reach DCB25: TO DMH#109A

Summary for Reach DCB5: TO DMH#108

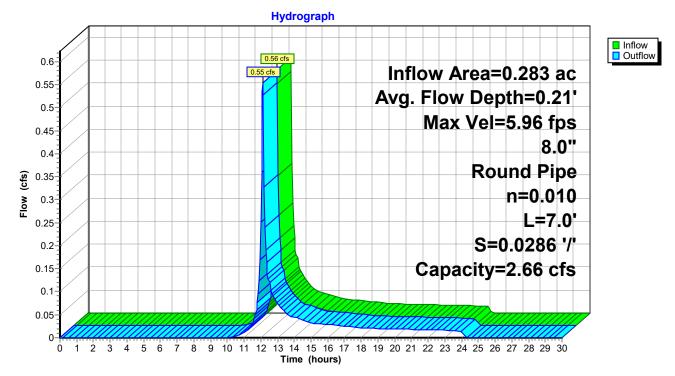
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.283 ac, 35.47% Impervious, Inflow Depth =
 1.84" for 25-Year event

 Inflow =
 0.56 cfs @
 12.12 hrs, Volume=
 0.043 af


 Outflow =
 0.55 cfs @
 12.12 hrs, Volume=
 0.043 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH108 : TO DMH#107
 TO DMH#107
 0.043 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.96 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.45 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.62' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.66 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 7.0' Slope= 0.0286 '/' Inlet Invert= 468.20', Outlet Invert= 468.00'

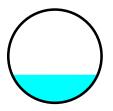
Reach DCB5: TO DMH#108

Summary for Reach DCB6: TO DMH#107

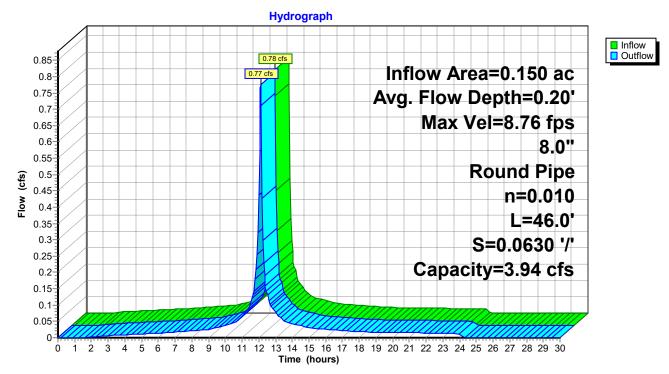
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.150 ac, 94.27% Impervious, Inflow Depth =
 5.29" for 25-Year event

 Inflow =
 0.78 cfs @
 12.11 hrs, Volume=
 0.066 af


 Outflow =
 0.77 cfs @
 12.11 hrs, Volume=
 0.066 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH107 : TO DMH#100
 5.29"
 5.29"
 5.29"


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.76 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.08 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.11 hrs Average Depth at Peak Storage= 0.20', Surface Width= 0.61' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.94 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 46.0' Slope= 0.0630 '/' Inlet Invert= 469.80', Outlet Invert= 466.90'

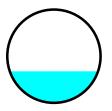
Reach DCB6: TO DMH#107

Summary for Reach DCB7: TO DMH#102

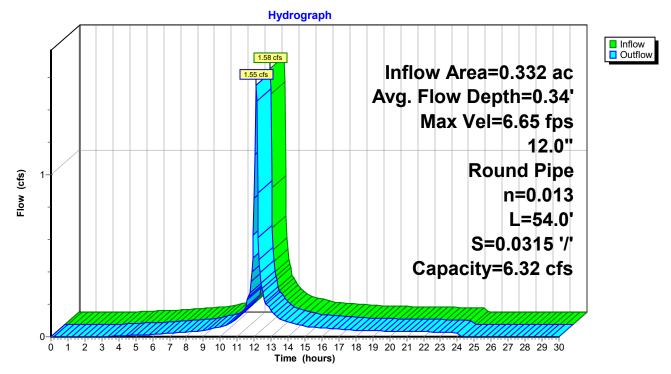
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.332 ac, 83.32% Impervious, Inflow Depth =
 4.51" for 25-Year event

 Inflow =
 1.58 cfs @
 12.11 hrs, Volume=
 0.125 af


 Outflow =
 1.55 cfs @
 12.12 hrs, Volume=
 0.125 af, Atten= 2%, Lag= 0.3 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.125 af, Atten= 2%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.65 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.32 fps, Avg. Travel Time= 0.4 min

Peak Storage= 13 cf @ 12.12 hrs Average Depth at Peak Storage= 0.34', Surface Width= 0.95' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 54.0' Slope= 0.0315 '/' Inlet Invert= 468.40', Outlet Invert= 466.70'

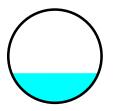
Reach DCB7: TO DMH#102

Summary for Reach DCB8: TO DMH#103

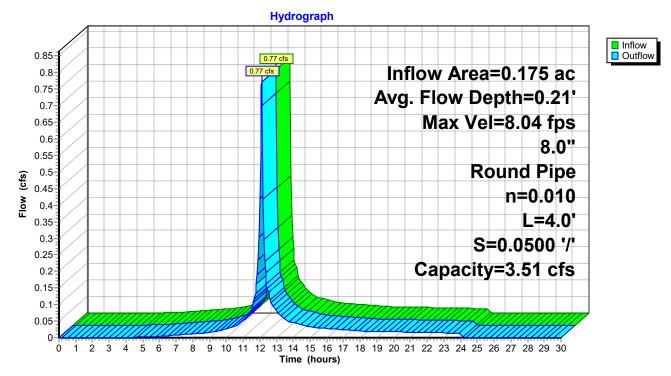
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.175 ac, 76.33% Impervious, Inflow Depth =
 4.08"
 for 25-Year event

 Inflow =
 0.77 cfs @
 12.11 hrs, Volume=
 0.060 af


 Outflow =
 0.77 cfs @
 12.11 hrs, Volume=
 0.060 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH104 : TO DMH#104
 TO DMH#104
 10.060 af, Atten= 0%, Lag= 0.0 min

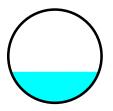

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.04 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.81 fps, Avg. Travel Time= 0.0 min

Peak Storage= 0 cf @ 12.11 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.62' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.51 cfs

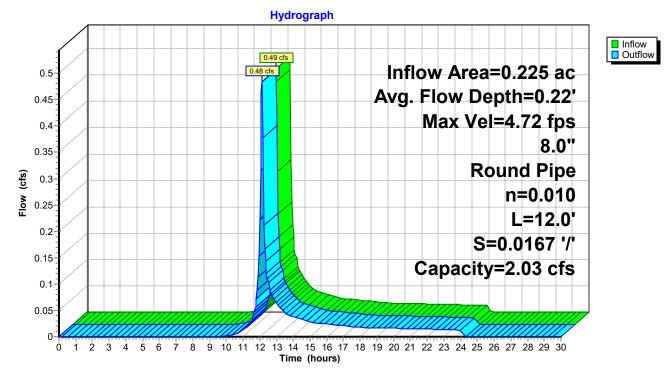
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 4.0' Slope= 0.0500 '/' Inlet Invert= 470.00', Outlet Invert= 469.80'

Reach DCB8: TO DMH#103

Summary for Reach DCB9: TO DMH#103


[52] Hint: Inlet/Outlet conditions not evaluated

Inflow Area =0.225 ac, 39.59% Impervious, Inflow Depth =2.01" for 25-Year eventInflow =0.49 cfs @12.12 hrs, Volume=0.038 afOutflow =0.48 cfs @12.12 hrs, Volume=0.038 af, Atten= 0%, Lag= 0.1 minRouted to Reach DMH104 : TO DMH#104

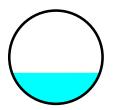

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.72 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.92 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.22', Surface Width= 0.63' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.03 cfs

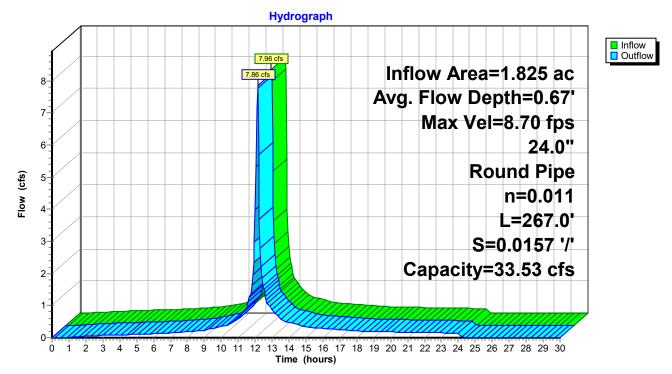
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 12.0' Slope= 0.0167 '/' Inlet Invert= 470.00', Outlet Invert= 469.80'

Reach DCB9: TO DMH#103

Summary for Reach DMH-A*: TO DMH-B


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH100 outlet invert by 0.56' @ 12.15 hrs

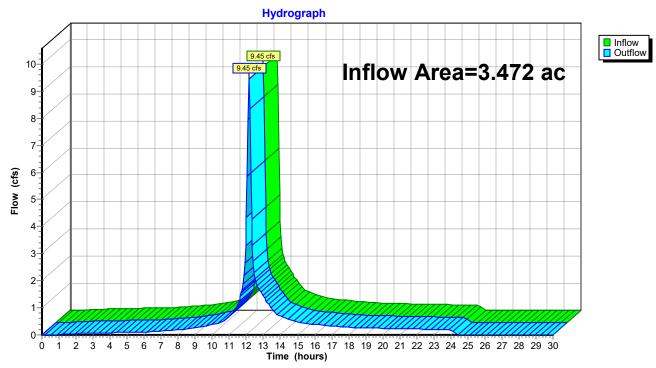
Inflow Area = 1.825 ac, 82.07% Impervious, Inflow Depth = 4.54" for 25-Year event Inflow = 7.96 cfs @ 12.12 hrs, Volume= 0.690 af Outflow = 7.86 cfs @ 12.14 hrs, Volume= 0.690 af, Atten= 1%, Lag= 0.9 min Routed to Reach DP2 : MUNICIPAL SYSTEM


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.70 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.02 fps, Avg. Travel Time= 1.5 min

Peak Storage= 245 cf @ 12.13 hrs Average Depth at Peak Storage= 0.67', Surface Width= 1.89' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 33.53 cfs

24.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 267.0' Slope= 0.0157 '/' Inlet Invert= 463.70', Outlet Invert= 459.50'

Reach DMH-A*: TO DMH-B



Summary for Reach DMH-C: TO DP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.472 ac, 77.40% Impervious, Inflow D	Depth = 3.04" for 25-Year event
Inflow =	9.45 cfs @ 12.15 hrs, Volume=	0.879 af
Outflow =	9.45 cfs @ 12.15 hrs, Volume=	0.879 af, Atten= 0%, Lag= 0.0 min
Routed to Reach DP2 : MUNICIPAL SYSTEM		

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

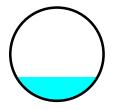
Reach DMH-C: TO DP#1

Summary for Reach DMH-D: TO DMH-C

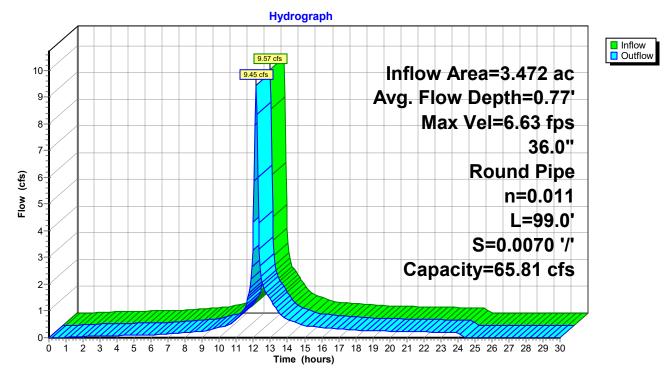
[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach DMH-E OUTLET depth by 0.01' @ 24.25 hrs
[79] Warning: Submerged Pond DMH-B Primary device # 1 OUTLET by 0.77'

 Inflow Area =
 3.472 ac, 77.40% Impervious, Inflow Depth =
 3.04" for 25-Year event

 Inflow =
 9.57 cfs @
 12.15 hrs, Volume=
 0.879 af


 Outflow =
 9.45 cfs @
 12.15 hrs, Volume=
 0.879 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach DMH-C : TO DP#1
 TO DP#1
 0.879 af, Atten= 1%, Lag= 0.4 min

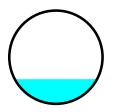

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.63 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.26 fps, Avg. Travel Time= 0.7 min

Peak Storage= 143 cf @ 12.15 hrs Average Depth at Peak Storage= 0.77', Surface Width= 2.62' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 65.81 cfs

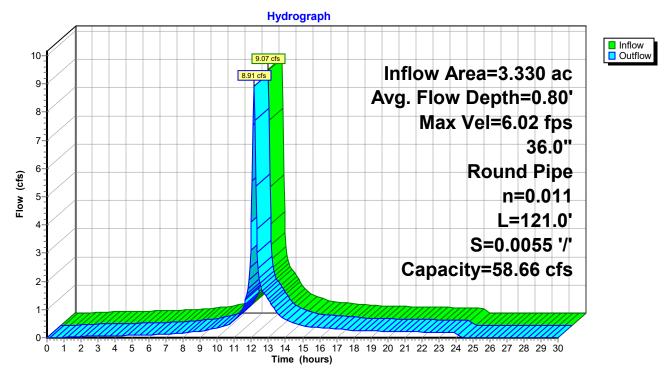
36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 99.0' Slope= 0.0070 '/' Inlet Invert= 455.90', Outlet Invert= 455.21'

Reach DMH-D: TO DMH-C

Summary for Reach DMH-E: TO DMH-D


[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach CMH3 OUTLET depth by 0.08' @ 12.20 hrs

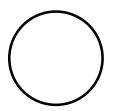
Inflow Area = 3.330 ac, 76.67% Impervious, Inflow Depth = 2.94" for 25-Year event Inflow = 9.07 cfs @ 12.14 hrs, Volume= 0.816 af Outflow = 8.91 cfs @ 12.15 hrs, Volume= 0.816 af, Atten= 2%, Lag= 0.5 min Routed to Reach DMH-D : TO DMH-C

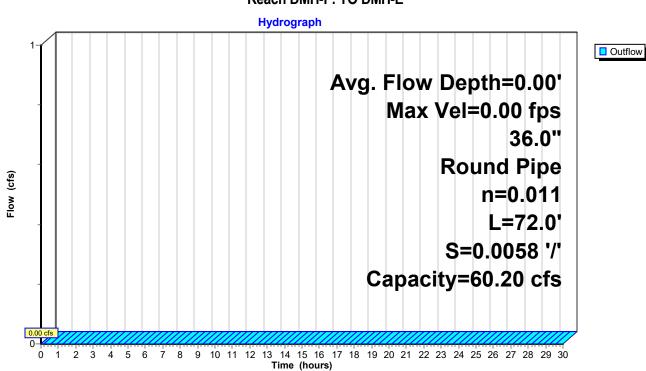

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.02 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.04 fps, Avg. Travel Time= 1.0 min

Peak Storage= 182 cf @ 12.15 hrs Average Depth at Peak Storage= 0.80', Surface Width= 2.65' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 58.66 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 121.0' Slope= 0.0055 '/' Inlet Invert= 456.57', Outlet Invert= 455.90'

Reach DMH-E: TO DMH-D



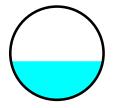

Summary for Reach DMH-F: TO DMH-E

[43] Hint: Has no inflow (Outflow=Zero)

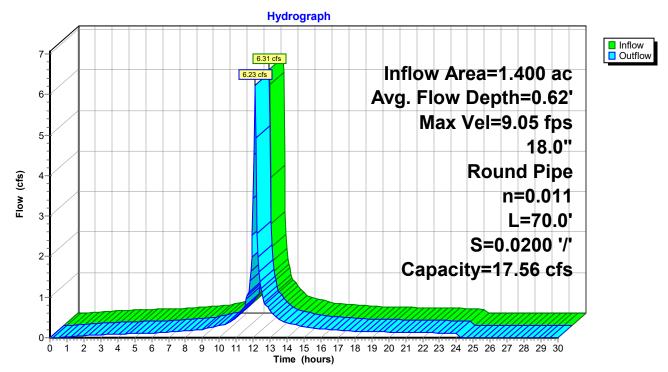
Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.20 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0058 '/' Inlet Invert= 458.13', Outlet Invert= 457.71'

Reach DMH-F: TO DMH-E


Summary for Reach DMH100: TO DMH-A

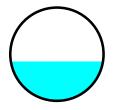
[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach DMH101 outlet invert by 0.51' @ 12.10 hrs
[62] Hint: Exceeded Reach DMH107 OUTLET depth by 0.07' @ 12.10 hrs
Inflow Area = 1.400 ac, 85.41% Impervious, Inflow Depth = 4.77" for 25-Year event
Inflow = 6.31 cfs @ 12.12 hrs, Volume= 0.556 af
Outflow = 6.23 cfs @ 12.12 hrs, Volume= 0.556 af, Atten= 1%, Lag= 0.3 min Routed to Reach DMH-A* : TO DMH-B


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 9.05 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.24 fps, Avg. Travel Time= 0.4 min

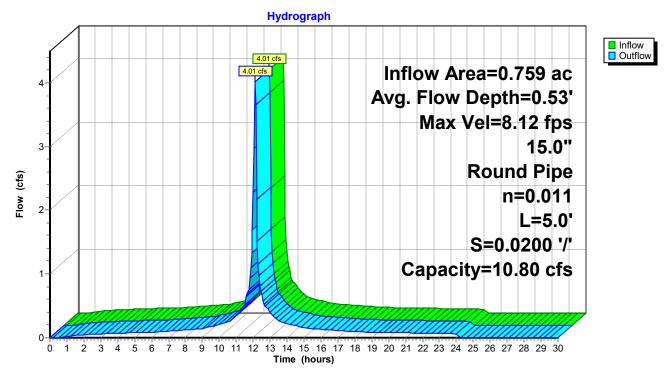
Peak Storage= 48 cf @ 12.12 hrs Average Depth at Peak Storage= 0.62', Surface Width= 1.48' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 17.56 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 70.0' Slope= 0.0200 '/' Inlet Invert= 465.20', Outlet Invert= 463.80'

Reach DMH100: TO DMH-A


Summary for Reach DMH101: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach RF1 outlet invert by 0.22' @ 12.10 hrs
[61] Hint: Exceeded Reach RF2 outlet invert by 0.22' @ 12.10 hrs
Inflow Area = 0.759 ac,100.00% Impervious, Inflow Depth = 5.64" for 25-Year event
Inflow = 4.01 cfs @ 12.11 hrs, Volume= 0.357 af
Outflow = 4.01 cfs @ 12.11 hrs, Volume= 0.357 af, Atten= 0%, Lag= 0.0 min
Routed to Reach DMH100 : TO DMH-A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.12 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.95 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.53', Surface Width= 1.23' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 10.80 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 465.40', Outlet Invert= 465.30'

Reach DMH101: TO DMH#100

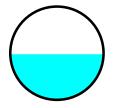
Summary for Reach DMH102: TO UGS#1A

[52] Hint: Inlet/Outlet conditions not evaluated

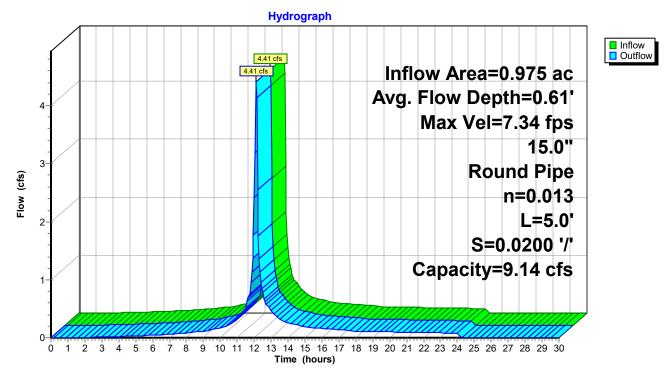
- [61] Hint: Exceeded Reach DCB15 outlet invert by 0.41' @ 12.10 hrs
- [61] Hint: Exceeded Reach DCB7 outlet invert by 0.01' @ 12.10 hrs

 Inflow Area =
 0.975 ac, 81.42% Impervious, Inflow Depth =
 4.41" for 25-Year event

 Inflow =
 4.41 cfs @
 12.12 hrs, Volume=
 0.358 af


 Outflow =
 4.41 cfs @
 12.12 hrs, Volume=
 0.358 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach UGS1A : TO UGS#1
 TO UGS#1
 0.358 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.34 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.53 fps, Avg. Travel Time= 0.0 min

Peak Storage= 3 cf @ 12.12 hrs Average Depth at Peak Storage= 0.61', Surface Width= 1.25' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 9.14 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 466.10', Outlet Invert= 466.00'

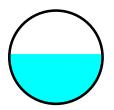
Reach DMH102: TO UGS#1A

Summary for Reach DMH103: TO CMH#2

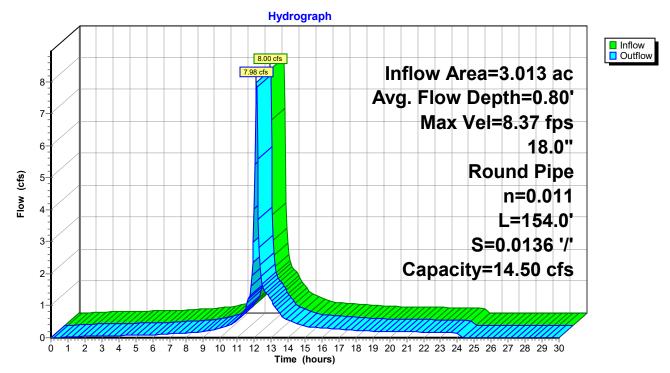
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach DMH104 OUTLET depth by 0.30' @ 12.15 hrs

 Inflow Area =
 3.013 ac, 76.57% Impervious, Inflow Depth =
 2.81" for 25-Year event

 Inflow =
 8.00 cfs @
 12.12 hrs, Volume=
 0.707 af


 Outflow =
 7.98 cfs @
 12.13 hrs, Volume=
 0.707 af, Atten= 0%, Lag= 0.6 min

 Routed to Reach CMH3 : TO DMH-E
 TO DMH-E
 0.707 af, Atten= 0%, Lag= 0.6 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.37 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.95 fps, Avg. Travel Time= 0.9 min

Peak Storage= 148 cf @ 12.13 hrs Average Depth at Peak Storage= 0.80', Surface Width= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.50 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 154.0' Slope= 0.0136 '/' Inlet Invert= 464.10', Outlet Invert= 462.00'

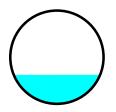
Reach DMH103: TO CMH#2

Summary for Reach DMH104: TO DMH#104

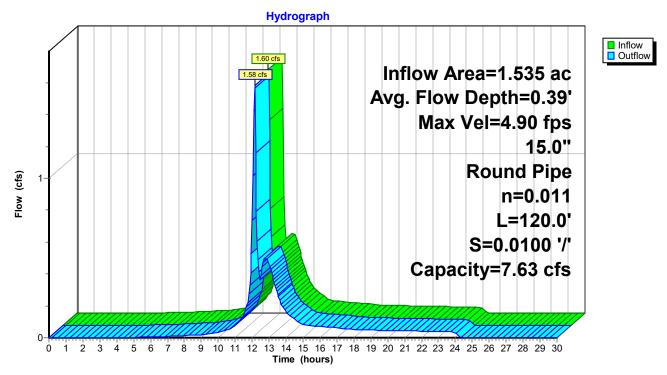
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach DMH105 OUTLET depth by 0.09' @ 12.15 hrs

 Inflow Area =
 1.535 ac, 70.86% Impervious, Inflow Depth =
 1.18" for 25-Year event

 Inflow =
 1.60 cfs @
 12.13 hrs, Volume=
 0.151 af


 Outflow =
 1.58 cfs @
 12.14 hrs, Volume=
 0.151 af

 Routed to Reach DMH103 : TO CMH#2
 TO CMH#2
 1.58 cfs @


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.90 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.74 fps, Avg. Travel Time= 1.2 min

Peak Storage= 39 cf @ 12.13 hrs Average Depth at Peak Storage= 0.39', Surface Width= 1.16' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.63 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 120.0' Slope= 0.0100 '/' Inlet Invert= 465.40', Outlet Invert= 464.20'

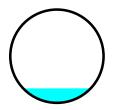
Reach DMH104: TO DMH#104

Summary for Reach DMH105: TO DMH#104

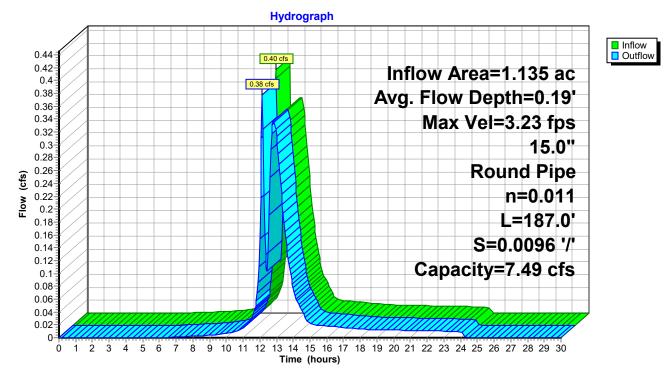
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach UGS1B OUTLET depth by 0.09' @ 12.15 hrs

 Inflow Area =
 1.135 ac, 76.23% Impervious, Inflow Depth =
 0.57" for 25-Year event

 Inflow =
 0.40 cfs @
 12.13 hrs, Volume=
 0.054 af


 Outflow =
 0.38 cfs @
 12.15 hrs, Volume=
 0.054 af, Atten= 5%, Lag= 1.4 min

 Routed to Reach DMH104 : TO DMH#104
 TO DMH#104
 10.054 af, Atten= 5%, Lag= 1.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.23 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.24 fps, Avg. Travel Time= 2.5 min

Peak Storage= 23 cf @ 12.14 hrs Average Depth at Peak Storage= 0.19', Surface Width= 0.91' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.49 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 187.0' Slope= 0.0096 '/' Inlet Invert= 467.30', Outlet Invert= 465.50'

Reach DMH105: TO DMH#104

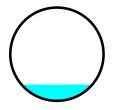
Summary for Reach DMH106: TO DMH#105

[52] Hint: Inlet/Outlet conditions not evaluated

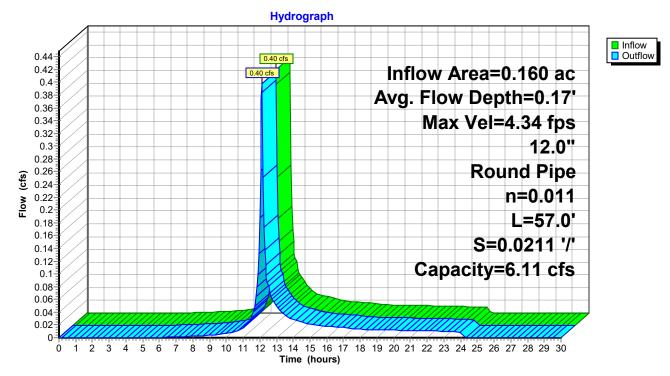
- [61] Hint: Exceeded Reach DCB10 outlet invert by 0.07' @ 12.15 hrs
- [61] Hint: Exceeded Reach DCB11 outlet invert by 0.07' @ 12.15 hrs

 Inflow Area =
 0.160 ac, 44.63% Impervious, Inflow Depth =
 2.36" for 25-Year event

 Inflow =
 0.40 cfs @
 12.12 hrs, Volume=
 0.031 af


 Outflow =
 0.40 cfs @
 12.13 hrs, Volume=
 0.031 af, Atten= 1%, Lag= 0.5 min

 Routed to Reach DMH105 : TO DMH#104
 0.031 af, Atten= 1%, Lag= 0.5 min
 0.031 af, Atten= 1%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.34 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.56 fps, Avg. Travel Time= 0.6 min

Peak Storage= 5 cf @ 12.13 hrs Average Depth at Peak Storage= 0.17', Surface Width= 0.76' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.11 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 57.0' Slope= 0.0211 '/' Inlet Invert= 470.00', Outlet Invert= 468.80'

Reach DMH106: TO DMH#105

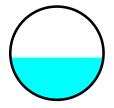
Summary for Reach DMH107: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach DCB6 OUTLET depth by 0.05' @ 12.15 hrs

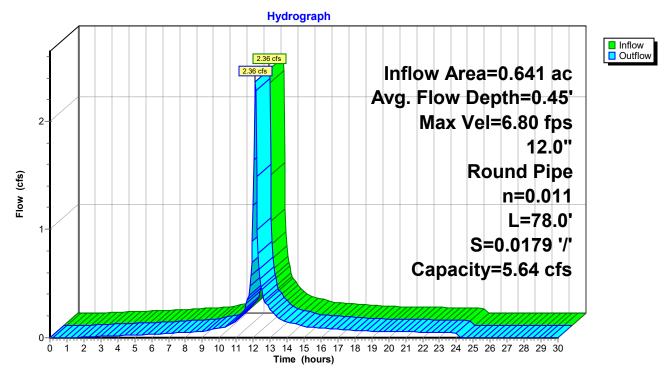
[61] Hint: Exceeded Reach DMH108 outlet invert by 0.24' @ 12.15 hrs

 Inflow Area =
 0.641 ac, 68.12% Impervious, Inflow Depth =
 3.73" for 25-Year event

 Inflow =
 2.36 cfs @
 12.12 hrs, Volume=
 0.199 af


 Outflow =
 2.36 cfs @
 12.13 hrs, Volume=
 0.199 af, Atten= 0%, Lag= 0.4 min

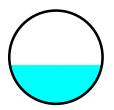
 Routed to Reach DMH100 : TO DMH-A
 TO DMH-A
 0.199 af, Atten= 0%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.80 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.41 fps, Avg. Travel Time= 0.5 min

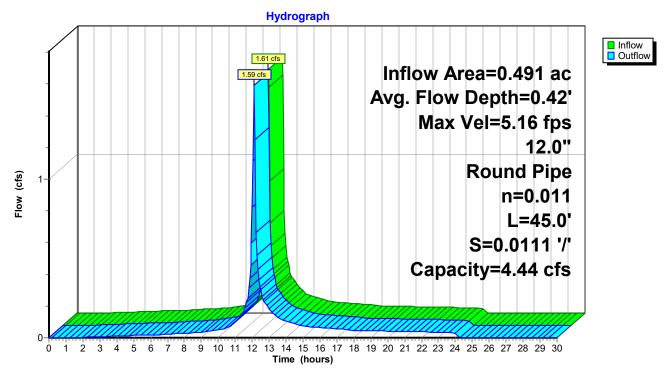
Peak Storage= 27 cf @ 12.13 hrs Average Depth at Peak Storage= 0.45', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.64 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 78.0' Slope= 0.0179 '/' Inlet Invert= 466.70', Outlet Invert= 465.30'

Reach DMH107: TO DMH#100


Summary for Reach DMH108: TO DMH#107

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DCB12 outlet invert by 0.31' @ 12.10 hrs


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.16 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.81 fps, Avg. Travel Time= 0.4 min

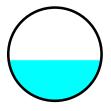
Peak Storage= 14 cf @ 12.12 hrs Average Depth at Peak Storage= 0.42', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.44 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 45.0' Slope= 0.0111 '/' Inlet Invert= 467.40', Outlet Invert= 466.90'

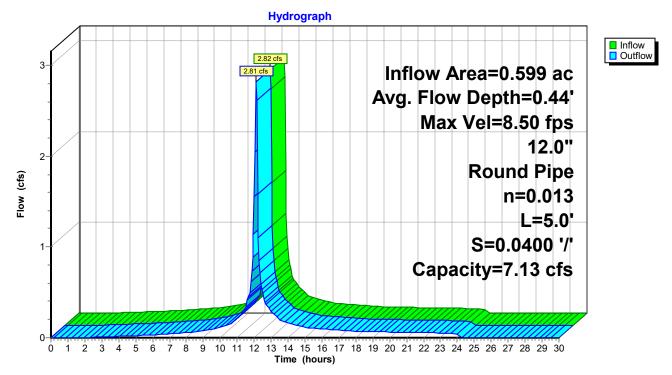
Reach DMH108: TO DMH#107

Summary for Reach DMH109: TO DMH#110

[52] Hint: Inlet/Outlet conditions not evaluated


- [62] Hint: Exceeded Reach DCB14 OUTLET depth by 0.03' @ 12.10 hrs
- [61] Hint: Exceeded Reach DCB20 outlet invert by 0.23' @ 12.10 hrs
- [61] Hint: Exceeded Reach DMH109A outlet invert by 0.23' @ 12.10 hrs

Inflow Area =0.599 ac, 83.64% Impervious, Inflow Depth =4.59" for 25-Year eventInflow =2.82 cfs @12.12 hrs, Volume=0.229 afOutflow =2.81 cfs @12.12 hrs, Volume=0.229 af, Atten= 0%, Lag= 0.0 minRouted to Reach DMH110 : TO UGS#2A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.50 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.92 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.44', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 466.20', Outlet Invert= 466.00'

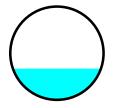
Reach DMH109: TO DMH#110

Summary for Reach DMH109A: TO DMH109

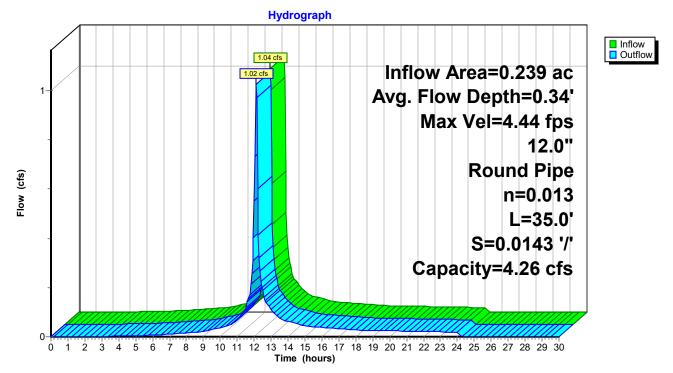
[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach DCB21 outlet invert by 0.23' @ 12.10 hrs
[62] Hint: Exceeded Reach DCB25 OUTLET depth by 0.06' @ 12.10 hrs

 Inflow Area =
 0.239 ac, 75.90% Impervious, Inflow Depth =
 4.09" for 25-Year event

 Inflow =
 1.04 cfs @
 12.12 hrs, Volume=
 0.081 af


 Outflow =
 1.02 cfs @
 12.12 hrs, Volume=
 0.081 af, Atten= 1%, Lag= 0.3 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 100 cfs
 100 cfs


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.44 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.49 fps, Avg. Travel Time= 0.4 min

Peak Storage= 8 cf @ 12.12 hrs Average Depth at Peak Storage= 0.34', Surface Width= 0.94' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.26 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0143 '/' Inlet Invert= 466.90', Outlet Invert= 466.40'

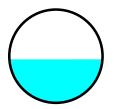
Reach DMH109A: TO DMH109

Summary for Reach DMH110: TO UGS#2A

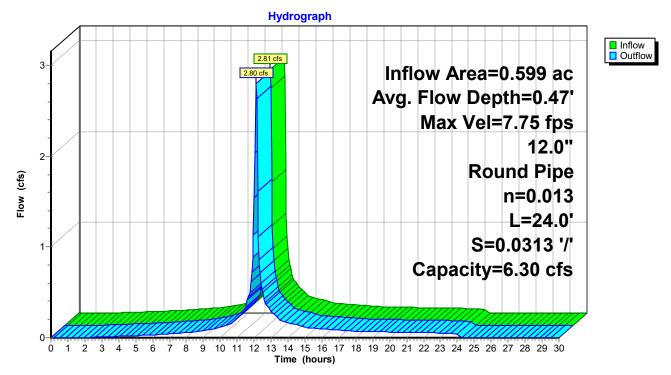
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH109 outlet invert by 0.21' @ 12.10 hrs

 Inflow Area =
 0.599 ac, 83.64% Impervious, Inflow Depth =
 4.59" for 25-Year event

 Inflow =
 2.81 cfs @
 12.12 hrs, Volume=
 0.229 af


 Outflow =
 2.80 cfs @
 12.12 hrs, Volume=
 0.229 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach UGS2A : TO UGS#2
 TO UGS#2
 0.229 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.75 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.68 fps, Avg. Travel Time= 0.1 min

Peak Storage= 9 cf @ 12.12 hrs Average Depth at Peak Storage= 0.47', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.30 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 24.0' Slope= 0.0313 '/' Inlet Invert= 465.75', Outlet Invert= 465.00'

Reach DMH110: TO UGS#2A

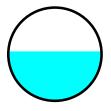
Summary for Reach DMH111: TO DMH#112

[52] Hint: Inlet/Outlet conditions not evaluated

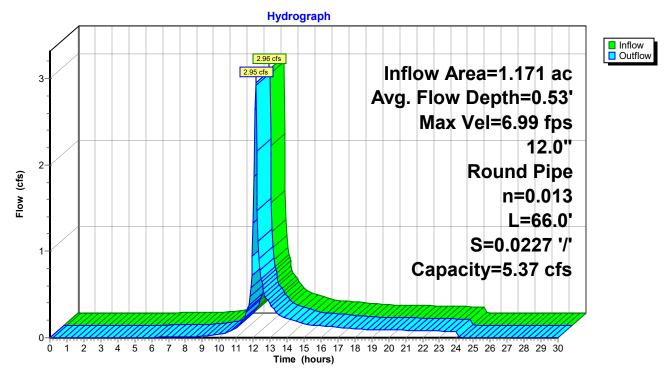
- [63] Warning: Exceeded Reach DCB19 INLET depth by 0.02' @ 12.15 hrs
- [62] Hint: Exceeded Reach DCB22 OUTLET depth by 0.23' @ 12.15 hrs
- [61] Hint: Exceeded Reach DCB23 outlet invert by 0.43' @ 12.15 hrs

 Inflow Area =
 1.171 ac, 46.54% Impervious, Inflow Depth =
 2.43" for 25-Year event

 Inflow =
 2.96 cfs @
 12.13 hrs, Volume=
 0.237 af


 Outflow =
 2.95 cfs @
 12.14 hrs, Volume=
 0.237 af, Atten= 0%, Lag= 0.3 min

 Routed to Reach DMH112 : TO DMH#113
 TO DMH#113
 13


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.99 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.39 fps, Avg. Travel Time= 0.5 min

Peak Storage= 28 cf @ 12.14 hrs Average Depth at Peak Storage= 0.53', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.37 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 66.0' Slope= 0.0227 '/' Inlet Invert= 463.50', Outlet Invert= 462.00'

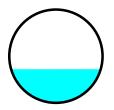
Reach DMH111: TO DMH#112

Summary for Reach DMH112: TO DMH#113

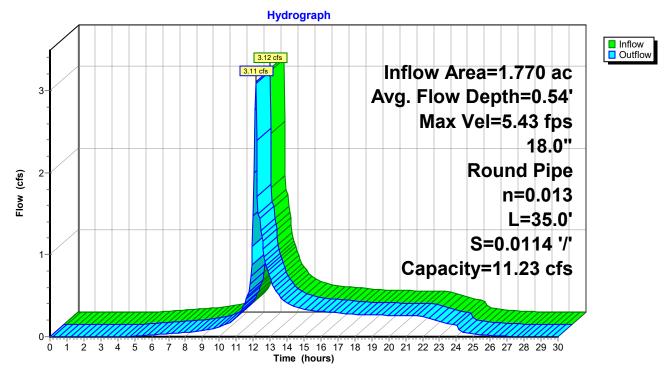
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach UGS2B OUTLET depth by 0.30' @ 12.15 hrs

 Inflow Area =
 1.770 ac, 59.09% Impervious, Inflow Depth > 3.15" for 25-Year event

 Inflow =
 3.12 cfs @
 12.14 hrs, Volume=
 0.464 af


 Outflow =
 3.11 cfs @
 12.14 hrs, Volume=
 0.464 af, Atten= 0%, Lag= 0.2 min

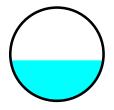
 Routed to Reach DMH113 : TO DMH#114
 TO DMH#114
 14


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.43 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.05 fps, Avg. Travel Time= 0.3 min

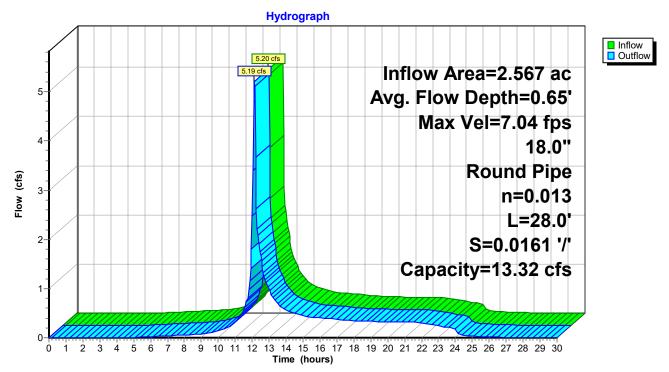
Peak Storage= 20 cf @ 12.14 hrs Average Depth at Peak Storage= 0.54', Surface Width= 1.44' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 11.23 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0114 '/' Inlet Invert= 460.20', Outlet Invert= 459.80'

Reach DMH112: TO DMH#113


Summary for Reach DMH113: TO DMH#114

[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach DCB24 outlet invert by 0.04' @ 12.15 hrs
[62] Hint: Exceeded Reach DMH112 OUTLET depth by 0.01' @ 12.10 hrs
Inflow Area = 2.567 ac, 55.34% Impervious, Inflow Depth > 2.93" for 25-Year event
Inflow = 5.20 cfs @ 12.13 hrs, Volume= 0.626 af
Outflow = 5.19 cfs @ 12.13 hrs, Volume= 0.626 af, Atten= 0%, Lag= 0.1 min
Routed to Reach DMH114 : TO DMH-K1


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.04 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.46 fps, Avg. Travel Time= 0.2 min

Peak Storage= 21 cf @ 12.13 hrs Average Depth at Peak Storage= 0.65', Surface Width= 1.49' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 13.32 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 28.0' Slope= 0.0161 '/' Inlet Invert= 459.70', Outlet Invert= 459.25'

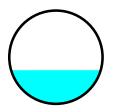
Reach DMH113: TO DMH#114

Summary for Reach DMH114: TO DMH-K1

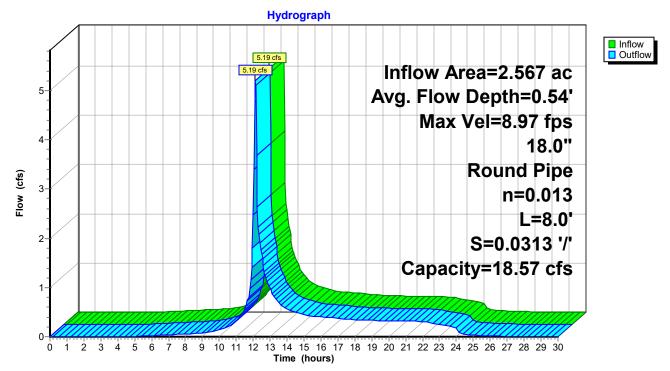
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH113 outlet invert by 0.29' @ 12.15 hrs

 Inflow Area =
 2.567 ac, 55.34% Impervious, Inflow Depth > 2.93" for 25-Year event

 Inflow =
 5.19 cfs @
 12.13 hrs, Volume=
 0.626 af


 Outflow =
 5.19 cfs @
 12.13 hrs, Volume=
 0.626 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DP4 : DMH-K1
 DMH-K1
 0.626 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.97 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.12 fps, Avg. Travel Time= 0.0 min

Peak Storage= 5 cf @ 12.13 hrs Average Depth at Peak Storage= 0.54', Surface Width= 1.44' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 18.57 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 8.0' Slope= 0.0313 '/' Inlet Invert= 459.00', Outlet Invert= 458.75'

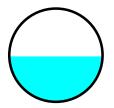
Reach DMH114: TO DMH-K1

Summary for Reach DMHR1: TO DMH#104

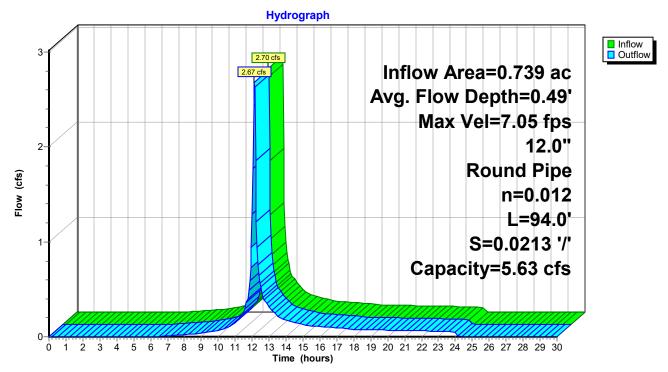
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMHR2 outlet invert by 0.38' @ 12.15 hrs

 Inflow Area =
 0.739 ac, 65.00% Impervious, Inflow Depth =
 3.37" for 25-Year event

 Inflow =
 2.70 cfs @
 12.13 hrs, Volume=
 0.208 af


 Outflow =
 2.67 cfs @
 12.14 hrs, Volume=
 0.208 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach DMH103 : TO CMH#2
 TO CMH#2
 0.208 af, Atten= 1%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.05 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.60 fps, Avg. Travel Time= 0.6 min

Peak Storage= 36 cf @ 12.13 hrs Average Depth at Peak Storage= 0.49', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.63 cfs

12.0" Round Pipe n= 0.012 Steel, smooth Length= 94.0' Slope= 0.0213 '/' Inlet Invert= 467.00', Outlet Invert= 465.00'

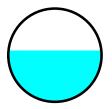
Reach DMHR1: TO DMH#104

Summary for Reach DMHR2: TO DMH#R2

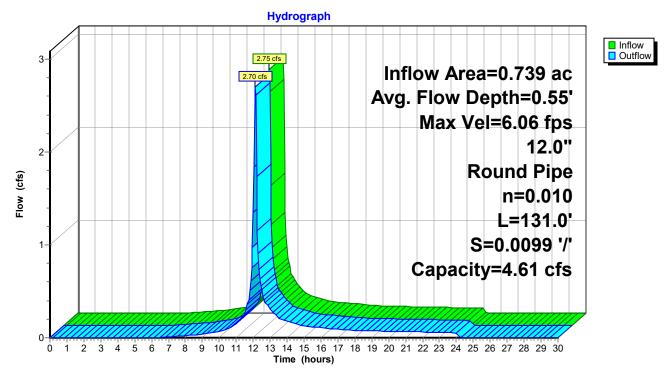
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.739 ac, 65.00% Impervious, Inflow Depth =
 3.37" for 25-Year event

 Inflow =
 2.75 cfs @
 12.12 hrs, Volume=
 0.208 af


 Outflow =
 2.70 cfs @
 12.13 hrs, Volume=
 0.208 af, Atten= 2%, Lag= 0.8 min

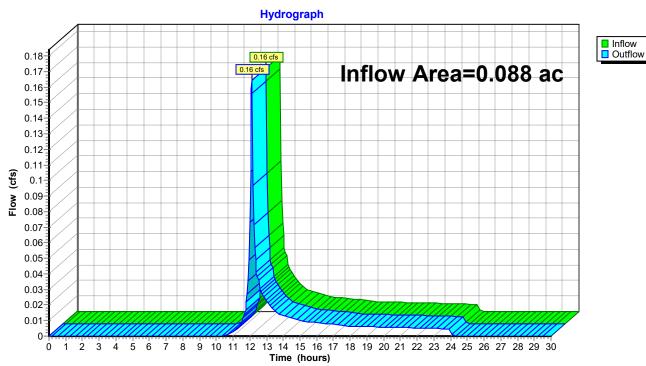
 Routed to Reach DMHR1 : TO DMH#104
 0.208 af, Atten= 2%, Lag= 0.8 min
 0.208 af, Atten= 2%, Lag= 0.8 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.06 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.26 fps, Avg. Travel Time= 1.0 min

Peak Storage= 58 cf @ 12.12 hrs Average Depth at Peak Storage= 0.55', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.61 cfs

12.0" Round Pipe n= 0.010 PVC, smooth interior Length= 131.0' Slope= 0.0099 '/' Inlet Invert= 468.40', Outlet Invert= 467.10'

Reach DMHR2: TO DMH#R2

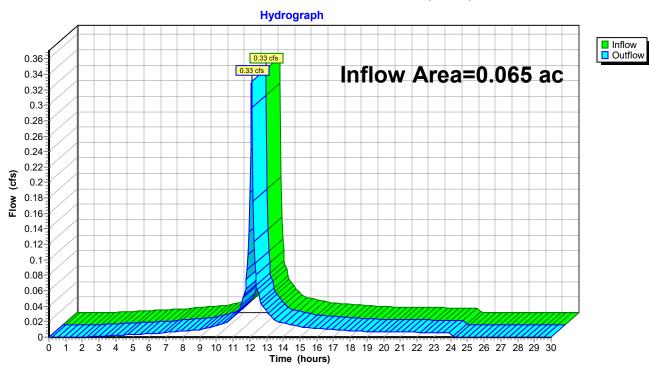


Summary for Reach DP#6: OFFSITE LOW POINT

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.088 ac, 33.45% Impervious, Inflow	Depth = 1.76" for 25-Year event
Inflow =	0.16 cfs @ 12.12 hrs, Volume=	0.013 af
Outflow =	0.16 cfs @ 12.12 hrs, Volume=	0.013 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

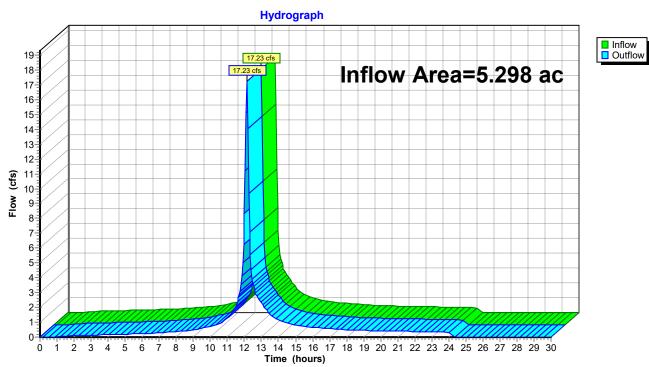

Reach DP#6: OFFSITE LOW POINT

Summary for Reach DP1: GUTTER POINT FRANKLIN (WEST)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.065 ac, 89.73% Impervious, Inflow Dept	th = 4.95" for 25-Year event
Inflow =	0.33 cfs @ 12.11 hrs, Volume= 0	.027 af
Outflow =	0.33 cfs @ 12.11 hrs, Volume= 0	.027 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DP1: GUTTER POINT FRANKLIN (WEST)

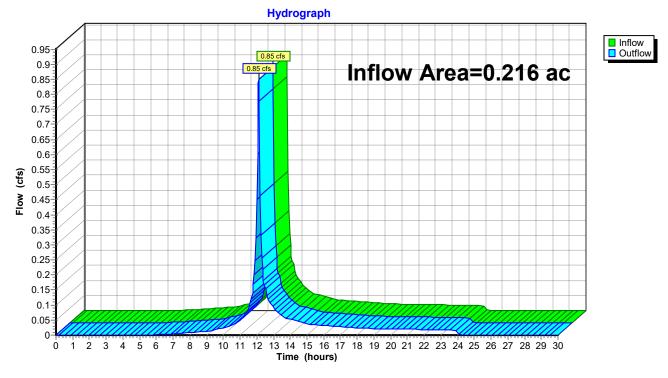
Summary for Reach DP2: MUNICIPAL SYSTEM

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	5.298 ac, 79.01% Impervious, Inflow D	Pepth = 3.55" for 25-Year event
Inflow =	17.23 cfs @ 12.14 hrs, Volume=	1.569 af
Outflow =	17.23 cfs @ 12.14 hrs, Volume=	1.569 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

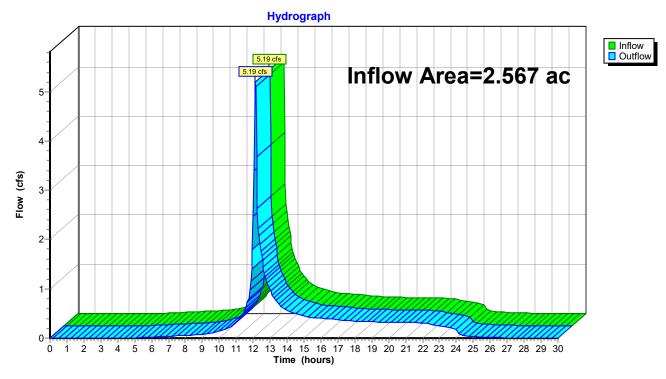
Reach DP2: MUNICIPAL SYSTEM


Summary for Reach DP3: CATCHBASIN (FIRE STATION)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.216 ac, 68.08% Impervious, Inflow E	Depth = 3.57" for 25-Year event
Inflow =	0.85 cfs @ 12.11 hrs, Volume=	0.064 af
Outflow =	0.85 cfs @ 12.11 hrs, Volume=	0.064 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs



Summary for Reach DP4: DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	2.567 ac, 55.34% Impervious, Inflow D	epth > 2.93" for 25-Year event
Inflow =	5.19 cfs @ 12.13 hrs, Volume=	0.626 af
Outflow =	5.19 cfs @ 12.13 hrs, Volume=	0.626 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP4: DMH-K1

Summary for Reach DP5: DCB-H

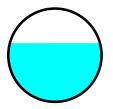
[40] Hint: Not Described (Outflow=Inflow)

Summary for Reach RF1: TO DMH#101

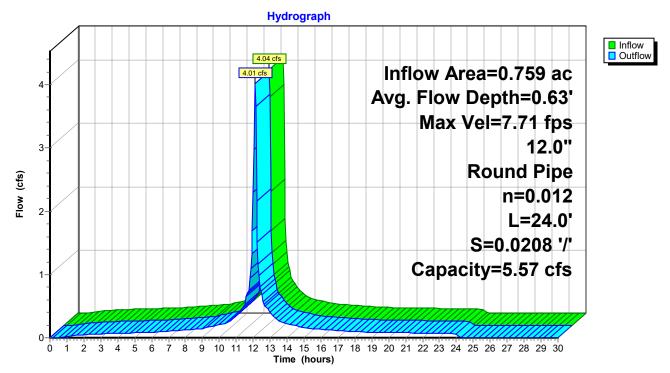
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.759 ac,100.00% Impervious, Inflow Depth =
 5.64" for 25-Year event

 Inflow =
 4.04 cfs @
 12.11 hrs, Volume=
 0.357 af


 Outflow =
 4.01 cfs @
 12.11 hrs, Volume=
 0.357 af, Atten= 1%, Lag= 0.1 min

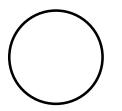
 Routed to Reach DMH101 : TO DMH#100
 5.64
 5.64

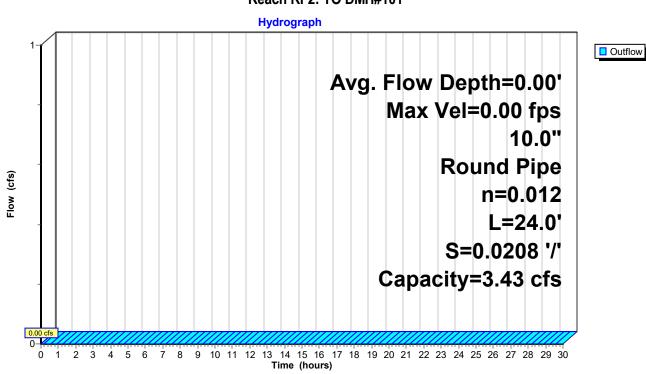

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.71 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.89 fps, Avg. Travel Time= 0.1 min

Peak Storage= 13 cf @ 12.11 hrs Average Depth at Peak Storage= 0.63', Surface Width= 0.97' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.57 cfs

12.0" Round Pipe n= 0.012 Steel, smooth Length= 24.0' Slope= 0.0208 '/' Inlet Invert= 466.20', Outlet Invert= 465.70'

Reach RF1: TO DMH#101

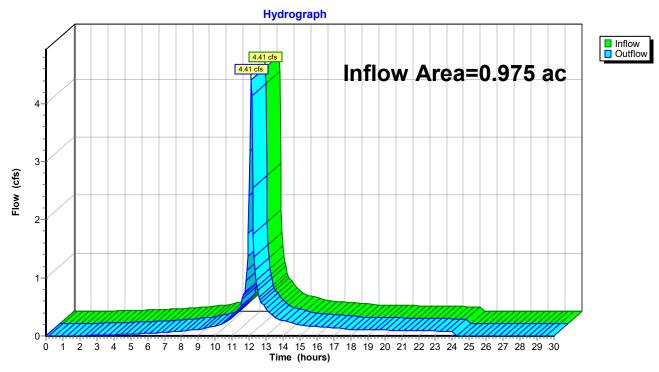



Summary for Reach RF2: TO DMH#101

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 0.83' Flow Area= 0.5 sf, Capacity= 3.43 cfs

10.0" Round Pipe n= 0.012 Steel, smooth Length= 24.0' Slope= 0.0208 '/' Inlet Invert= 466.20', Outlet Invert= 465.70'


Reach RF2: TO DMH#101

Summary for Reach UGS1A: TO UGS#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.975 ac, 81.42% Impervious, Infl	low Depth = 4.41" for 25-Year event
Inflow =	4.41 cfs @ 12.12 hrs, Volume=	0.358 af
Outflow =	4.41 cfs @ 12.12 hrs, Volume=	0.358 af, Atten= 0%, Lag= 0.0 min
Routed to Pon	d UGS1 : TO DMH#106	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

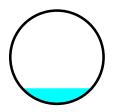
Reach UGS1A: TO UGS#1

Summary for Reach UGS1B: TO DMH106

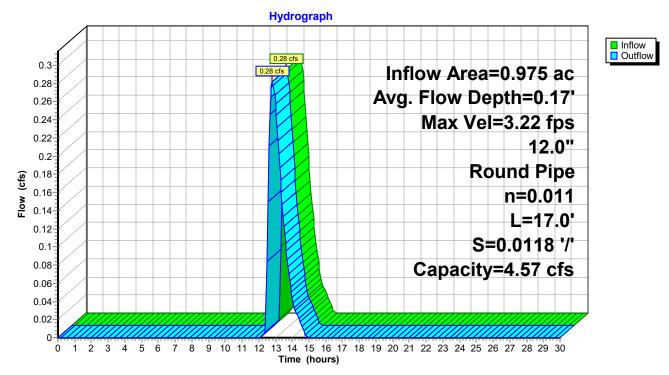
[52] Hint: Inlet/Outlet conditions not evaluated[79] Warning: Submerged Pond UGS1 Primary device # 1 by 0.02'

 Inflow Area =
 0.975 ac, 81.42% Impervious, Inflow Depth =
 0.28" for 25-Year event

 Inflow =
 0.28 cfs @
 12.82 hrs, Volume=
 0.023 af


 Outflow =
 0.28 cfs @
 12.82 hrs, Volume=
 0.023 af, Atten= 0%, Lag= 0.1 min

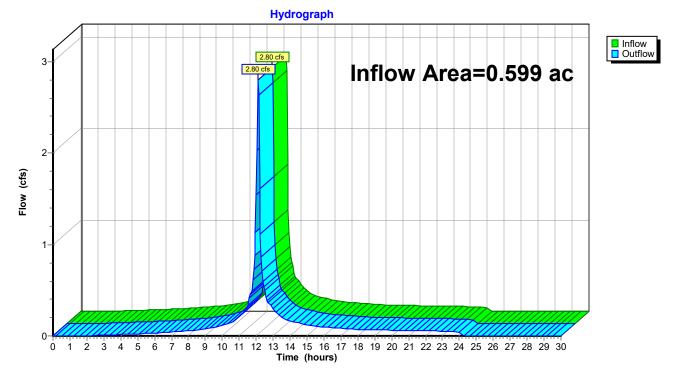
 Routed to Reach DMH105 : TO DMH#104
 TO DMH#104
 0.023 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.22 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.19 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.81 hrs Average Depth at Peak Storage= 0.17', Surface Width= 0.75' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.57 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 17.0' Slope= 0.0118 '/' Inlet Invert= 467.60', Outlet Invert= 467.40'

Reach UGS1B: TO DMH106



Summary for Reach UGS2A: TO UGS#2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.599 ac, 83.64% Impervious, Int	flow Depth = 4.59" for 25-Year event
Inflow =	2.80 cfs @ 12.12 hrs, Volume=	0.229 af
Outflow =	2.80 cfs @ 12.12 hrs, Volume=	0.229 af, Atten= 0%, Lag= 0.0 min
Routed to Pond	d UGS2 : TO UGS#2B	-

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

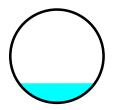
Reach UGS2A: TO UGS#2

Summary for Reach UGS2B: TO DMH#112

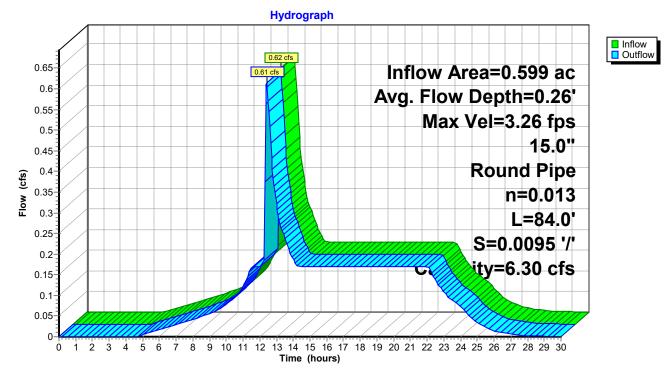
[52] Hint: Inlet/Outlet conditions not evaluated[78] Warning: Submerged Pond UGS2 Primary device # 2 by 0.21'

 Inflow Area =
 0.599 ac, 83.64% Impervious, Inflow Depth > 4.54" for 25-Year event

 Inflow =
 0.62 cfs @
 12.40 hrs, Volume=
 0.227 af


 Outflow =
 0.61 cfs @
 12.42 hrs, Volume=
 0.227 af, Atten= 1%, Lag= 1.0 min

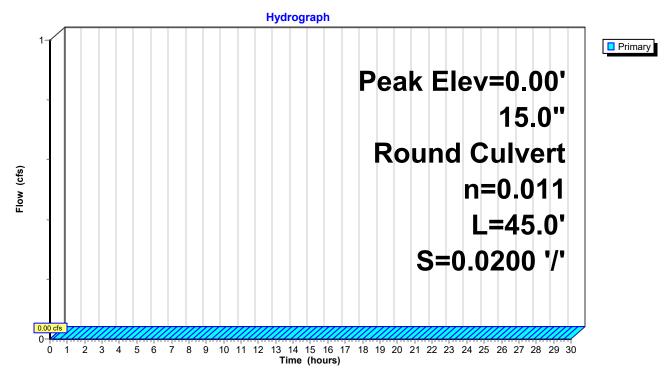
 Routed to Reach DMH112 : TO DMH#113
 TO DMH#113
 10.227 af, Atten= 1%, Lag= 1.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.26 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.71 fps, Avg. Travel Time= 0.8 min

Peak Storage= 16 cf @ 12.41 hrs Average Depth at Peak Storage= 0.26', Surface Width= 1.02' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.30 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 84.0' Slope= 0.0095 '/' Inlet Invert= 461.10', Outlet Invert= 460.30'

Reach UGS2B: TO DMH#112


Summary for Pond DMH-B: TO DMH-D

[43] Hint: Has no inflow (Outflow=Zero)

Device	Routing	Invert	Outlet Devices
#1	Primary	456.80'	15.0" Round Culvert L= 45.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 456.80' / 455.90' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

Pond DMH-B: TO DMH-D

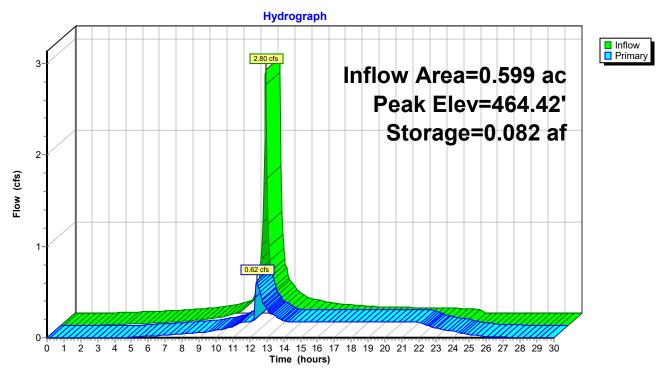
Summary for Pond UGS1: TO DMH#106

Inflow Outflow Discarde Primary	Inflow Area = 0.975 ac, 81.42% Impervious, Inflow Depth = 4.41" for 25-Year event Inflow = 4.41 cfs @ 12.12 hrs, Volume= 0.358 af Outflow = 0.54 cfs @ 12.82 hrs, Volume= 0.358 af, Atten= 88%, Lag= 41.8 min Discarded = 0.26 cfs @ 12.82 hrs, Volume= 0.336 af Primary = 0.28 cfs @ 12.82 hrs, Volume= 0.023 af Routed to Reach UGS1B : TO DMH106 0.024 cfs 0.024 cfs			
			an= 0.00-30.00 hrs, dt= 0.05 hrs f.Area= 0.065 ac Storage= 0.135 af	
	Plug-Flow detention time= 203.9 min calculated for 0.358 af (100% of inflow) Center-of-Mass det. time= 203.8 min(1,006.0 - 802.1)			
Volume	Invert	Avail.Storage	Storage Description	
#1	464.75	0.073 af	38.00'W x 74.00'L x 6.00'H Prismatoid	
			0.387 af Overall - 0.206 af Embedded = 0.181 af x 40.0% Voids	
#2	465.50	0.153 af	Shea Leaching Chamber 4x4x4 x 144 Inside #1	
			Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf	
			Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf	
		0.226 af	Total Available Storage	
Device	Routing	Invert O	utlet Devices	
#1	Primary	467.75' 12	.0" Vert. Orifice/Grate X 2.00 C= 0.600 Limited to weir flow at low heads	
#2	Discarded		410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 460.00'	
		Controls 0.26 cfs)) 12.82 hrs HW=467.93' (Free Discharge)	

Primary OutFlow Max=0.28 cfs @ 12.82 hrs HW=467.93' (Free Discharge) —1=Orifice/Grate (Orifice Controls 0.28 cfs @ 1.45 fps)

Hydrograph InflowOutflowDiscarded 4.41 cfs Inflow Area=0.975 ac Primary Peak Elev=467.93' Storage=0.135 af 4 3 Flow (cfs) 2-0.54 cfs 1 0.26 cfs 0.28 cfs 0-0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Time (hours)


Pond UGS1: TO DMH#106

Summary for Pond UGS2: TO UGS#2B

Inflow Area = 0.599 ac, 83.64% Impervious, Inflow Depth = 4.59" for 25-Year event Inflow = 2.80 cfs @ 12.12 hrs, Volume= 0.229 af Outflow = 0.62 cfs @ 12.40 hrs, Volume= 0.227 af, Atten= 78%, Lag= 17.0 min Primary = 0.62 cfs @ 12.40 hrs, Volume= 0.227 af Routed to Reach UGS2B : TO DMH#112 0.227 af				
outing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs eak Elev= 464.42' @ 12.40 hrs Surf.Area= 0.041 ac Storage= 0.082 af				
Plug-Flow detention time= 180.3 min calculated for 0.226 af (99% of inflow) Center-of-Mass det. time= 173.6 min (970.4 - 796.8)				
olume Invert Avail.Storage Storage Description				
#1 461.00' 0.052 af 38.00'W x 47.00'L x 6.30'H Prismatoid				
0.258 af Overall - 0.129 af Embedded = 0.130 af \times 40.0% Voids				
#2 462.50' 0.096 af Shea Leaching Chamber 4x4x4 x 90 Inside #1				
Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf				
Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf				
90 Chambers in 10 Rows				
0.148 af Total Available Storage				
·				
evice Routing Invert Outlet Devices				
#1 Primary 464.25' 12.0" Vert. Orifice/Grate X 3.00 C= 0.600 Limited to weir flow at low heads				
#2 Primary 461.15' Special & User-Defined				
Head (feet) 0.00 1.00 15.00				
Disch. (cfs) 0.000 0.170 0.170				
Primary OutFlow Max=0.55 cfs @ 12.40 hrs HW=464.42' (Free Discharge)				
-1=Orifice/Grate (Orifice Controls 0.38 cfs @ 1.41 fps)				
- 2=Snecial & User-Defined (Custom Controls () 17 cfs)				

-2=Special & User-Defined (Custom Controls 0.17 cfs)

Pond UGS2: TO UGS#2B

3030-Post-R9 Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

NRCC 24-hr D 100-Year Rainfall=8.34" Printed 10/16/2024 Page 453

Time span=0.00-30.00 hrs, dt=0.05 hrs, 601 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment P100A: TO 12" ROOF DRAIN	Runoff Area=33,077 sf 100.00% Impervious Runoff Depth=8.10" Tc=5.0 min CN=98 Runoff=5.74 cfs 0.513 af
Subcatchment P100B: TO YARD DRAIN	Runoff Area=32,189 sf 65.00% Impervious Runoff Depth=5.59" Tc=5.0 min CN=77 Runoff=4.49 cfs 0.344 af
Subcatchment P100D: TO 12" ROOF DRAIN	Runoff Area=32,189 sf 100.00% Impervious Runoff Depth=8.10" Tc=5.0 min CN=98 Runoff=5.59 cfs 0.499 af
Subcatchment P105: TO DCB#5	Runoff Area=12,319 sf 35.47% Impervious Runoff Depth=3.59" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=60 Runoff=1.12 cfs 0.085 af
Subcatchment P106: TO DCB#6	Runoff Area=6,540 sf 94.27% Impervious Runoff Depth=7.74" Flow Length=101' Slope=0.0150 '/' Tc=5.0 min CN=95 Runoff=1.12 cfs 0.097 af
Subcatchment P107: TO DCB#7	Runoff Area=14,453 sf 83.32% Impervious Runoff Depth=6.90" Flow Length=126' Slope=0.0150 '/' Tc=5.0 min CN=88 Runoff=2.35 cfs 0.191 af
Subcatchment P108: TO DCB#8	Runoff Area=7,623 sf 76.33% Impervious Runoff Depth=6.42" Flow Length=156' Tc=5.0 min CN=84 Runoff=1.18 cfs 0.094 af
Subcatchment P109: TO DCB#9	Runoff Area=9,811 sf 39.59% Impervious Runoff Depth=3.82" Flow Length=156' Tc=5.1 min CN=62 Runoff=0.95 cfs 0.072 af
Subcatchment P11: TO DP#1	Runoff Area=2,852 sf 89.73% Impervious Runoff Depth=7.38" Flow Length=98' Slope=0.0170 '/' Tc=5.0 min CN=92 Runoff=0.48 cfs 0.040 af
Subcatchment P110: TO DCB#10	Runoff Area=2,827 sf 67.92% Impervious Runoff Depth=5.83" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=79 Runoff=0.41 cfs 0.032 af
Subcatchment P111: TO DCB#11	Runoff Area=4,144 sf 28.74% Impervious Runoff Depth=3.13" Flow Length=105' Slope=0.0100 '/' Tc=5.0 min CN=56 Runoff=0.33 cfs 0.025 af
Subcatchment P112: TO DCB#12	Runoff Area=9,054 sf 93.65% Impervious Runoff Depth=7.62" Flow Length=150' Slope=0.0130 '/' Tc=5.0 min CN=94 Runoff=1.55 cfs 0.132 af
Subcatchment P113: TO DCB#13	Runoff Area=11,898 sf 94.49% Impervious Runoff Depth=7.74" Flow Length=122' Slope=0.0200 '/' Tc=5.0 min CN=95 Runoff=2.04 cfs 0.176 af
Subcatchment P114: TO DCB#14	Runoff Area=5,484 sf 94.42% Impervious Runoff Depth=7.74" Flow Length=126' Slope=0.0160 '/' Tc=5.0 min CN=95 Runoff=0.94 cfs 0.081 af
Subcatchment P115: TO DCB#15	Runoff Area=16,100 sf 70.06% Impervious Runoff Depth=5.94" Flow Length=122' Slope=0.0170 '/' Tc=5.0 min CN=80 Runoff=2.36 cfs 0.183 af
Subcatchment P116: TO DCB#25	Runoff Area=2,780 sf 89.32% Impervious Runoff Depth=7.38" Flow Length=80' Slope=0.0200 '/' Tc=5.0 min CN=92 Runoff=0.47 cfs 0.039 af

3030-Post-R9

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Subcatchment P117: TO DP#6	Runoff Area=3,839 sf 33.45% Impervious Runoff Depth=3.48" Flow Length=74' Slope=0.0200 '/' Tc=5.0 min CN=59 Runoff=0.34 cfs 0.026 af
Subcatchment P119: TO DCB#19	Runoff Area=7,440 sf 78.16% Impervious Runoff Depth=6.54" Flow Length=213' Slope=0.0250 '/' Tc=5.0 min CN=85 Runoff=1.17 cfs 0.093 af
Subcatchment P12: TO DCB-A	Runoff Area=6,197 sf 94.61% Impervious Runoff Depth=7.74" Flow Length=147' Tc=5.0 min CN=95 Runoff=1.06 cfs 0.092 af
Subcatchment P120: TO DCB#20	Runoff Area=10,195 sf 85.75% Impervious Runoff Depth=7.14" Flow Length=146' Tc=5.0 min CN=90 Runoff=1.69 cfs 0.139 af
Subcatchment P121: TO DCB#21	Runoff Area=7,628 sf 71.01% Impervious Runoff Depth=6.06" Flow Length=153' Tc=5.0 min CN=81 Runoff=1.14 cfs 0.088 af
Subcatchment P122: TO DCB#22	Runoff Area=10,232 sf 44.85% Impervious Runoff Depth=4.17" Flow Length=189' Tc=5.0 min CN=65 Runoff=1.09 cfs 0.082 af
Subcatchment P123: TO DCB#23	Runoff Area=33,346 sf 40.00% Impervious Runoff Depth=3.94" Flow Length=171' Tc=5.0 min CN=63 Runoff=3.34 cfs 0.251 af
Subcatchment P14: TO DCB-B	Runoff Area=5,424 sf 87.24% Impervious Runoff Depth=7.14" Flow Length=169' Tc=5.0 min CN=90 Runoff=0.90 cfs 0.074 af
Subcatchment P15: TO DCB-C	Runoff Area=8,397 sf 71.34% Impervious Runoff Depth=6.06" Flow Length=161' Slope=0.0110 '/' Tc=7.0 min CN=81 Runoff=1.18 cfs 0.097 af
Subcatchment P18: TO DCB-D	Runoff Area=10,287 sf 76.50% Impervious Runoff Depth=6.42" Flow Length=222' Tc=5.0 min CN=84 Runoff=1.60 cfs 0.126 af
Subcatchment P19: TO DCB-E	Runoff Area=8,240 sf 64.27% Impervious Runoff Depth=5.59" Flow Length=177' Slope=0.0090 '/' Tc=5.0 min CN=77 Runoff=1.15 cfs 0.088 af
Subcatchment P20: TO DP#3	Runoff Area=9,426 sf 68.08% Impervious Runoff Depth=5.83" Flow Length=137' Tc=5.0 min CN=79 Runoff=1.36 cfs 0.105 af
Subcatchment P24: TO DCB#24	Runoff Area=34,704 sf 47.02% Impervious Runoff Depth=4.41" Flow Length=247' Slope=0.0250 '/' Tc=5.0 min CN=67 Runoff=3.89 cfs 0.292 af
Reach CMH3: TO DMH-E	Avg. Flow Depth=0.96' Max Vel=6.84 fps Inflow=13.43 cfs 1.209 af 36.0" Round Pipe n=0.011 L=196.0' S=0.0058 '/' Capacity=60.12 cfs Outflow=13.10 cfs 1.209 af
Reach DCB-A: TO DMH-D	Inflow=1.06 cfs 0.092 af Outflow=1.06 cfs 0.092 af
Reach DCB-B: TO DMH-E	Inflow=0.90 cfs 0.074 af Outflow=0.90 cfs 0.074 af
Reach DCB-C: TO TRUNKLINE	Inflow=1.18 cfs 0.097 af Outflow=1.18 cfs 0.097 af

3030-Post-R9

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Reach DCB-D: TO DMH-A	Avg. Flow Depth=0.36' Max Vel=8.41 fps Inflow=1.60 cfs 0.126 af 8.0" Round Pipe n=0.010 L=15.0' S=0.0333 '/' Capacity=2.87 cfs Outflow=1.59 cfs 0.126 af
Reach DCB-E: TO DMH-A	Avg. Flow Depth=0.30' Max Vel=7.54 fps Inflow=1.15 cfs 0.088 af 8.0" Round Pipe n=0.010 L=16.0' S=0.0313 '/' Capacity=2.78 cfs Outflow=1.14 cfs 0.088 af
Reach DCB10: TO DMH#106	Avg. Flow Depth=0.18' Max Vel=5.49 fps Inflow=0.41 cfs 0.032 af 8.0" Round Pipe n=0.010 L=7.0' S=0.0286 '/' Capacity=2.66 cfs Outflow=0.41 cfs 0.032 af
Reach DCB11: TO DMH#103	Avg. Flow Depth=0.19' Max Vel=3.90 fps Inflow=0.33 cfs 0.025 af 8.0" Round Pipe n=0.010 L=15.0' S=0.0133 '/' Capacity=1.81 cfs Outflow=0.32 cfs 0.025 af
Reach DCB12: TO DMH#12	Avg. Flow Depth=0.52' Max Vel=5.29 fps Inflow=1.55 cfs 0.132 af 8.0" Round Pipe n=0.010 L=28.0' S=0.0107 '/' Capacity=1.63 cfs Outflow=1.53 cfs 0.132 af
Reach DCB13: TO DMH#102	Avg. Flow Depth=0.37' Max Vel=7.81 fps Inflow=2.04 cfs 0.176 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=2.04 cfs 0.176 af
Reach DCB14: TO DMH#109	Avg. Flow Depth=0.25' Max Vel=6.09 fps Inflow=0.94 cfs 0.081 af 12.0" Round Pipe n=0.013 L=19.0' S=0.0368 '/' Capacity=6.84 cfs Outflow=0.94 cfs 0.081 af
Reach DCB15: TO DMH#102	Avg. Flow Depth=0.59' Max Vel=4.81 fps Inflow=2.36 cfs 0.183 af 12.0" Round Pipe n=0.013 L=70.0' S=0.0100 '/' Capacity=3.56 cfs Outflow=2.30 cfs 0.183 af
Reach DCB19: TO DMH#111	Avg. Flow Depth=0.27' Max Vel=6.68 fps Inflow=1.17 cfs 0.093 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=1.17 cfs 0.093 af
Reach DCB20: TO DMH#109	Avg. Flow Depth=0.47' Max Vel=4.64 fps Inflow=1.69 cfs 0.139 af 12.0" Round Pipe n=0.013 L=9.0' S=0.0111 '/' Capacity=3.76 cfs Outflow=1.68 cfs 0.139 af
Reach DCB21: TO DMH#109A	Avg. Flow Depth=0.40' Max Vel=5.22 fps Inflow=1.14 cfs 0.088 af 8.0" Round Pipe n=0.013 L=5.0' S=0.0200 '/' Capacity=1.71 cfs Outflow=1.13 cfs 0.088 af
Reach DCB22: TO DMH#111	Avg. Flow Depth=0.28' Max Vel=5.87 fps Inflow=1.09 cfs 0.082 af 12.0" Round Pipe n=0.013 L=20.0' S=0.0300 '/' Capacity=6.17 cfs Outflow=1.08 cfs 0.082 af
Reach DCB23: TO DMH#111	Avg. Flow Depth=0.70' Max Vel=5.63 fps Inflow=3.34 cfs 0.251 af 12.0" Round Pipe n=0.013 L=250.0' S=0.0124 '/' Capacity=3.97 cfs Outflow=3.21 cfs 0.251 af
Reach DCB24: TO DMH#113	Avg. Flow Depth=0.63' Max Vel=7.35 fps Inflow=3.89 cfs 0.292 af 12.0" Round Pipe n=0.013 L=9.0' S=0.0222 '/' Capacity=5.31 cfs Outflow=3.88 cfs 0.292 af
Reach DCB25: TO DMH#109A	Avg. Flow Depth=0.22' Max Vel=4.76 fps Inflow=0.47 cfs 0.039 af 8.0" Round Pipe n=0.010 L=29.0' S=0.0172 '/' Capacity=2.06 cfs Outflow=0.46 cfs 0.039 af
Reach DCB5: TO DMH#108	Avg. Flow Depth=0.30' Max Vel=7.24 fps Inflow=1.12 cfs 0.085 af 8.0" Round Pipe n=0.010 L=7.0' S=0.0286 '/' Capacity=2.66 cfs Outflow=1.12 cfs 0.085 af
Reach DCB6: TO DMH#107	Avg. Flow Depth=0.24' Max Vel=9.70 fps Inflow=1.12 cfs 0.097 af 8.0" Round Pipe n=0.010 L=46.0' S=0.0630 '/' Capacity=3.94 cfs Outflow=1.11 cfs 0.097 af

3030-POST-R9	3030-Post-R9)
--------------	--------------	---

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Reach DCB7: TO DMH#102	Avg. Flow Depth=0.42' Max Vel=7.42 fps Inflow=2.35 cfs 0.191 af 12.0" Round Pipe n=0.013 L=54.0' S=0.0315 // Capacity=6.32 cfs Outflow=2.32 cfs 0.191 af
Reach DCB8: TO DMH#103	Avg. Flow Depth=0.27' Max Vel=9.05 fps Inflow=1.18 cfs 0.094 af 8.0" Round Pipe n=0.010 L=4.0' S=0.0500 '/' Capacity=3.51 cfs Outflow=1.18 cfs 0.094 af
Reach DCB9: TO DMH#103	Avg. Flow Depth=0.32' Max Vel=5.67 fps Inflow=0.95 cfs 0.072 af 8.0" Round Pipe n=0.010 L=12.0' S=0.0167 '/' Capacity=2.03 cfs Outflow=0.94 cfs 0.072 af
Reach DMH-A*: TO DMH-B	Avg. Flow Depth=0.83' Max Vel=9.72 fps Inflow=11.95 cfs 1.040 af 24.0" Round Pipe n=0.011 L=267.0' S=0.0157 '/' Capacity=33.53 cfs Outflow=11.82 cfs 1.040 af
Reach DMH-C: TO DP#1	Inflow=15.54 cfs 1.473 af Outflow=15.54 cfs 1.473 af
Reach DMH-D: TO DMH-C	Avg. Flow Depth=1.00' Max Vel=7.62 fps Inflow=15.70 cfs 1.473 af 36.0" Round Pipe n=0.011 L=99.0' S=0.0070 '/' Capacity=65.81 cfs Outflow=15.54 cfs 1.473 af
Reach DMH-E: TO DMH-D	Avg. Flow Depth=1.03' Max Vel=6.93 fps Inflow=15.03 cfs 1.381 af 36.0" Round Pipe n=0.011 L=121.0' S=0.0055 '/' Capacity=58.66 cfs Outflow=14.81 cfs 1.381 af
Reach DMH-F: TO DMH-E	Avg. Flow Depth=0.00' Max Vel=0.00 fps 36.0" Round Pipe n=0.011 L=72.0' S=0.0058 '/' Capacity=60.20 cfs Outflow=0.00 cfs 0.000 af
Reach DMH100: TO DMH-A	Avg. Flow Depth=0.78' Max Vel=10.02 fps Inflow=9.33 cfs 0.826 af 18.0" Round Pipe n=0.011 L=70.0' S=0.0200 '/' Capacity=17.56 cfs Outflow=9.23 cfs 0.826 af
Reach DMH101: TO DMH#100	Avg. Flow Depth=0.65' Max Vel=8.89 fps Inflow=5.70 cfs 0.513 af 15.0" Round Pipe n=0.011 L=5.0' S=0.0200 '/' Capacity=10.80 cfs Outflow=5.69 cfs 0.513 af
Reach DMH102: TO UGS#1A	Avg. Flow Depth=0.79' Max Vel=8.09 fps Inflow=6.65 cfs 0.550 af 15.0" Round Pipe n=0.013 L=5.0' S=0.0200 '/' Capacity=9.14 cfs Outflow=6.64 cfs 0.550 af
Reach DMH103: TO CMH#2	Avg. Flow Depth=1.15' Max Vel=9.32 fps Inflow=13.56 cfs 1.209 af 18.0" Round Pipe n=0.011 L=154.0' S=0.0136 '/' Capacity=14.50 cfs Outflow=13.43 cfs 1.209 af
Reach DMH104: TO DMH#104	Avg. Flow Depth=0.76' Max Vel=6.70 fps Inflow=5.22 cfs 0.367 af 15.0" Round Pipe n=0.011 L=120.0' S=0.0100 '/' Capacity=7.63 cfs Outflow=5.17 cfs 0.367 af
Reach DMH105: TO DMH#104	Avg. Flow Depth=0.68' Max Vel=6.30 fps Inflow=4.17 cfs 0.201 af 15.0" Round Pipe n=0.011 L=187.0' S=0.0096 '/' Capacity=7.49 cfs Outflow=4.14 cfs 0.201 af
Reach DMH106: TO DMH#105	Avg. Flow Depth=0.23' Max Vel=5.18 fps Inflow=0.73 cfs 0.056 af 12.0" Round Pipe n=0.011 L=57.0' S=0.0211 '/' Capacity=6.11 cfs Outflow=0.72 cfs 0.056 af
Reach DMH107: TO DMH#100	Avg. Flow Depth=0.59' Max Vel=7.61 fps Inflow=3.72 cfs 0.313 af 12.0" Round Pipe n=0.011 L=78.0' S=0.0179 '/' Capacity=5.64 cfs Outflow=3.71 cfs 0.313 af
Reach DMH108: TO DMH#107	Avg. Flow Depth=0.55' Max Vel=5.86 fps Inflow=2.65 cfs 0.217 af 12.0" Round Pipe n=0.011 L=45.0' S=0.0111 '/' Capacity=4.44 cfs Outflow=2.61 cfs 0.217 af

3030-Post-R9

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Reach DMH109: TO DMH#110	Avg. Flow Depth=0.55' Max Vel=9.41 fps Inflow=4.19 cfs 0.348 af 12.0" Round Pipe n=0.013 L=5.0' S=0.0400 '/' Capacity=7.13 cfs Outflow=4.19 cfs 0.348 af
Reach DMH109A: TO DMH109	Avg. Flow Depth=0.42' Max Vel=5.00 fps Inflow=1.60 cfs 0.128 af 12.0" Round Pipe n=0.013 L=35.0' S=0.0143 '/' Capacity=4.26 cfs Outflow=1.57 cfs 0.128 af
Reach DMH110: TO UGS#2A	Avg. Flow Depth=0.60' Max Vel=8.54 fps Inflow=4.19 cfs 0.348 af 12.0" Round Pipe n=0.013 L=24.0' S=0.0313 '/' Capacity=6.30 cfs Outflow=4.17 cfs 0.348 af
Reach DMH111: TO DMH#112	Avg. Flow Depth=0.82' Max Vel=7.80 fps Inflow=5.39 cfs 0.426 af 12.0" Round Pipe n=0.013 L=66.0' S=0.0227 '/' Capacity=5.37 cfs Outflow=5.36 cfs 0.426 af
Reach DMH112: TO DMH#113	Avg. Flow Depth=0.98' Max Vel=6.98 fps Inflow=8.53 cfs 0.772 af 18.0" Round Pipe n=0.013 L=35.0' S=0.0114 '/' Capacity=11.23 cfs Outflow=8.46 cfs 0.772 af
Reach DMH113: TO DMH#114	Avg. Flow Depth=1.11' Max Vel=8.53 fps Inflow=12.00 cfs 1.064 af 18.0" Round Pipe n=0.013 L=28.0' S=0.0161 '/' Capacity=13.32 cfs Outflow=11.97 cfs 1.064 af
Reach DMH114: TO DMH-K1	Avg. Flow Depth=0.88' Max Vel=11.17 fps Inflow=11.97 cfs 1.064 af 18.0" Round Pipe n=0.013 L=8.0' S=0.0313 '/' Capacity=18.57 cfs Outflow=11.96 cfs 1.064 af
Reach DMHR1: TO DMH#104	Avg. Flow Depth=0.66' Max Vel=7.89 fps Inflow=4.39 cfs 0.344 af 12.0" Round Pipe n=0.012 L=94.0' S=0.0213 '/' Capacity=5.63 cfs Outflow=4.36 cfs 0.344 af
Reach DMHR2: TO DMH#R2	Avg. Flow Depth=0.78' Max Vel=6.67 fps Inflow=4.49 cfs 0.344 af 12.0" Round Pipe n=0.010 L=131.0' S=0.0099 '/' Capacity=4.61 cfs Outflow=4.39 cfs 0.344 af
Reach DP#6: OFFSITE LOW POINT	Inflow=0.34 cfs 0.026 af Outflow=0.34 cfs 0.026 af
Reach DP1: GUTTER POINT FRANKLIN (WEST)Inflow=0.48 cfs0.040Outflow=0.48 cfs0.040	
Reach DP2: MUNICIPAL SYSTEM	Inflow=27.03 cfs 2.513 af Outflow=27.03 cfs 2.513 af
Reach DP3: CATCHBASIN (FIRE STATION)Inflow=1.36 cfs0.105 afOutflow=1.36 cfs0.105 af	
Reach DP4: DMH-K1	Inflow=11.96 cfs 1.064 af Outflow=11.96 cfs 1.064 af
Reach DP5: DCB-H	
Reach RF1: TO DMH#101	Avg. Flow Depth=0.84' Max Vel=8.08 fps Inflow=5.74 cfs 0.513 af 12.0" Round Pipe n=0.012 L=24.0' S=0.0208 '/' Capacity=5.57 cfs Outflow=5.70 cfs 0.513 af
Reach RF2: TO DMH#101	Avg. Flow Depth=0.00' Max Vel=0.00 fps 10.0" Round Pipe n=0.012 L=24.0' S=0.0208 '/' Capacity=3.43 cfs Outflow=0.00 cfs 0.000 af

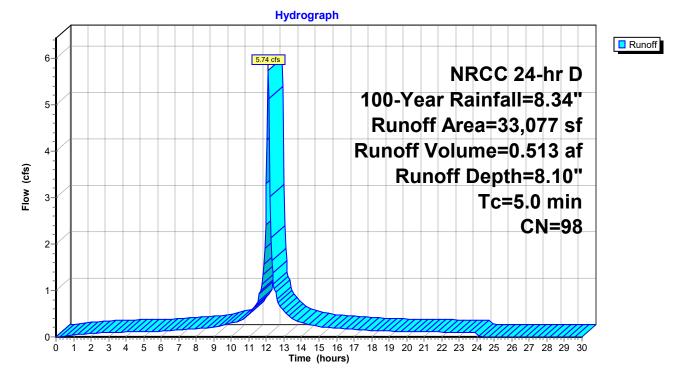
Prepared by Hann	igan Engi	neering Inc
HydroCAD® 10.20-3	s/n 00840	© 2023 HydroCAD Software Solutions LLC

NRCC 24-hr D 100-Year Rainfall=8.34" Printed 10/16/2024 Page 458

Reach UGS1A: TO UGS#1	Inflow=6.64 cfs 0.550 af Outflow=6.64 cfs 0.550 af
Reach UGS1B: TO DMH106	Avg. Flow Depth=0.69' Max Vel=6.49 fps Inflow=3.75 cfs 0.145 af 12.0" Round Pipe n=0.011 L=17.0' S=0.0118 '/' Capacity=4.57 cfs Outflow=3.76 cfs 0.145 af
Reach UGS2A: TO UGS#2	Inflow=4.17 cfs 0.348 af Outflow=4.17 cfs 0.348 af
Reach UGS2B: TO DMH#112	Avg. Flow Depth=0.68' Max Vel=5.23 fps Inflow=3.60 cfs 0.346 af 15.0" Round Pipe n=0.013 L=84.0' S=0.0095 '/' Capacity=6.30 cfs Outflow=3.36 cfs 0.346 af
Pond DMH-B: TO DMH-D	Peak Elev=0.00' 15.0" Round Culvert n=0.011 L=45.0' S=0.0200 '/' Primary=0.00 cfs 0.000 af
Pond UGS1: TO DMH#106	Peak Elev=468.50' Storage=0.162 af Inflow=6.64 cfs 0.550 af Discarded=0.28 cfs 0.405 af Primary=3.75 cfs 0.145 af Outflow=4.03 cfs 0.550 af
Pond UGS2: TO UGS#2B	Peak Elev=464.81' Storage=0.094 af Inflow=4.17 cfs 0.348 af Outflow=3.60 cfs 0.346 af
	Total Dunoff Area = 0.225 as Dunoff Valuma = 4.455 af Average Dunoff Double = 0.06"

Total Runoff Area = 8.235 acRunoff Volume = 4.156 af
29.06% Pervious = 2.393 acAverage Runoff Depth = 6.06"
70.94% Impervious = 5.842 ac

Summary for Subcatchment P100A: TO 12" ROOF DRAIN


[49] Hint: Tc<2dt may require smaller dt

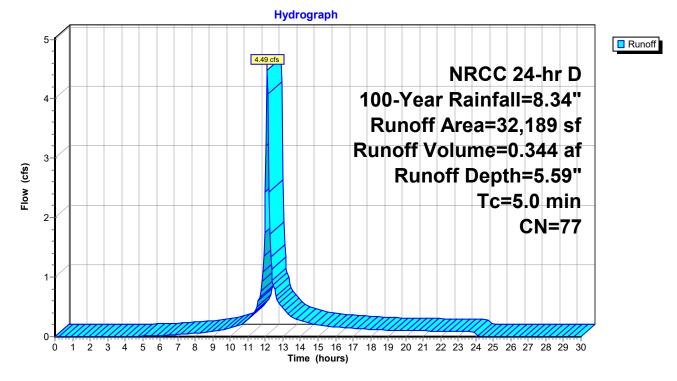
Runoff = 5.74 cfs @ 12.11 hrs, Volume= 0.513 af, Depth= 8.10" Routed to Reach RF1 : TO DMH#101

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

Area (sf)	CN	Description	Description								
33,077	98	Paved park	Paved parking, HSG A								
33,077	33,077 100.00% Impervious Area										
Tc Length (min) (feet)	Slop (ft/		Capacity (cfs)	Description							
5.0				Direct Entry,							

Subcatchment P100A: TO 12" ROOF DRAIN

Summary for Subcatchment P100B: TO YARD DRAIN


[49] Hint: Tc<2dt may require smaller dt

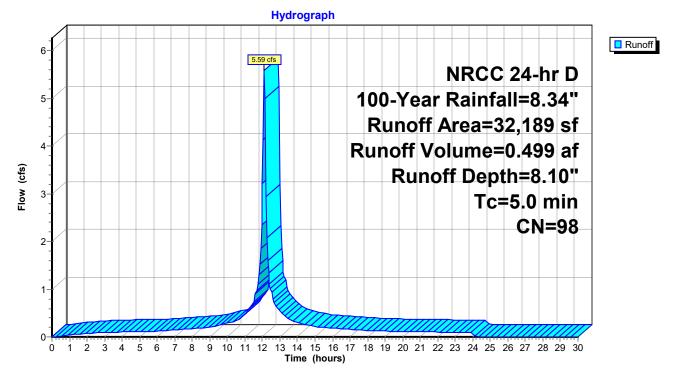
Runoff = 4.49 cfs @ 12.11 hrs, Volume= 0.344 af, Depth= 5.59" Routed to Reach DMHR2 : TO DMH#R2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

Area (sf)	CN	Description									
32,189	77	1/8 acre lot	1/8 acre lots, 65% imp, HSG A								
11,266 20,923		35.00% Pe 65.00% Imp									
Tc Length (min) (feet)	Slop (ft/f	,	Capacity (cfs)	Description							
5.0				Direct Entry,							

Subcatchment P100B: TO YARD DRAIN

Summary for Subcatchment P100D: TO 12" ROOF DRAIN


[49] Hint: Tc<2dt may require smaller dt

Runoff = 5.59 cfs @ 12.11 hrs, Volume= 0.499 af, Depth= 8.10" Routed to Reach DMH103 : TO CMH#2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

A	rea (sf)	CN	Description	escription									
	32,189	98	Paved park	Paved parking, HSG A									
32,189 100.00% Impervious Area													
Tc (min)	Length (feet)	Slop (ft/fl		Capacity (cfs)	Description								
5.0					Direct Entry,								

Subcatchment P100D: TO 12" ROOF DRAIN

Summary for Subcatchment P105: TO DCB#5

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.12 cfs @ 12.12 hrs, Volume= 0.085 af, Depth= 3.59" Routed to Reach DCB5 : TO DMH#108

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

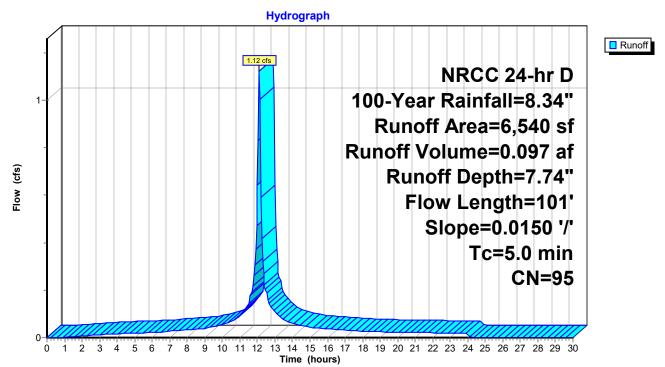
_	A	rea (sf)	CN	Description							
		7,950	39	39 >75% Grass cover, Good, HSG A							
_		4,369	98	Paved park	ting, HSG A	A					
		12,319	60	Weighted A	verage						
		7,950		64.53% Pe	rvious Area	l					
		4,369		35.47% Im	pervious Ar	ea					
	Tc	Length	Slope	e Velocity	Capacity	Description					
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)						
	0.9	50	0.0100	0.90		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
	4.4	405	Tatal	la sus a s s d i							

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P105: TO DCB#5

Summary for Subcatchment P106: TO DCB#6

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.12 cfs @ 12.11 hrs, Volume= 0.097 af, Depth= 7.74" Routed to Reach DCB6 : TO DMH#107

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

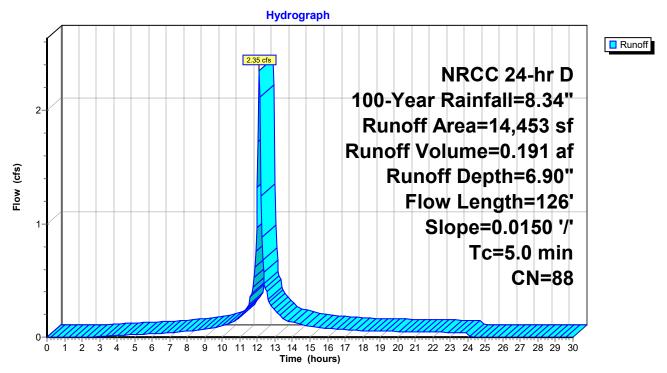
_	A	rea (sf)	CN	Description							
		375	39	39 >75% Grass cover, Good, HSG A							
_		6,165	98	Paved park	ing, HSG A						
		6,540 95 Weighted Average									
		375		5.73% Perv	vious Area						
		6,165		94.27% Im	pervious Ar	ea					
	Tc	Length	Slop	,	Capacity	Description					
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	0.8	50	0.015	0 1.06		Sheet Flow,					
						Smooth surfaces n= 0.011 P2= 3.13"					
	0.3	51	0.015) 2.49		Shallow Concentrated Flow,					
_						Paved Kv= 20.3 fps					
_	1 1	101	Tatal	المعمم معال							

1.1 101 Total, Increased to minimum Tc = 5.0 min

Subcatchment P106: TO DCB#6

Summary for Subcatchment P107: TO DCB#7

[49] Hint: Tc<2dt may require smaller dt


Runoff = 2.35 cfs @ 12.11 hrs, Volume= 0.191 af, Depth= 6.90" Routed to Reach DCB7 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

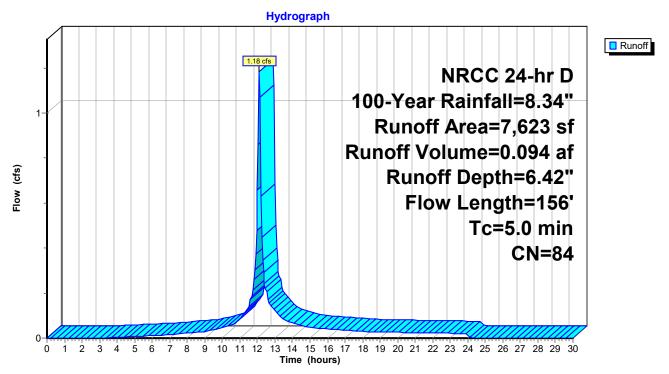
A	vrea (sf)	CN	Description						
	2,411	11 39 >75% Grass cover, Good, HSG A							
	12,042	98	Paved park	ing, HSG A					
	14,453	88	Weighted A	verage					
	2,411		16.68% Pe	rvious Area					
	12,042		83.32% Imj	pervious Are	ea				
Tc	0	Slope			Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.5	8	0.0150	0.09		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.13"				
0.7	42	0.0150	1.02		Sheet Flow,				
					Smooth surfaces n= 0.011 P2= 3.13"				
0.5	76	0.0150	2.49		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
07	106	Total	Increased	la minimum	$T_{0} = 5.0 \text{ min}$				

2.7 126 Total, Increased to minimum Tc = 5.0 min

Subcatchment P107: TO DCB#7

Summary for Subcatchment P108: TO DCB#8

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.18 cfs @ 12.11 hrs, Volume= 0.094 af, Depth= 6.42" Routed to Reach DCB8 : TO DMH#103

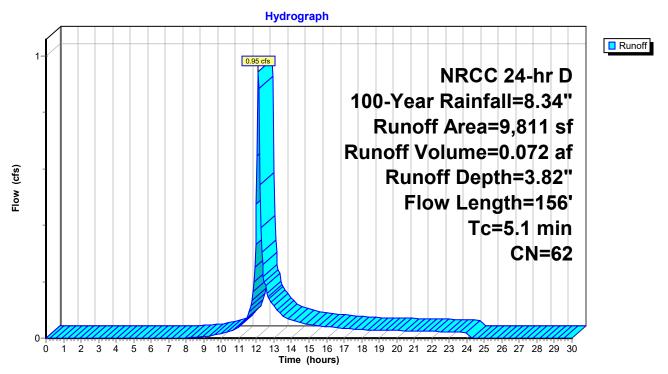
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

_	A	rea (sf)	CN	Description				
	1,804 39 >75% Grass cover, Good, HSG A							
_		5,819	98	Paved park	ing, HSG A			
		7,623	84	Weighted A	verage			
		1,804		23.67% Pe	rvious Area			
		5,819		76.33% Imp	pervious Are	ea		
	Tc	Length	Slope			Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	2.6	16	0.015	0.10		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.13"		
	0.7	34	0.010	0.83		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.9	106	0.010) 2.03		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	12	156	Total	Incroaced t	o minimum	$T_{c} = 5.0 \text{ min}$		

4.2 156 Total, Increased to minimum Tc = 5.0 min

Subcatchment P108: TO DCB#8

Summary for Subcatchment P109: TO DCB#9


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.95 cfs @ 12.12 hrs, Volume= 0.072 af, Depth= 3.82" Routed to Reach DCB9 : TO DMH#103

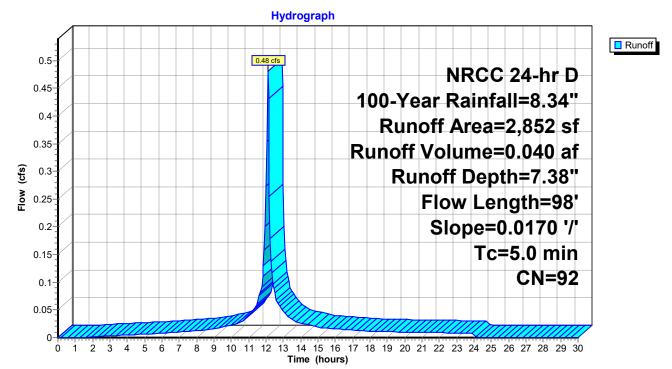
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

	A	rea (sf)	CN	Description				
	5,927 39 >75% Grass cover, Good, HSG A							
		3,884	98	Paved park	ing, HSG A			
		9,811	62	Weighted A	verage			
		5,927		60.41% Pe	rvious Area			
		3,884		39.59% Imp	pervious Ar	ea		
		Length	Slope			Description		
(n	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	3.7	25	0.0150	0.11		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.13"		
	0.5	25	0.0100	0.78		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.9	106	0.0100) 2.03		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
	5.1	156	Total					

Subcatchment P109: TO DCB#9

Summary for Subcatchment P11: TO DP#1

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.48 cfs @ 12.11 hrs, Volume= 0.040 af, Depth= 7.38" Routed to Reach DP1 : GUTTER POINT FRANKLIN (WEST)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

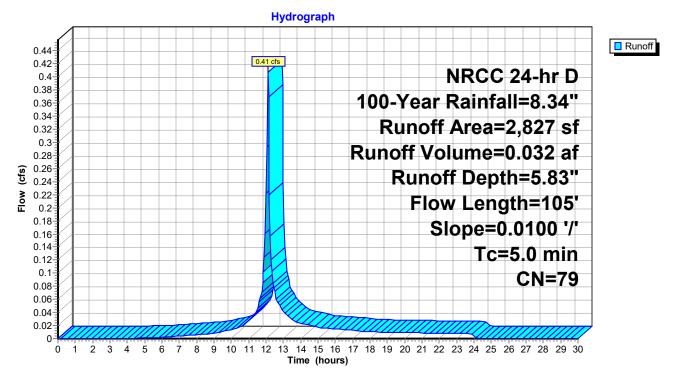
_	A	rea (sf)	CN	Description						
		293	39	39 >75% Grass cover, Good, HSG A						
_	2,559 98 Paved parking, HSG A									
		2,852	92	Weighted A	verage					
		293		10.27% Pe	rvious Area					
		2,559		89.73% Im	pervious Ar	ea				
	Tc	Length	Slope	,	Capacity	Description				
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	0.8	50	0.0170) 1.11		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.3	48	0.0170) 2.65		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
		00	Tatal	In the second se						

1.1 98 Total, Increased to minimum Tc = 5.0 min

Subcatchment P11: TO DP#1

Summary for Subcatchment P110: TO DCB#10

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.41 cfs @ 12.11 hrs, Volume= 0.032 af, Depth= 5.83" Routed to Reach DCB10 : TO DMH#106

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

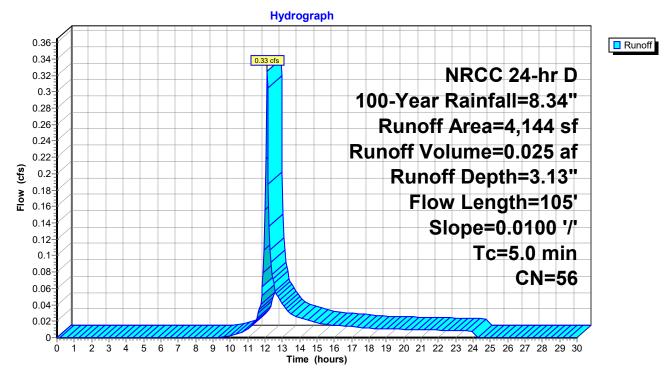
_	A	rea (sf)	CN	Description			
	907 39 >75% Grass cover, Good, HSG A						
_	1,920 98 Paved parking, HSG A						
	2,827 79 Weighted Average						
		907		32.08% Pe	rvious Area	1	
	1,920 67.92% Impervious Area						
	Tc	Length	Slope	,		Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	0.9	50	0.0100	0.90		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
		405	T ()			T 60 :	

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P110: TO DCB#10

Summary for Subcatchment P111: TO DCB#11

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.33 cfs @ 12.12 hrs, Volume= 0.025 af, Depth= 3.13" Routed to Reach DCB11 : TO DMH#103

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

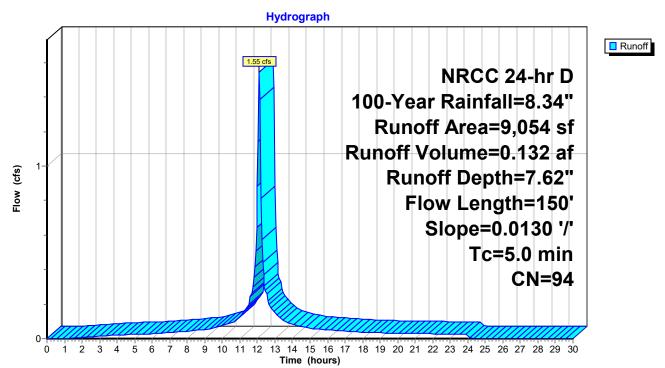
_	A	rea (sf)	CN	Description					
	2,953 39 >75% Grass cover, Good, HSG A								
_		1,191 98 Paved parking, HSG A							
	4,144 56 Weighted Average								
		2,953		71.26% Pe	rvious Area	l			
		1,191	:	28.74% Imj	pervious Ar	ea			
	Tc	Length	Slope	,		Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.9	50	0.0100	0.90		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.13"			
	0.5	55	0.0100	2.03		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
		405	T ()			T = C = C			

1.4 105 Total, Increased to minimum Tc = 5.0 min

Subcatchment P111: TO DCB#11

Summary for Subcatchment P112: TO DCB#12

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.55 cfs @ 12.11 hrs, Volume= 0.132 af, Depth= 7.62" Routed to Reach DCB12 : TO DMH#12

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

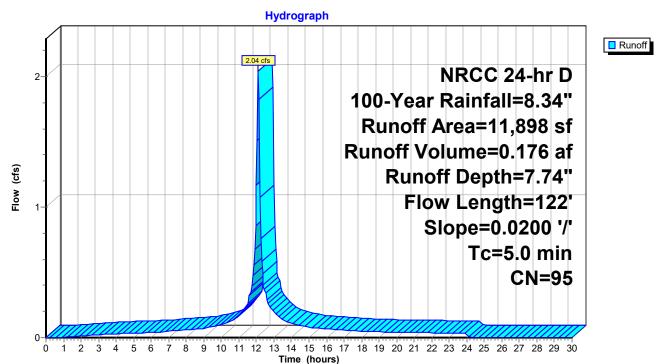
_	A	rea (sf)	CN	Description			
	575 39 >75% Grass cover, Good, HSG A						
_	8,479 98 Paved parking, HSG A						
	9,054 94 Weighted Average						
		575		6.35% Perv	ious Area		
		8,479		93.65% Im	pervious Ar	rea	
	Tc	Length	Slope	,		Description	
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	0.8	50	0.0130) 1.00		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.7	100	0.0130) 2.31		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	4 5	450	T - 4 - 1	la sus sis si			

1.5 150 Total, Increased to minimum Tc = 5.0 min

Subcatchment P112: TO DCB#12

Summary for Subcatchment P113: TO DCB#13

[49] Hint: Tc<2dt may require smaller dt


Runoff = 2.04 cfs @ 12.11 hrs, Volume= 0.176 af, Depth= 7.74" Routed to Reach DCB13 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

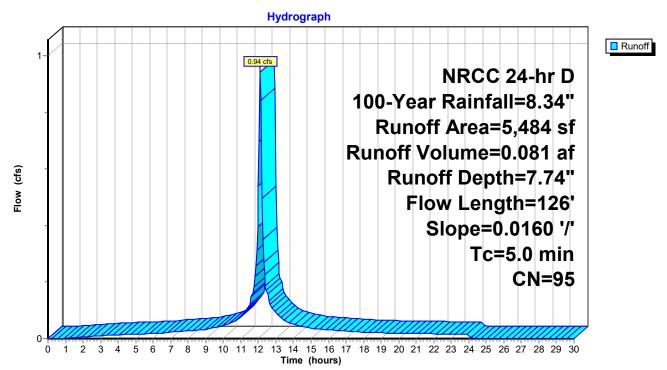
_	A	rea (sf)	CN	Description				
	656 39 >75% Grass cover, Good, HSG A							
_	11,242 98 Paved parking, HSG A							
	11,898 95 Weighted Average							
		656		5.51% Perv	vious Area			
		11,242		94.49% Imj	pervious Ar	ea		
	Tc	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.7	50	0.0200	1.18		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.4	72	0.0200	2.87		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
		100						

1.1 122 Total, Increased to minimum Tc = 5.0 min

Subcatchment P113: TO DCB#13

Summary for Subcatchment P114: TO DCB#14

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.94 cfs @ 12.11 hrs, Volume= 0.081 af, Depth= 7.74" Routed to Reach DCB14 : TO DMH#109

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

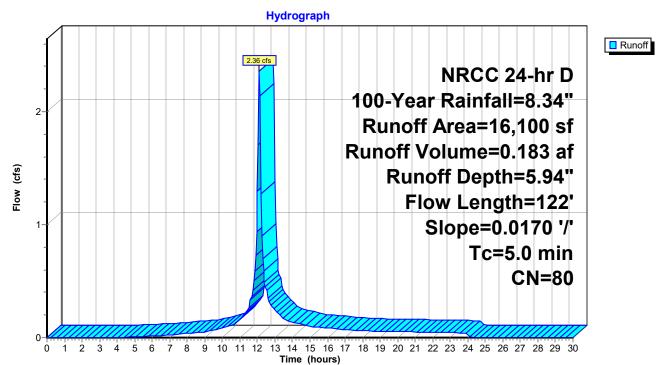
_	A	rea (sf)	CN I	Description						
		306 39 >75% Grass cover, Good, HSG A								
_		5,178	98	Paved parking, HSG A						
	5,484 95 Weighted Average									
	306 5.58% Pervious Área									
		5,178	9	94.42% Imj	pervious Ar	ea				
	Tc	Length	Slope			Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.8	50	0.0160	1.08		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.13"				
	0.5	76	0.0160	2.57		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	4.0	400	T ()			T = C :				

1.3 126 Total, Increased to minimum Tc = 5.0 min

Subcatchment P114: TO DCB#14

Summary for Subcatchment P115: TO DCB#15

[49] Hint: Tc<2dt may require smaller dt


Runoff = 2.36 cfs @ 12.11 hrs, Volume= 0.183 af, Depth= 5.94" Routed to Reach DCB15 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

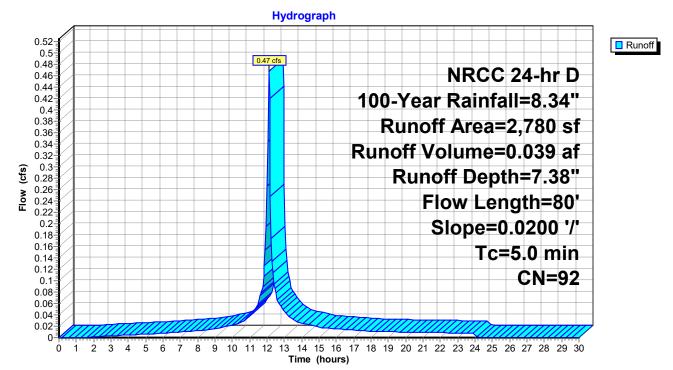
_	A	rea (sf)	CN	Description				
	4,821 39 >75% Grass cover, Good, HSG A							
_	11,279 98 Paved parking, HSG A							
	16,100 80 Weighted Average							
		4,821		29.94% Pe	rvious Area			
		11,279		70.06% Im	pervious Ar	ea		
	Tc	Length	Slope	,	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	0.8	50	0.0170	1.11		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.5	72	0.0170	2.65		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	4.0	400	T ()					

1.3 122 Total, Increased to minimum Tc = 5.0 min

Subcatchment P115: TO DCB#15

Summary for Subcatchment P116: TO DCB#25

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.47 cfs @ 12.11 hrs, Volume= 0.039 af, Depth= 7.38" Routed to Reach DCB25 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

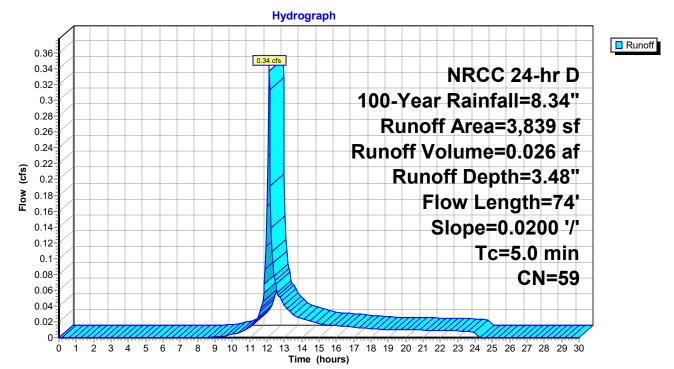
_	A	rea (sf)	CN	Description			
	297 39 >75% Grass cover, Good, HSG A						
_	2,483 98 Paved parking, HSG A						
	2,780 92 Weighted Average						
		297		10.68% Pe	rvious Area		
		2,483		89.32% Im	pervious Ar	ea	
	Tc	Length	Slope	,		Description	
_	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)		
	0.7	50	0.0200	1.18		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.2	30	0.0200	2.87		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	0.0	00	Takal	line and a set of			

0.9 80 Total, Increased to minimum Tc = 5.0 min

Subcatchment P116: TO DCB#25

Summary for Subcatchment P117: TO DP#6

[49] Hint: Tc<2dt may require smaller dt


Runoff	=	0.34 cfs @	12.12 hrs, Volume	= 0.026 af,	Depth= 3.48"
Routed	to Rea	ch DP#6 : ŌF	FSITE LOW POINT		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

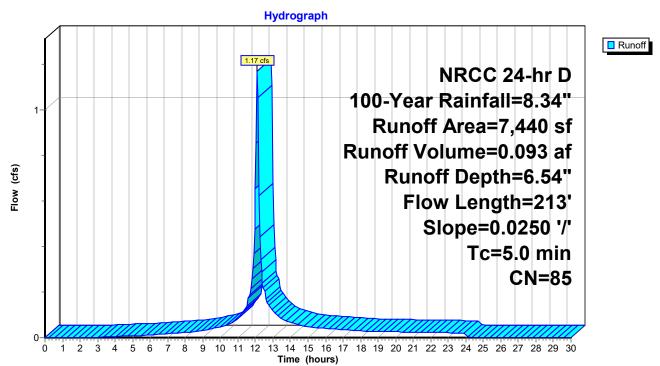
_	A	rea (sf)	CN	Description			
	2,555 39 >75% Grass cover, Good, HSG A						
_	1,284 98 Paved parking, HSG A						
	3,839 59 Weighted Average						
		2,555		66.55% Pe	rvious Area		
		1,284		33.45% Im	pervious Ar	ea	
	Tc	Length	Slope	,		Description	
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	0.7	50	0.0200) 1.18		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.1	24	0.0200) 2.87		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
_	0.0	74	Takal	lin ana a a a d			

0.8 74 Total, Increased to minimum Tc = 5.0 min

Subcatchment P117: TO DP#6

Summary for Subcatchment P119: TO DCB#19

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.17 cfs @ 12.11 hrs, Volume= 0.093 af, Depth= 6.54" Routed to Reach DCB19 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

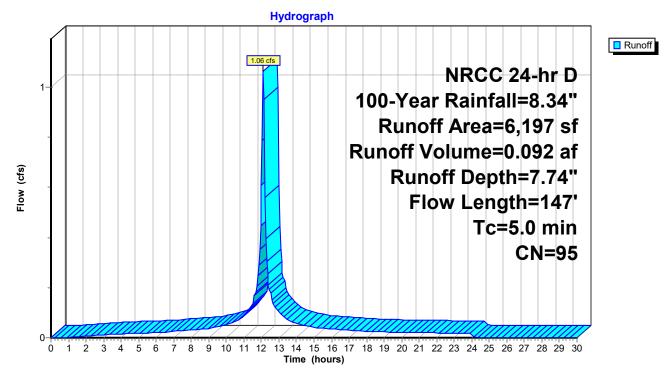
_	A	rea (sf)	CN	Description			
	1,625 39 >75% Grass cover, Good, HSG A						
_	5,815 98 Paved parking, HSG A						
	7,440 85 Weighted Average						
		1,625		21.84% Pe	rvious Area	l	
		5,815		78.16% Im	pervious Ar	ea	
	Tc	Length	Slope	,		Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	0.6	50	0.0250	1.29		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.8	163	0.0250	3.21		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	4.4	040	T . 4 . 1				

1.4 213 Total, Increased to minimum Tc = 5.0 min

Subcatchment P119: TO DCB#19

Summary for Subcatchment P12: TO DCB-A

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.06 cfs @ 12.11 hrs, Volume= 0.092 af, Depth= 7.74" Routed to Reach DCB-A : TO DMH-D

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

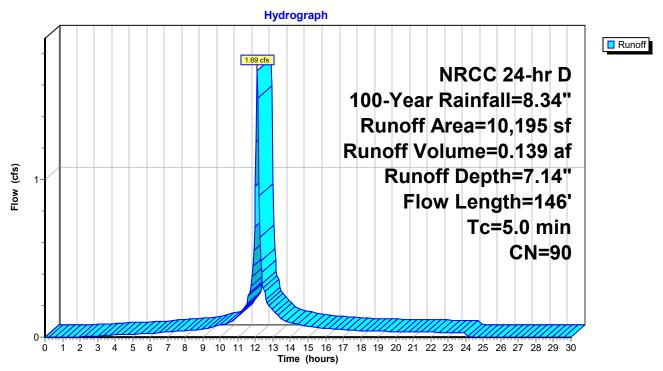
	A	rea (sf)	CN	Description		
334 39 >75% Grass cover, Good, HSG A						od, HSG A
		5,863	98	Paved park	ing, HSG A	
		6,197	95	Weighted A	verage	
		334		5.39% Perv	vious Area	
		5,863		94.61% Im	pervious Ar	ea
	Tc	Length	Slope	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft	•	(cfs)	
	1.5	8	0.0150	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	7	0.0150) 0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.8	35	0.0080	0.76		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.9	97	0.0080) 1.82		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	21	1/7	Total	Increased	la minimum	$T_0 = 5.0 \text{ min}$

3.4 147 Total, Increased to minimum Tc = 5.0 min

Subcatchment P12: TO DCB-A

Summary for Subcatchment P120: TO DCB#20

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.69 cfs @ 12.11 hrs, Volume= 0.139 af, Depth= 7.14" Routed to Reach DCB20 : TO DMH#109

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

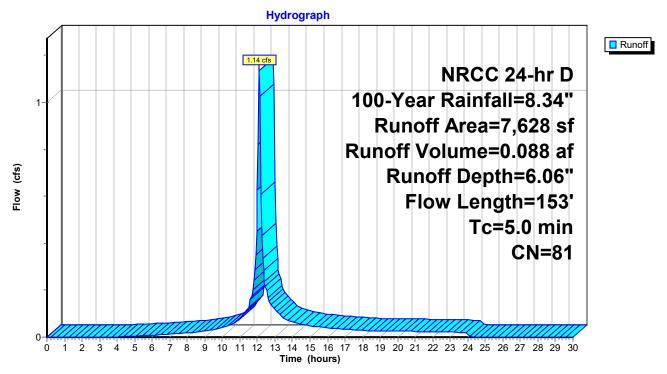
	A	rea (sf)	CN	Description				
	1,453 39 >75% Grass cover, Good, HSG A							
	8,742 98 Paved parking, HSG A							
		10,195	90	Weighted A	verage			
		1,453		14.25% Pe	rvious Area			
		8,742		85.75% Im	pervious Are	ea		
		Length	Slope			Description		
(m	nin)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	0.9	5	0.0200	0.09		Sheet Flow,		
						Grass: Short n= 0.150 P2= 3.13"		
	0.7	45	0.0150) 1.03		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	0.6	96	0.0150) 2.49		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
	<u>, ,</u>	146	Total	Inoroood		$T_{0} = 5.0 \text{ min}$		

2.2 146 Total, Increased to minimum Tc = 5.0 min

Subcatchment P120: TO DCB#20

Summary for Subcatchment P121: TO DCB#21

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.14 cfs @ 12.11 hrs, Volume= 0.088 af, Depth= 6.06" Routed to Reach DCB21 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

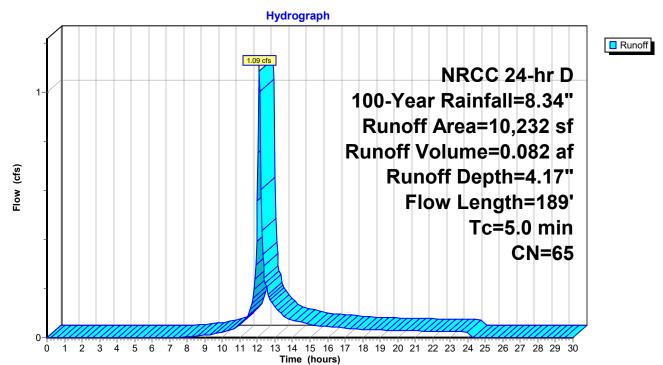
_	A	rea (sf)	CN	Description			
	2,211 39 >75% Grass cover, Good, HSG A						
5,417 98 Paved parking, HSG A							
	7,628 81 Weighted Average						
		2,211		28.99% Pe	rvious Area		
		5,417		71.01% Im	pervious Are	ea	
	Tc	Length	Slope	e Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	1.0	12	0.100	0.21		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.13"	
	0.7	38	0.010	0.85		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.8	103	0.010	2.03		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	25	152	Total	Inoropood	to minimum	$T_0 = 5.0 \text{ min}$	

2.5 153 Total, Increased to minimum Tc = 5.0 min

Subcatchment P121: TO DCB#21

Summary for Subcatchment P122: TO DCB#22

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.09 cfs @ 12.12 hrs, Volume= 0.082 af, Depth= 4.17" Routed to Reach DCB22 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

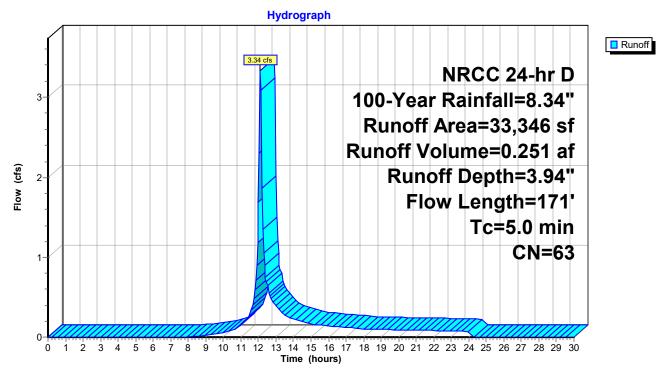
_	A	rea (sf)	CN	Description					
		5,643 39 >75% Grass cover, Good, HSG A							
_	4,589 98 Paved parking, HSG A								
		10,232	65	Weighted A	verage				
		5,643		55.15% Pe	rvious Area				
		4,589		44.85% Im	pervious Are	ea			
	Тс	Length	Slop	,	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	3.0	50	0.100	0.28		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.13"			
	0.7	139	0.030	3.52		Shallow Concentrated Flow,			
_						Paved Kv= 20.3 fps			
_	27	100	Total	Inoroood	to minimum	$T_{0} = 5.0 \text{ min}$			

3.7 189 Total, Increased to minimum Tc = 5.0 min

Subcatchment P122: TO DCB#22

Summary for Subcatchment P123: TO DCB#23

[49] Hint: Tc<2dt may require smaller dt


Runoff = 3.34 cfs @ 12.12 hrs, Volume= 0.251 af, Depth= 3.94" Routed to Reach DCB23 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

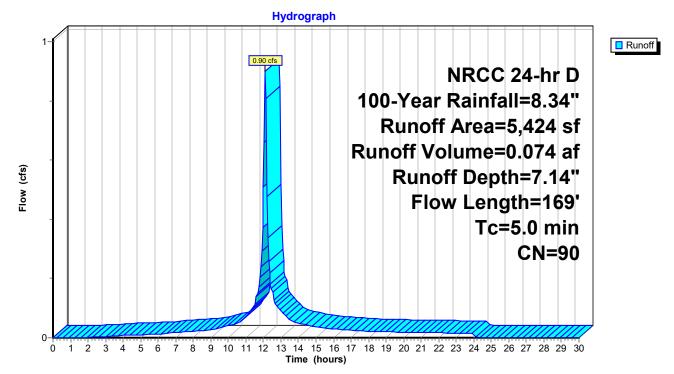
_	A	rea (sf)	CN	Description			
20,008 39 >75% Grass cover, Good, HSG A							
13,338 98 Paved parking, HSG A							
33,346 63 Weighted Average							
		20,008		60.00% Per	vious Area		
		13,338		40.00% Imp	pervious Are	a	
	_				•		
	Tc	Length	Slope		Capacity	Description	
-	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	2.5	40	0.1000	0.27		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.13"	
	0.2	10	0.0200	0.86		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	0.7	121	0.0200) 2.87		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	3 /	171	Total	Incroscod t	o minimum	$T_{c} = 5.0 \text{ min}$	

3.4 171 Total, Increased to minimum Tc = 5.0 min

Subcatchment P123: TO DCB#23

Summary for Subcatchment P14: TO DCB-B

[49] Hint: Tc<2dt may require smaller dt


Runoff = 0.90 cfs @ 12.11 hrs, Volume= 0.074 af, Depth= 7.14" Routed to Reach DCB-B : TO DMH-E

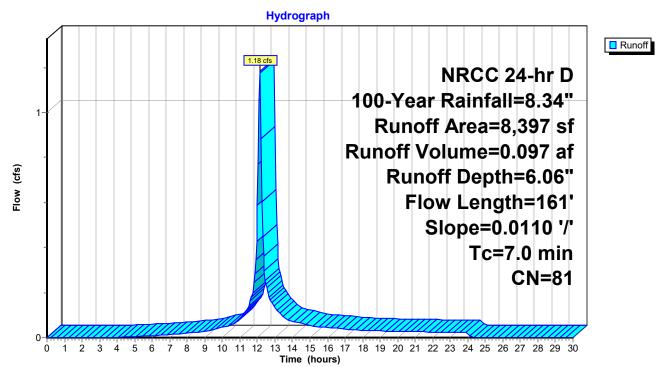
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

_	A	rea (sf)	CN	Description		
692 39 >75% Grass cover, Good, HSG A						ood, HSG A
_		4,732	98	Paved park	ing, HSG A	
		5,424	90	Weighted A	verage	
		692		12.76% Pe	rvious Area	
		4,732		87.24% Im	pervious Ar	ea
	-		01		o	
	TC	Length	Slope			Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	1.8	10	0.0150	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	7	0.0150	0.71		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.7	33	0.0080	0.76		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.1	119	0.0080) 1.82		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	20	160	Total	Inoroacad	la minimum	$T_0 = 5.0 \text{ min}$

3.8 169 Total, Increased to minimum Tc = 5.0 min

Subcatchment P14: TO DCB-B

Summary for Subcatchment P15: TO DCB-C


Runoff = 1.18 cfs @ 12.14 hrs, Volume= 0.097 af, Depth= 6.06" Routed to Reach DCB-C : TO TRUNKLINE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

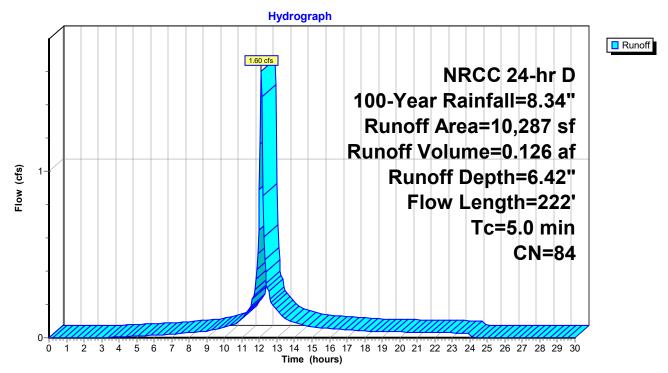
_	Area (sf) CN Description							
2,407 39 >75% Grass cover, Good, HSG A 5,990 98 Paved parking, HSG A								
-	5,990 98 Paved parking, HSG A 8,397 81 Weighted Average							
		2,407 5,990			rvious Area pervious Ar			
	То				Capacity	Description		
_	Tc (min)	Length (feet)	Slope (ft/ft		(cfs)	Description		
	5.8	38	0.0110	0.11		Sheet Flow, Grass: Short n= 0.150 P2= 3.13"		
	0.3	12	0.0110	0.70		Sheet Flow,		
	0.9	111	0.0110	2.13		Smooth surfaces n= 0.011 P2= 3.13" Shallow Concentrated Flow,		
-	7.0	101	Tatal			Paved Kv= 20.3 fps		

7.0 161 Total

Subcatchment P15: TO DCB-C

Summary for Subcatchment P18: TO DCB-D

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.60 cfs @ 12.11 hrs, Volume= 0.126 af, Depth= 6.42" Routed to Reach DCB-D : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

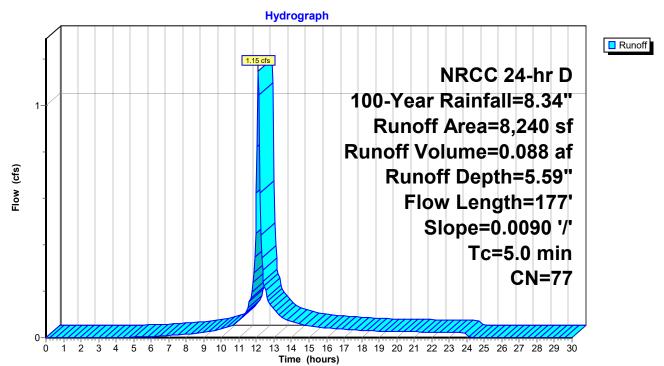
	A	rea (sf)	CN	Description		
		2,417	bod, HSG A			
		7,870	98	Paved park	ing, HSG A	Α
		10,287	84	Weighted A	verage	
		2,417		23.50% Pe	rvious Area	
		7,870		76.50% Im	pervious Ar	ea
	-		01		o ''	
,	Τc	Length	Slope			Description
(min)	(feet)	(ft/ft	//	(cfs)	
	1.6	9	0.0150	0.09		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.13"
	0.2	9	0.015	0.75		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	0.7	32	0.007	5 0.73		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.13"
	1.6	172	0.007	5 1.76		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	1 1	000	Tatal	الممجم معطا		$T_{0} = \Gamma Q$ min

4.1 222 Total, Increased to minimum Tc = 5.0 min

Subcatchment P18: TO DCB-D

Summary for Subcatchment P19: TO DCB-E

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.15 cfs @ 12.11 hrs, Volume= 0.088 af, Depth= 5.59" Routed to Reach DCB-E : TO DMH-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

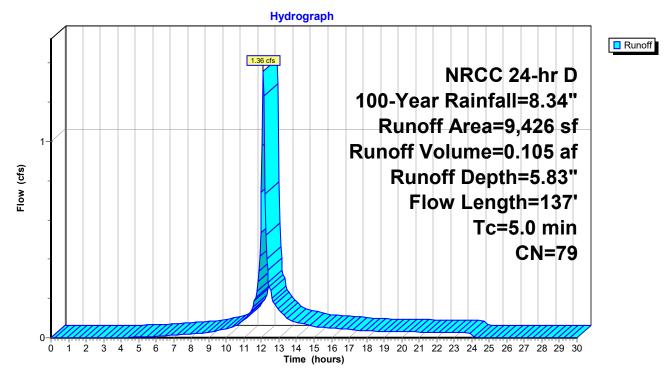
_	A	rea (sf)	sf) CN Description					
	2,944 39 >75% Grass cover, Good, HSG A							
_	5,296 98 Paved parking, HSG A							
	8,240 77 Weighted Average							
		2,944		35.73% Pe	rvious Area			
		5,296		64.27% Im	pervious Are	ea		
	Tc	Length	Slop	,	Capacity	Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	1.0	50	0.009	0.86		Sheet Flow,		
						Smooth surfaces n= 0.011 P2= 3.13"		
	1.1	127	0.009) 1.93		Shallow Concentrated Flow,		
_						Paved Kv= 20.3 fps		
	2.1	177	Total	Inoropood	o minimum	$T_0 = 5.0 \text{ min}$		

2.1 177 Total, Increased to minimum Tc = 5.0 min

Subcatchment P19: TO DCB-E

Summary for Subcatchment P20: TO DP#3

[49] Hint: Tc<2dt may require smaller dt


Runoff = 1.36 cfs @ 12.11 hrs, Volume= 0.105 af, Depth= 5.83" Routed to Reach DP3 : CATCHBASIN (FIRE STATION)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

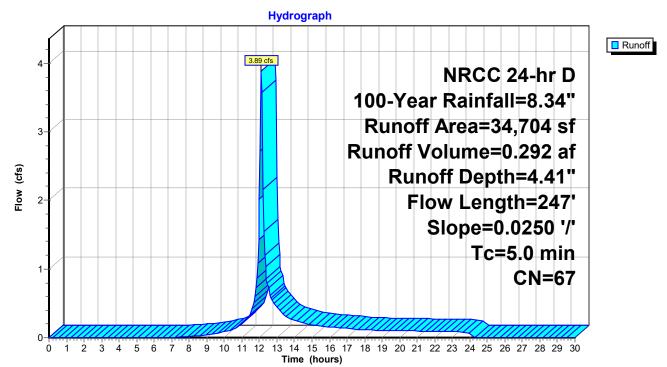
A	Area (sf)	CN	Description		
3,009 39 >75% Grass cover, Good, HSG A					
	6,417	98	Paved park	ting, HSG A	
	9,426	79	Weighted A	verage	
	3,009		31.92% Pe	rvious Area	
	6,417		68.08% Im	pervious Ar	ea
_					
Tc		Slope			Description
(min)	1 1	(ft/ft		(cfs)	
0.3	18	0.0300) 1.14		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
1.6	26	0.1300	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.1	6	0.0150	0.69		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
0.6	87	0.0150	2.49		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
26	107	Tatal	Increased	ka malalaan ma	

2.6 137 Total, Increased to minimum Tc = 5.0 min

Subcatchment P20: TO DP#3

Summary for Subcatchment P24: TO DCB#24

[49] Hint: Tc<2dt may require smaller dt


Runoff = 3.89 cfs @ 12.12 hrs, Volume= 0.292 af, Depth= 4.41" Routed to Reach DCB24 : TO DMH#113

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 100-Year Rainfall=8.34"

_	A	rea (sf)	CN	Description			
18,387 39 >75% Grass cover, Good, HSG A							
16,317 98 Paved parking, HSG A							
		34,704	67	Weighted A	verage		
		18,387		52.98% Pe	rvious Area		
		16,317		47.02% Imj	pervious Are	ea	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	0.6	50	0.0250	1.29		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.13"	
	1.0	197	0.0250	3.21		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	4.0	0.47	T ()			T 50 :	

1.6 247 Total, Increased to minimum Tc = 5.0 min

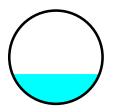
Subcatchment P24: TO DCB#24

Summary for Reach CMH3: TO DMH-E

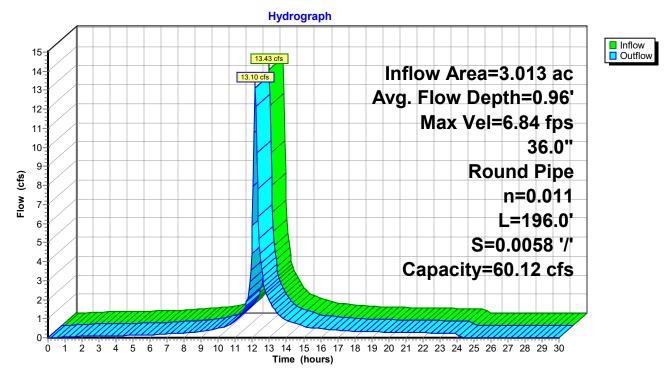
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH-F outlet invert by 0.96' @ 12.15 hrs

 Inflow Area =
 3.013 ac, 76.57% Impervious, Inflow Depth =
 4.82" for 100-Year event

 Inflow =
 13.43 cfs @
 12.15 hrs, Volume=
 1.209 af


 Outflow =
 13.10 cfs @
 12.16 hrs, Volume=
 1.209 af, Atten= 2%, Lag= 0.7 min

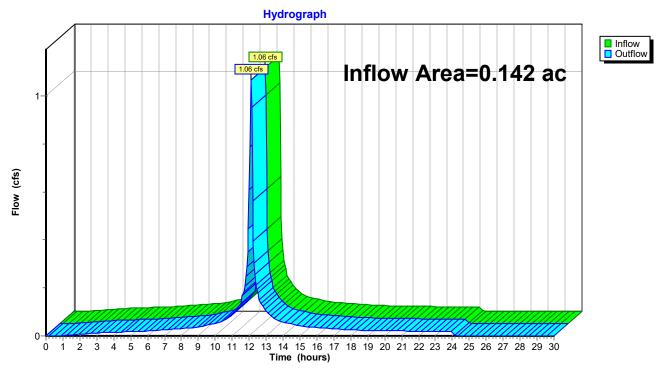
 Routed to Reach DMH-E : TO DMH-D
 TO DMH-D
 1.209 af, Atten= 2%, Lag= 0.7 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.84 fps, Min. Travel Time= 0.5 min Avg. Velocity = 2.30 fps, Avg. Travel Time= 1.4 min

Peak Storage= 383 cf @ 12.15 hrs Average Depth at Peak Storage= 0.96', Surface Width= 2.80' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.12 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 196.0' Slope= 0.0058 '/' Inlet Invert= 457.71', Outlet Invert= 456.57'

Reach CMH3: TO DMH-E

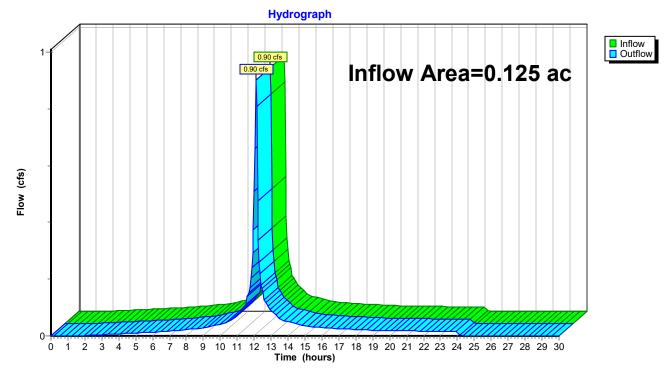


Summary for Reach DCB-A: TO DMH-D

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.142 ac, 94.61% Impervious, Inflow	Depth = 7.74" for 100-Year event		
Inflow =	1.06 cfs @ 12.11 hrs, Volume=	0.092 af		
Outflow =	1.06 cfs @ 12.11 hrs, Volume=	0.092 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-D : TO DMH-C				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

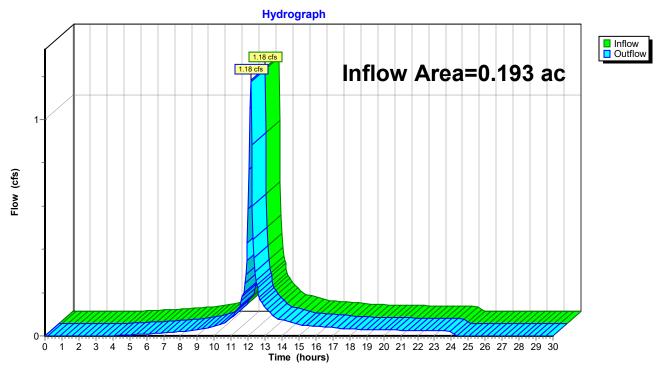

Reach DCB-A: TO DMH-D

Summary for Reach DCB-B: TO DMH-E

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.125 ac, 87.24% Impervious, Infl	ow Depth = 7.14" for 100-Year event		
Inflow =	0.90 cfs @ 12.11 hrs, Volume=	0.074 af		
Outflow =	0.90 cfs @ 12.11 hrs, Volume=	0.074 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-E : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach DCB-B: TO DMH-E

Summary for Reach DCB-C: TO TRUNKLINE

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.193 ac, 71.34% Impervious, Inflow	v Depth = 6.06" for 100-Year event		
Inflow =	1.18 cfs @ 12.14 hrs, Volume=	0.097 af		
Outflow =	1.18 cfs @ 12.14 hrs, Volume=	0.097 af, Atten= 0%, Lag= 0.0 min		
Routed to Reach DMH-E : TO DMH-D				

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

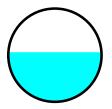
Reach DCB-C: TO TRUNKLINE

Summary for Reach DCB-D: TO DMH-A

[52] Hint: Inlet/Outlet conditions not evaluated

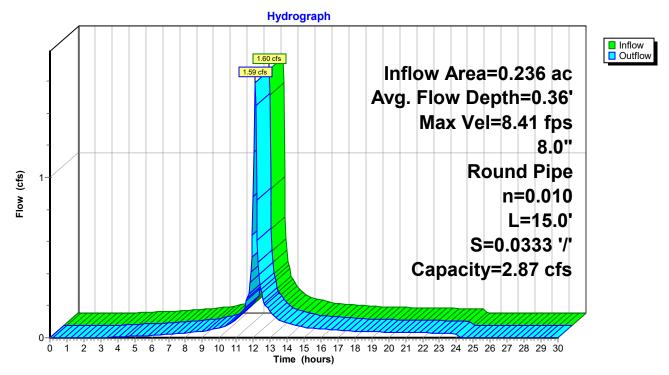
 Inflow Area =
 0.236 ac, 76.50% Impervious, Inflow Depth =
 6.42" for 100-Year event

 Inflow =
 1.60 cfs @
 12.11 hrs, Volume=
 0.126 af


 Outflow =
 1.59 cfs @
 12.11 hrs, Volume=
 0.126 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH-A* : TO DMH-B
 6
 100 cfs
 100 cfs

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.41 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.01 fps, Avg. Travel Time= 0.1 min


Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.36', Surface Width= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.87 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 15.0' Slope= 0.0333 '/' Inlet Invert= 468.00', Outlet Invert= 467.50'

NRCC 24-hr D 100-Year Rainfall=8.34" Printed 10/16/2024 Page 498

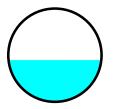
Reach DCB-D: TO DMH-A

Summary for Reach DCB-E: TO DMH-A

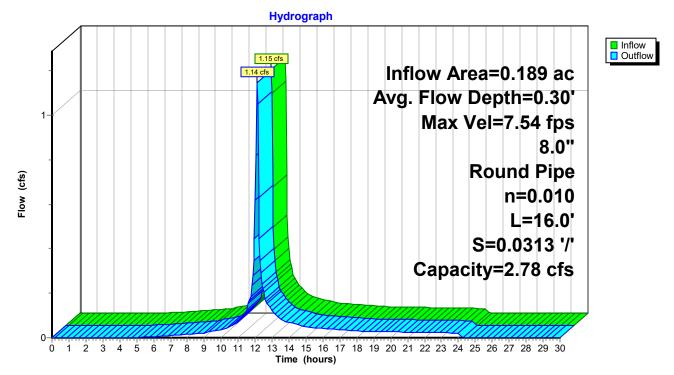
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.189 ac, 64.27% Impervious, Inflow Depth =
 5.59" for 100-Year event

 Inflow =
 1.15 cfs @
 12.11 hrs, Volume=
 0.088 af


 Outflow =
 1.14 cfs @
 12.12 hrs, Volume=
 0.088 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH-A* : TO DMH-B
 5.50
 5.50


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.54 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.70 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.11 hrs Average Depth at Peak Storage= 0.30', Surface Width= 0.66' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.78 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 16.0' Slope= 0.0313 '/' Inlet Invert= 468.00', Outlet Invert= 467.50'

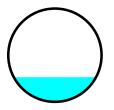
Reach DCB-E: TO DMH-A

Summary for Reach DCB10: TO DMH#106

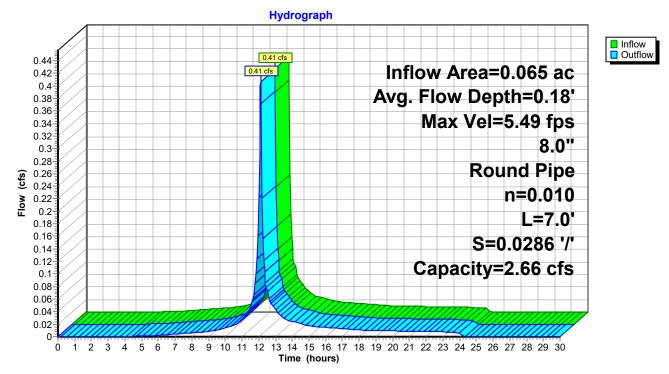
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.065 ac, 67.92% Impervious, Inflow Depth =
 5.83" for 100-Year event

 Inflow =
 0.41 cfs @
 12.11 hrs, Volume=
 0.032 af


 Outflow =
 0.41 cfs @
 12.11 hrs, Volume=
 0.032 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH106 : TO DMH#105
 TO DMH#105
 100 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.49 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.91 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.18', Surface Width= 0.59' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.66 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 7.0' Slope= 0.0286 '/' Inlet Invert= 470.30', Outlet Invert= 470.10'

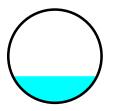
Reach DCB10: TO DMH#106

Summary for Reach DCB11: TO DMH#103

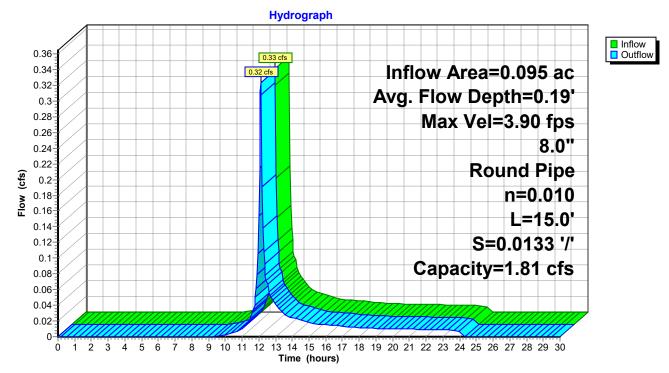
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.095 ac, 28.74% Impervious, Inflow Depth =
 3.13" for 100-Year event

 Inflow =
 0.33 cfs @
 12.12 hrs, Volume=
 0.025 af


 Outflow =
 0.32 cfs @
 12.12 hrs, Volume=
 0.025 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH106 : TO DMH#105
 TO DMH#105
 100-Year event


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.90 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.54 fps, Avg. Travel Time= 0.2 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.19', Surface Width= 0.60' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.81 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 15.0' Slope= 0.0133 '/' Inlet Invert= 470.30', Outlet Invert= 470.10'

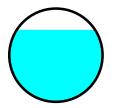
Reach DCB11: TO DMH#103

Summary for Reach DCB12: TO DMH#12

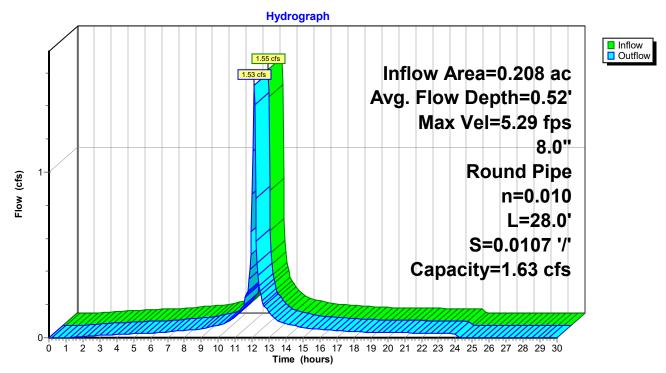
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.208 ac, 93.65% Impervious, Inflow Depth =
 7.62" for 100-Year event

 Inflow =
 1.55 cfs @
 12.11 hrs, Volume=
 0.132 af


 Outflow =
 1.53 cfs @
 12.11 hrs, Volume=
 0.132 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH108 : TO DMH#107
 TO DMH#107
 0.132 af, Atten= 1%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.29 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.03 fps, Avg. Travel Time= 0.2 min

Peak Storage= 8 cf @ 12.11 hrs Average Depth at Peak Storage= 0.52', Surface Width= 0.56' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.63 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 28.0' Slope= 0.0107 '/' Inlet Invert= 467.80', Outlet Invert= 467.50'

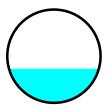
Reach DCB12: TO DMH#12

Summary for Reach DCB13: TO DMH#102

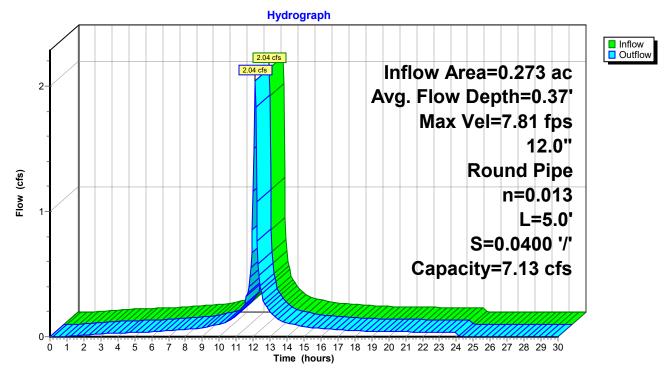
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.273 ac, 94.49% Impervious, Inflow Depth =
 7.74" for 100-Year event

 Inflow =
 2.04 cfs @
 12.11 hrs, Volume=
 0.176 af


 Outflow =
 2.04 cfs @
 12.11 hrs, Volume=
 0.176 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.176 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.81 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.78 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.37', Surface Width= 0.96' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 467.90', Outlet Invert= 467.70'

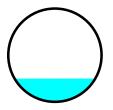
Reach DCB13: TO DMH#102

Summary for Reach DCB14: TO DMH#109

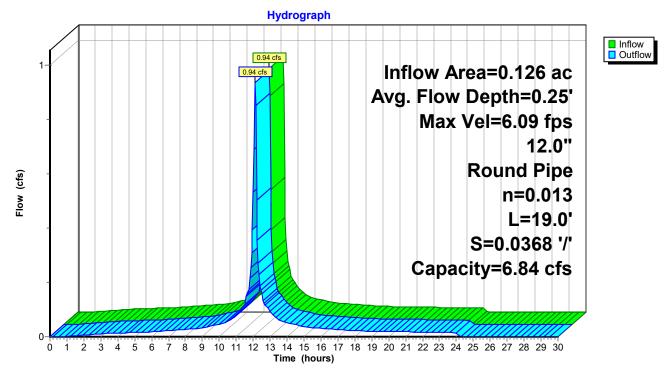
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.126 ac, 94.42% Impervious, Inflow Depth =
 7.74" for 100-Year event

 Inflow =
 0.94 cfs @
 12.11 hrs, Volume=
 0.081 af


 Outflow =
 0.94 cfs @
 12.11 hrs, Volume=
 0.081 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 100 content


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.09 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.14 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.25', Surface Width= 0.87' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.84 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 19.0' Slope= 0.0368 '/' Inlet Invert= 467.10', Outlet Invert= 466.40'

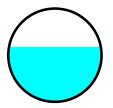
Reach DCB14: TO DMH#109

Summary for Reach DCB15: TO DMH#102

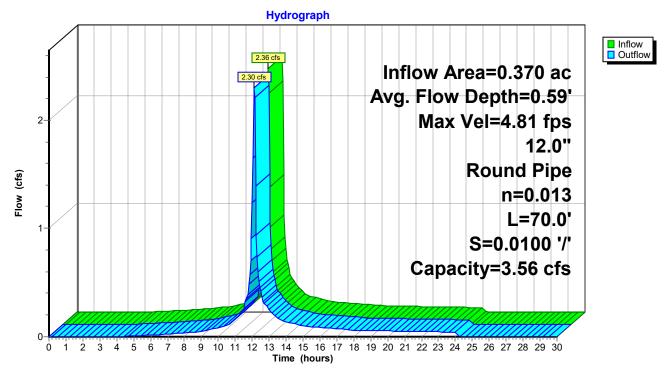
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.370 ac, 70.06% Impervious, Inflow Depth =
 5.94" for 100-Year event

 Inflow =
 2.36 cfs @
 12.11 hrs, Volume=
 0.183 af


 Outflow =
 2.30 cfs @
 12.12 hrs, Volume=
 0.183 af, Atten= 3%, Lag= 0.6 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.183 af, Atten= 3%, Lag= 0.6 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.81 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.75 fps, Avg. Travel Time= 0.7 min

Peak Storage= 34 cf @ 12.12 hrs Average Depth at Peak Storage= 0.59', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 70.0' Slope= 0.0100 '/' Inlet Invert= 467.00', Outlet Invert= 466.30'

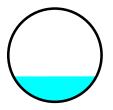
Reach DCB15: TO DMH#102

Summary for Reach DCB19: TO DMH#111

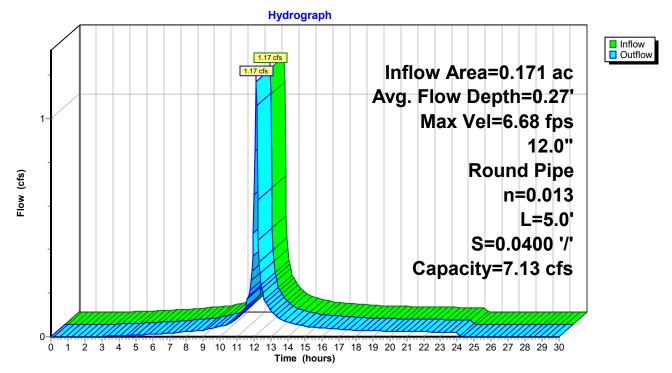
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.171 ac, 78.16% Impervious, Inflow Depth =
 6.54" for 100-Year event

 Inflow =
 1.17 cfs @
 12.11 hrs, Volume=
 0.093 af


 Outflow =
 1.17 cfs @
 12.11 hrs, Volume=
 0.093 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH111 : TO DMH#112
 0.093 af, Atten= 0%, Lag= 0.0 min
 0.093 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.68 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.31 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.27', Surface Width= 0.89' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 463.80', Outlet Invert= 463.60'

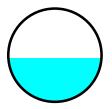
Reach DCB19: TO DMH#111

Summary for Reach DCB20: TO DMH#109

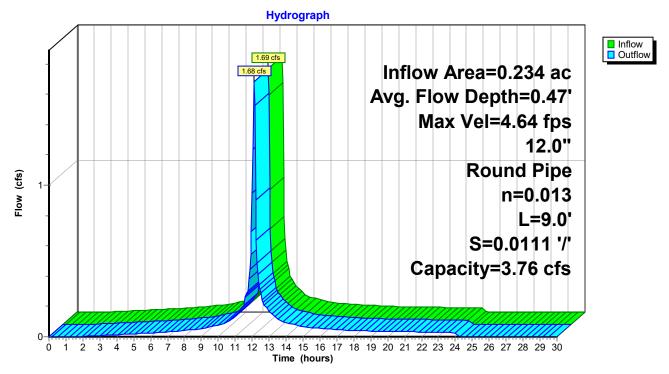
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.234 ac, 85.75% Impervious, Inflow Depth =
 7.14" for 100-Year event

 Inflow =
 1.69 cfs @
 12.11 hrs, Volume=
 0.139 af


 Outflow =
 1.68 cfs @
 12.11 hrs, Volume=
 0.139 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 0.139 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.64 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.65 fps, Avg. Travel Time= 0.1 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.47', Surface Width= 1.00' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.76 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 9.0' Slope= 0.0111 '/' Inlet Invert= 466.50', Outlet Invert= 466.40'

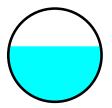
Reach DCB20: TO DMH#109

Summary for Reach DCB21: TO DMH#109A

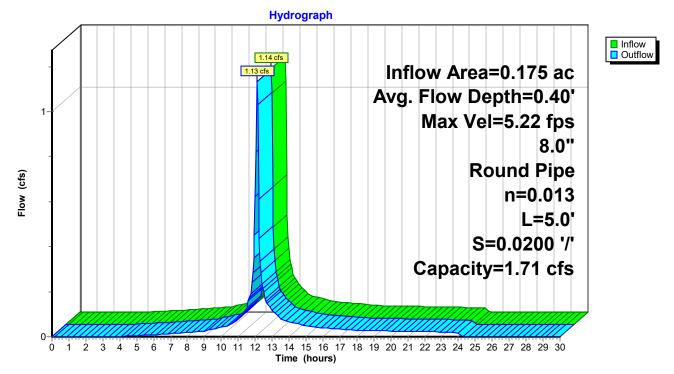
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.175 ac, 71.01% Impervious, Inflow Depth =
 6.06" for 100-Year event

 Inflow =
 1.14 cfs @
 12.11 hrs, Volume=
 0.088 af


 Outflow =
 1.13 cfs @
 12.11 hrs, Volume=
 0.088 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH109A : TO DMH109
 TO DMH109
 100 cm m model


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.22 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.90 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.40', Surface Width= 0.65' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.71 cfs

8.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 467.10', Outlet Invert= 467.00'

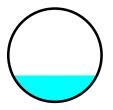
Reach DCB21: TO DMH#109A

Summary for Reach DCB22: TO DMH#111

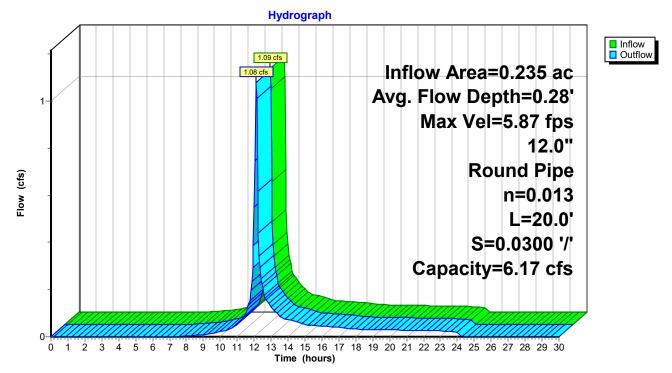
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.235 ac, 44.85% Impervious, Inflow Depth =
 4.17" for 100-Year event

 Inflow =
 1.09 cfs @
 12.12 hrs, Volume=
 0.082 af


 Outflow =
 1.08 cfs @
 12.12 hrs, Volume=
 0.082 af, Atten= 1%, Lag= 0.1 min

 Routed to Reach DMH111 : TO DMH#112
 0.082 af, Atten= 1%, Lag= 0.1 min
 0.082 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.87 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.17 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.12 hrs Average Depth at Peak Storage= 0.28', Surface Width= 0.90' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.17 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 20.0' Slope= 0.0300 '/' Inlet Invert= 464.20', Outlet Invert= 463.60'

Reach DCB22: TO DMH#111

Summary for Reach DCB23: TO DMH#111

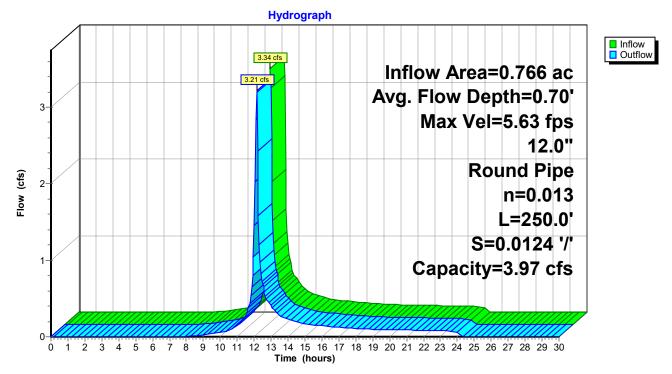
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.766 ac, 40.00% Impervious, Inflow Depth =
 3.94" for 100-Year event

 Inflow =
 3.34 cfs @
 12.12 hrs, Volume=
 0.251 af

 Outflow =
 3.21 cfs @
 12.14 hrs, Volume=
 0.251 af, Atten= 4%, Lag= 1.4 min

 Routed to Reach DMH111 : TO DMH#112
 3.21 cfs @
 12.14 hrs, Volume=
 0.251 af, Atten= 4%, Lag= 1.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.63 fps, Min. Travel Time= 0.7 min Avg. Velocity = 2.20 fps, Avg. Travel Time= 1.9 min

Peak Storage= 146 cf @ 12.13 hrs Average Depth at Peak Storage= 0.70', Surface Width= 0.92' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.97 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 250.0' Slope= 0.0124 '/' Inlet Invert= 466.70', Outlet Invert= 463.60'

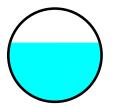
Reach DCB23: TO DMH#111

Summary for Reach DCB24: TO DMH#113

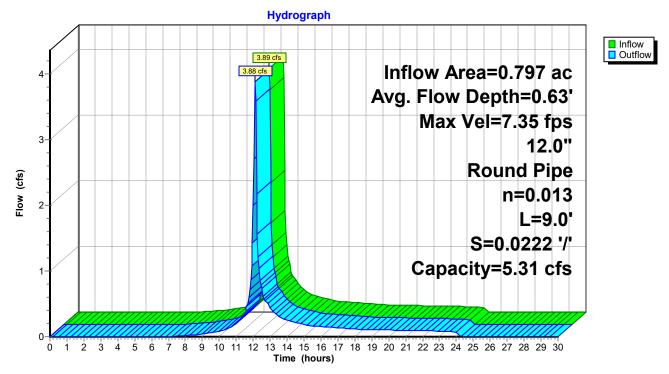
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.797 ac, 47.02% Impervious, Inflow Depth =
 4.41" for 100-Year event

 Inflow =
 3.89 cfs @
 12.12 hrs, Volume=
 0.292 af


 Outflow =
 3.88 cfs @
 12.12 hrs, Volume=
 0.292 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH113 : TO DMH#114
 0.292 af, Atten= 0%, Lag= 0.1 min
 0.292 af, Atten= 0%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.35 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.82 fps, Avg. Travel Time= 0.1 min

Peak Storage= 5 cf @ 12.12 hrs Average Depth at Peak Storage= 0.63', Surface Width= 0.96' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.31 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 9.0' Slope= 0.0222 '/' Inlet Invert= 460.50', Outlet Invert= 460.30'

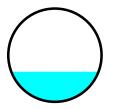
Reach DCB24: TO DMH#113

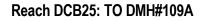
Summary for Reach DCB25: TO DMH#109A

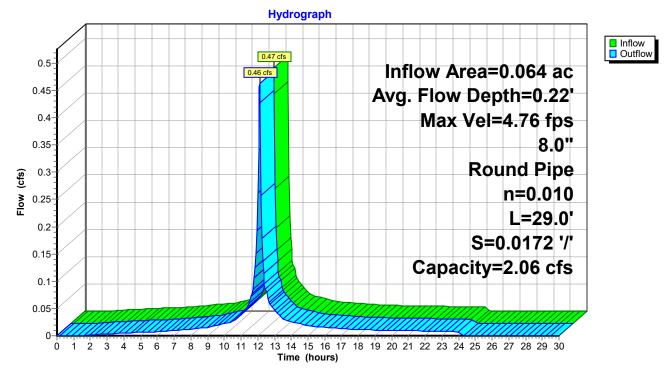
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.064 ac, 89.32% Impervious, Inflow Depth =
 7.38" for 100-Year event

 Inflow =
 0.47 cfs @
 12.11 hrs, Volume=
 0.039 af


 Outflow =
 0.46 cfs @
 12.12 hrs, Volume=
 0.039 af, Atten= 1%, Lag= 0.2 min


 Routed to Reach DMH109A : TO DMH109
 TO DMH109
 10.039 af, Atten= 1%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.76 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.67 fps, Avg. Travel Time= 0.3 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.22', Surface Width= 0.62' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.06 cfs

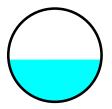
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 29.0' Slope= 0.0172 '/' Inlet Invert= 467.50', Outlet Invert= 467.00'

Summary for Reach DCB5: TO DMH#108

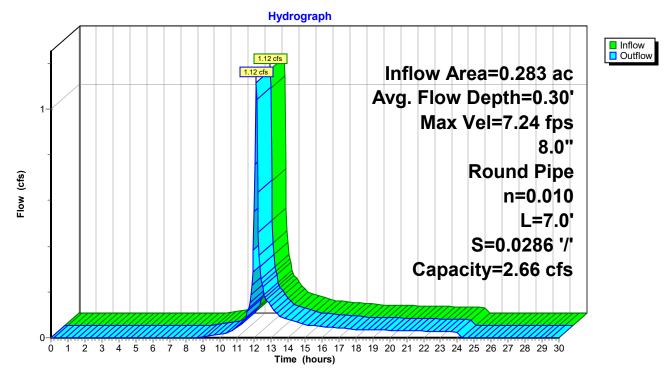
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.283 ac, 35.47% Impervious, Inflow Depth =
 3.59" for 100-Year event

 Inflow =
 1.12 cfs @
 12.12 hrs, Volume=
 0.085 af


 Outflow =
 1.12 cfs @
 12.12 hrs, Volume=
 0.085 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH108 : TO DMH#107
 TO DMH#107
 0.085 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.24 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.82 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.30', Surface Width= 0.66' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.66 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 7.0' Slope= 0.0286 '/' Inlet Invert= 468.20', Outlet Invert= 468.00'

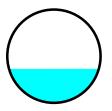
Reach DCB5: TO DMH#108

Summary for Reach DCB6: TO DMH#107

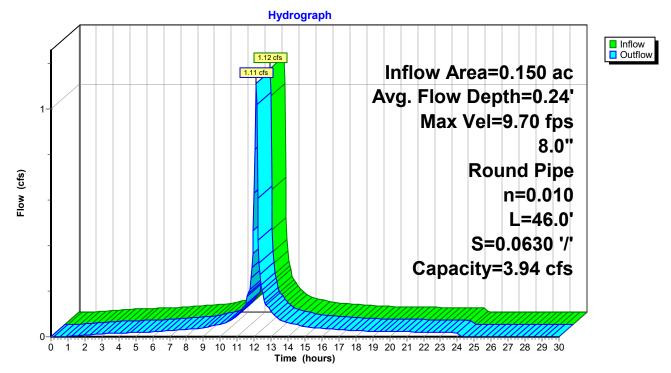
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.150 ac, 94.27% Impervious, Inflow Depth =
 7.74" for 100-Year event

 Inflow =
 1.12 cfs @
 12.11 hrs, Volume=
 0.097 af


 Outflow =
 1.11 cfs @
 12.11 hrs, Volume=
 0.097 af, Atten= 1%, Lag= 0.2 min

 Routed to Reach DMH107 : TO DMH#100
 TO DMH#100
 0.097 af, Atten= 1%, Lag= 0.2 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 9.70 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.46 fps, Avg. Travel Time= 0.2 min

Peak Storage= 5 cf @ 12.11 hrs Average Depth at Peak Storage= 0.24', Surface Width= 0.64' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.94 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 46.0' Slope= 0.0630 '/' Inlet Invert= 469.80', Outlet Invert= 466.90'

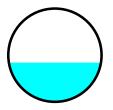
Reach DCB6: TO DMH#107

Summary for Reach DCB7: TO DMH#102

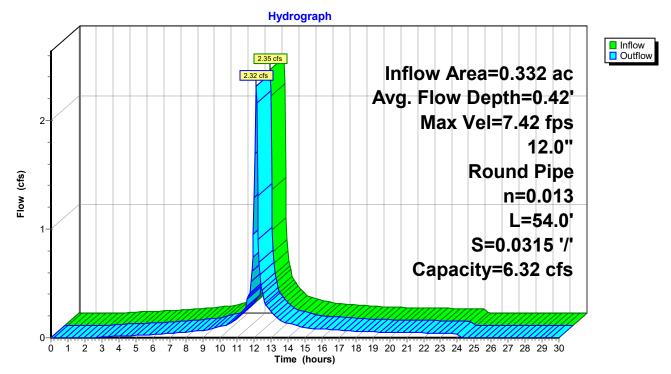
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.332 ac, 83.32% Impervious, Inflow Depth =
 6.90" for 100-Year event

 Inflow =
 2.35 cfs @
 12.11 hrs, Volume=
 0.191 af


 Outflow =
 2.32 cfs @
 12.12 hrs, Volume=
 0.191 af, Atten= 2%, Lag= 0.3 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.191 af, Atten= 2%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.42 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.61 fps, Avg. Travel Time= 0.3 min

Peak Storage= 17 cf @ 12.11 hrs Average Depth at Peak Storage= 0.42', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.32 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 54.0' Slope= 0.0315 '/' Inlet Invert= 468.40', Outlet Invert= 466.70'

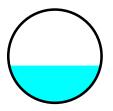
Reach DCB7: TO DMH#102

Summary for Reach DCB8: TO DMH#103

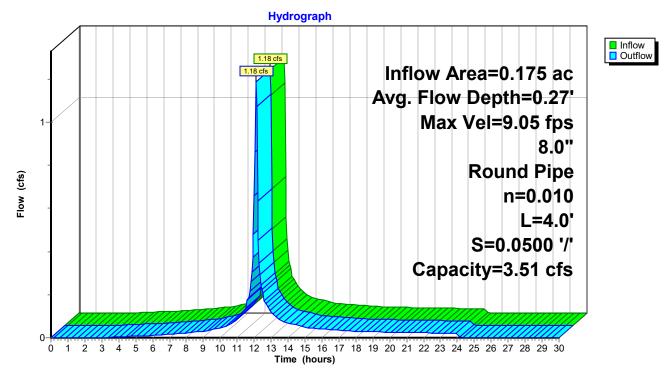
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.175 ac, 76.33% Impervious, Inflow Depth =
 6.42" for 100-Year event

 Inflow =
 1.18 cfs @
 12.11 hrs, Volume=
 0.094 af


 Outflow =
 1.18 cfs @
 12.11 hrs, Volume=
 0.094 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DMH104 : TO DMH#104
 6.094 af
 0.094 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 9.05 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.18 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.11 hrs Average Depth at Peak Storage= 0.27', Surface Width= 0.65' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 3.51 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 4.0' Slope= 0.0500 '/' Inlet Invert= 470.00', Outlet Invert= 469.80'

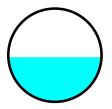
Reach DCB8: TO DMH#103

Summary for Reach DCB9: TO DMH#103

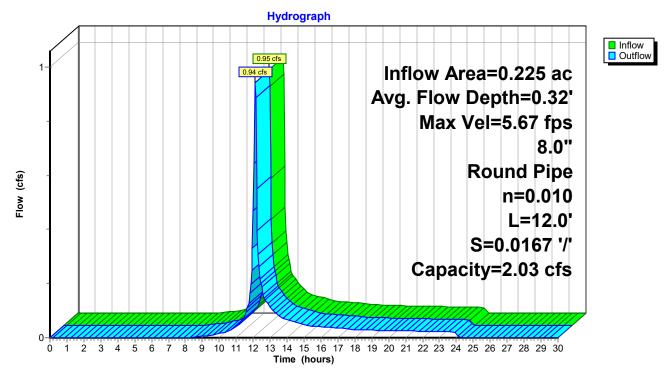
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.225 ac, 39.59% Impervious, Inflow Depth =
 3.82" for 100-Year event

 Inflow =
 0.95 cfs @
 12.12 hrs, Volume=
 0.072 af


 Outflow =
 0.94 cfs @
 12.12 hrs, Volume=
 0.072 af, Atten= 0%, Lag= 0.1 min

 Routed to Reach DMH104 : TO DMH#104
 3.82"
 3.82"

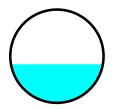

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.67 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.19 fps, Avg. Travel Time= 0.1 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.32', Surface Width= 0.67' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.03 cfs

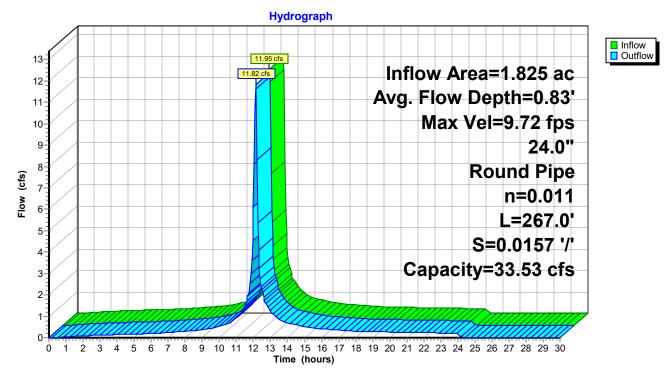
8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 12.0' Slope= 0.0167 '/' Inlet Invert= 470.00', Outlet Invert= 469.80'

Reach DCB9: TO DMH#103

Summary for Reach DMH-A*: TO DMH-B


[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH100 outlet invert by 0.71' @ 12.15 hrs

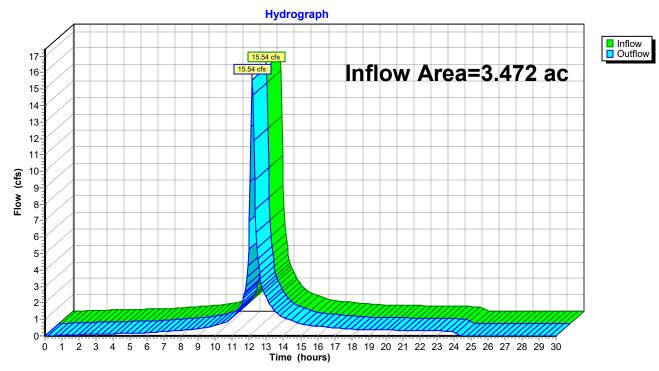
Inflow Area = 1.825 ac, 82.07% Impervious, Inflow Depth = 6.84" for 100-Year event Inflow = 11.95 cfs @ 12.12 hrs, Volume= 1.040 af Outflow = 11.82 cfs @ 12.13 hrs, Volume= 1.040 af, Atten= 1%, Lag= 0.8 min Routed to Reach DP2 : MUNICIPAL SYSTEM


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 9.72 fps, Min. Travel Time= 0.5 min Avg. Velocity = 3.42 fps, Avg. Travel Time= 1.3 min

Peak Storage= 329 cf @ 12.13 hrs Average Depth at Peak Storage= 0.83', Surface Width= 1.97' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 33.53 cfs

24.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 267.0' Slope= 0.0157 '/' Inlet Invert= 463.70', Outlet Invert= 459.50'

Reach DMH-A*: TO DMH-B



Summary for Reach DMH-C: TO DP#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.472 ac, 77.40% Impervious, Inflo	w Depth = 5.09" for 100-Year event
Inflow =	15.54 cfs @ 12.16 hrs, Volume=	1.473 af
Outflow =	15.54 cfs @ 12.16 hrs, Volume=	1.473 af, Atten= 0%, Lag= 0.0 min
Routed to Reach DP2 : MUNICIPAL SYSTEM		

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

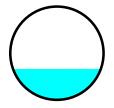
Reach DMH-C: TO DP#1

Summary for Reach DMH-D: TO DMH-C

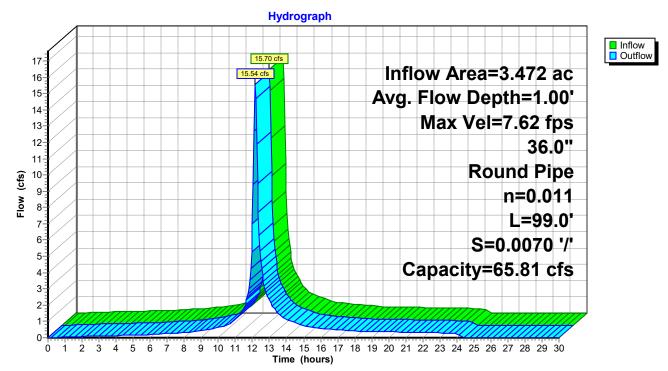
[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach DMH-E OUTLET depth by 0.01' @ 24.25 hrs
[79] Warning: Submerged Pond DMH-B Primary device # 1 INLET by 0.09'

 Inflow Area =
 3.472 ac, 77.40% Impervious, Inflow Depth =
 5.09" for 100-Year event

 Inflow =
 15.70 cfs @
 12.16 hrs, Volume=
 1.473 af


 Outflow =
 15.54 cfs @
 12.16 hrs, Volume=
 1.473 af, Atten= 1%, Lag= 0.3 min

 Routed to Reach DMH-C : TO DP#1
 To DP#1
 1.473 af, Atten= 1%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.62 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.60 fps, Avg. Travel Time= 0.6 min

Peak Storage= 203 cf @ 12.16 hrs Average Depth at Peak Storage= 1.00', Surface Width= 2.83' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 65.81 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 99.0' Slope= 0.0070 '/' Inlet Invert= 455.90', Outlet Invert= 455.21'

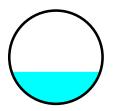
Reach DMH-D: TO DMH-C

Summary for Reach DMH-E: TO DMH-D

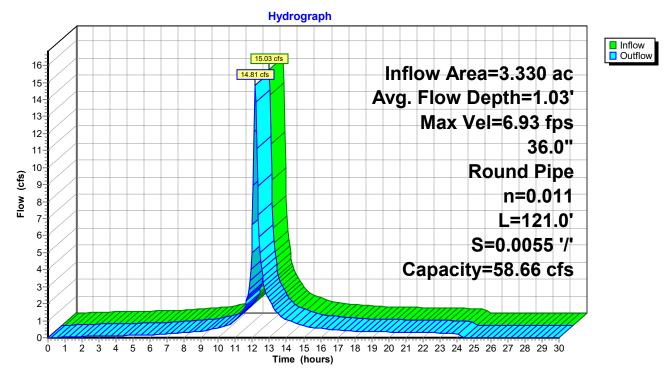
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach CMH3 OUTLET depth by 0.08' @ 12.20 hrs

 Inflow Area =
 3.330 ac, 76.67% Impervious, Inflow Depth =
 4.98" for 100-Year event

 Inflow =
 15.03 cfs @
 12.16 hrs, Volume=
 1.381 af


 Outflow =
 14.81 cfs @
 12.16 hrs, Volume=
 1.381 af, Atten= 1%, Lag= 0.5 min

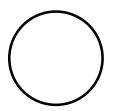
 Routed to Reach DMH-D : TO DMH-C
 TO DMH-C
 1.381 af, Atten= 1%, Lag= 0.5 min

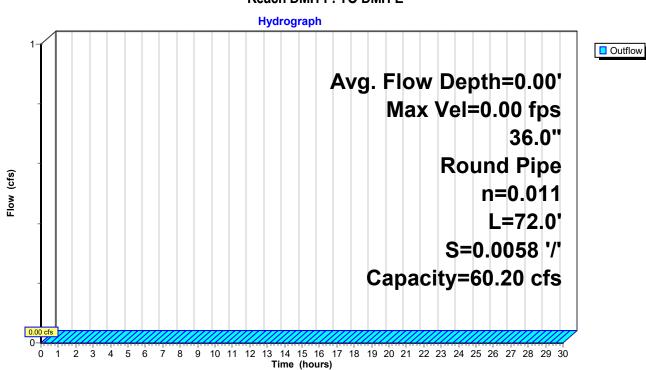

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.93 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.34 fps, Avg. Travel Time= 0.9 min

Peak Storage= 262 cf @ 12.16 hrs Average Depth at Peak Storage= 1.03', Surface Width= 2.85' Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 58.66 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 121.0' Slope= 0.0055 '/' Inlet Invert= 456.57', Outlet Invert= 455.90'

Reach DMH-E: TO DMH-D




Summary for Reach DMH-F: TO DMH-E

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 3.00' Flow Area= 7.1 sf, Capacity= 60.20 cfs

36.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 72.0' Slope= 0.0058 '/' Inlet Invert= 458.13', Outlet Invert= 457.71'

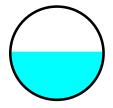
Reach DMH-F: TO DMH-E

Summary for Reach DMH100: TO DMH-A

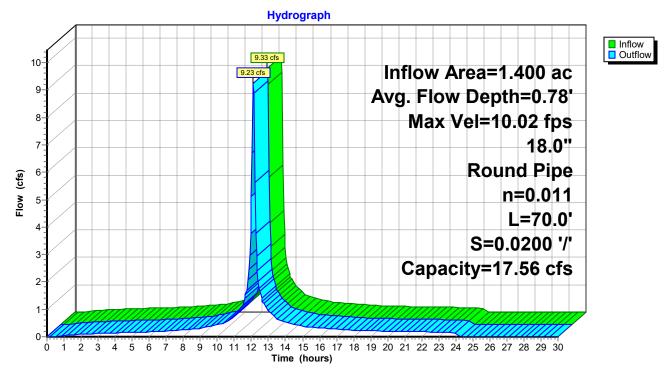
[52] Hint: Inlet/Outlet conditions not evaluated
[62] Hint: Exceeded Reach DMH101 OUTLET depth by 0.04' @ 12.15 hrs
[62] Hint: Exceeded Reach DMH107 OUTLET depth by 0.09' @ 12.10 hrs

 Inflow Area =
 1.400 ac, 85.41% Impervious, Inflow Depth =
 7.08" for 100-Year event

 Inflow =
 9.33 cfs @
 12.12 hrs, Volume=
 0.826 af


 Outflow =
 9.23 cfs @
 12.12 hrs, Volume=
 0.826 af, Atten= 1%, Lag= 0.3 min

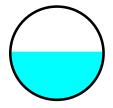
 Routed to Reach DMH-A* : TO DMH-B
 TO DMH-B
 0.826 af, Atten= 1%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 10.02 fps, Min. Travel Time= 0.1 min Avg. Velocity = 3.65 fps, Avg. Travel Time= 0.3 min

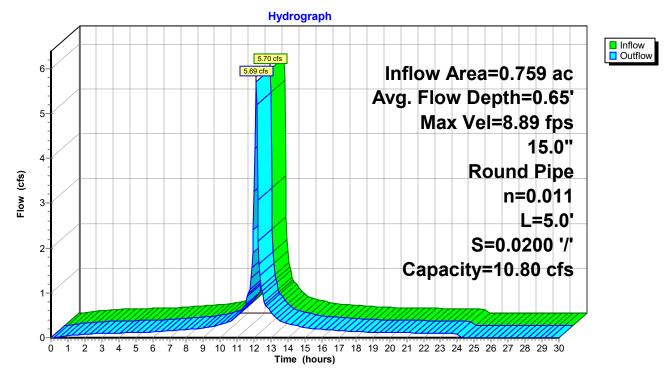
Peak Storage= 65 cf @ 12.12 hrs Average Depth at Peak Storage= 0.78', Surface Width= 1.50' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 17.56 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 70.0' Slope= 0.0200 '/' Inlet Invert= 465.20', Outlet Invert= 463.80'

Reach DMH100: TO DMH-A


Summary for Reach DMH101: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach RF1 outlet invert by 0.34' @ 12.10 hrs
[61] Hint: Exceeded Reach RF2 outlet invert by 0.34' @ 12.10 hrs
Inflow Area = 0.759 ac,100.00% Impervious, Inflow Depth = 8.10" for 100-Year event
Inflow = 5.70 cfs @ 12.11 hrs, Volume= 0.513 af
Outflow = 5.69 cfs @ 12.11 hrs, Volume= 0.513 af, Atten= 0%, Lag= 0.0 min
Routed to Reach DMH100 : TO DMH-A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.89 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.28 fps, Avg. Travel Time= 0.0 min

Peak Storage= 3 cf @ 12.11 hrs Average Depth at Peak Storage= 0.65', Surface Width= 1.25' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 10.80 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 465.40', Outlet Invert= 465.30'

Reach DMH101: TO DMH#100

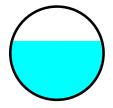
Summary for Reach DMH102: TO UGS#1A

[52] Hint: Inlet/Outlet conditions not evaluated

- [61] Hint: Exceeded Reach DCB15 outlet invert by 0.58' @ 12.10 hrs
- [61] Hint: Exceeded Reach DCB7 outlet invert by 0.18' @ 12.10 hrs

 Inflow Area =
 0.975 ac, 81.42% Impervious, Inflow Depth =
 6.77" for 100-Year event

 Inflow =
 6.65 cfs @
 12.12 hrs, Volume=
 0.550 af


 Outflow =
 6.64 cfs @
 12.12 hrs, Volume=
 0.550 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach UGS1A : TO UGS#1
 TO UGS#1
 0.550 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.09 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.88 fps, Avg. Travel Time= 0.0 min

Peak Storage= 4 cf @ 12.12 hrs Average Depth at Peak Storage= 0.79', Surface Width= 1.21' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 9.14 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 466.10', Outlet Invert= 466.00'

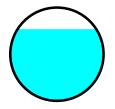
Reach DMH102: TO UGS#1A

Summary for Reach DMH103: TO CMH#2

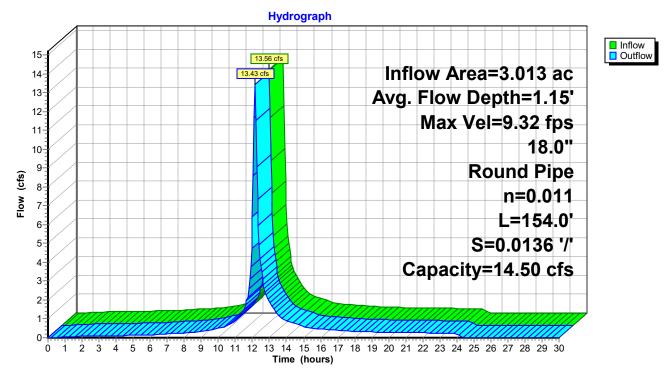
[52] Hint: Inlet/Outlet conditions not evaluated
 [62] Hint: Exceeded Reach DMH104 OUTLET depth by 0.41' @ 12.10 hrs
 [61] Hint: Exceeded Reach DMHR1 outlet invert by 0.25' @ 12.15 hrs

 Inflow Area =
 3.013 ac, 76.57% Impervious, Inflow Depth =
 4.82" for 100-Year event

 Inflow =
 13.56 cfs @
 12.14 hrs, Volume=
 1.209 af


 Outflow =
 13.43 cfs @
 12.15 hrs, Volume=
 1.209 af, Atten= 1%, Lag= 0.4 min

 Routed to Reach CMH3 : TO DMH-E
 To DMH-E
 1.209 af, Atten= 1%, Lag= 0.4 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 9.32 fps, Min. Travel Time= 0.3 min Avg. Velocity = 3.39 fps, Avg. Travel Time= 0.8 min

Peak Storage= 224 cf @ 12.15 hrs Average Depth at Peak Storage= 1.15', Surface Width= 1.27' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 14.50 cfs

18.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 154.0' Slope= 0.0136 '/' Inlet Invert= 464.10', Outlet Invert= 462.00'

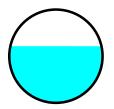
Reach DMH103: TO CMH#2

Summary for Reach DMH104: TO DMH#104

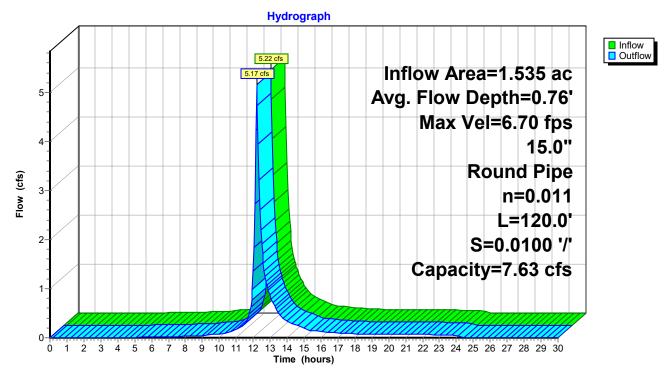
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach DMH105 OUTLET depth by 0.13' @ 12.10 hrs

 Inflow Area =
 1.535 ac, 70.86% Impervious, Inflow Depth =
 2.87" for 100-Year event

 Inflow =
 5.22 cfs @
 12.20 hrs, Volume=
 0.367 af


 Outflow =
 5.17 cfs @
 12.21 hrs, Volume=
 0.367 af, Atten= 1%, Lag= 0.5 min

 Routed to Reach DMH103 : TO CMH#2
 TO CMH#2
 0.367 af, Atten= 1%, Lag= 0.5 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.70 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.06 fps, Avg. Travel Time= 1.0 min

Peak Storage= 94 cf @ 12.21 hrs Average Depth at Peak Storage= 0.76', Surface Width= 1.22' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.63 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 120.0' Slope= 0.0100 '/' Inlet Invert= 465.40', Outlet Invert= 464.20'

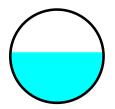
Reach DMH104: TO DMH#104

Summary for Reach DMH105: TO DMH#104

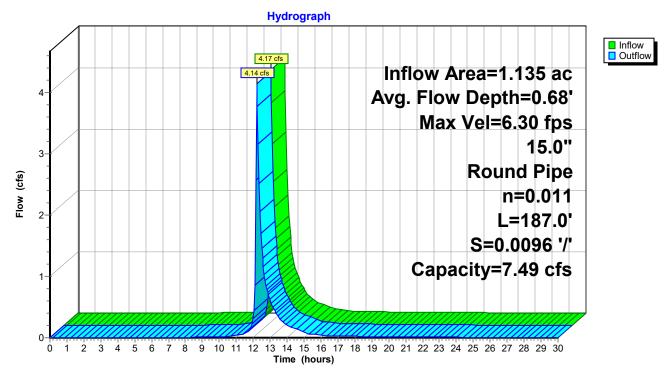
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach UGS1B OUTLET depth by 0.11' @ 12.05 hrs

 Inflow Area =
 1.135 ac, 76.23% Impervious, Inflow Depth =
 2.13" for 100-Year event

 Inflow =
 4.17 cfs @
 12.21 hrs, Volume=
 0.201 af


 Outflow =
 4.14 cfs @
 12.22 hrs, Volume=
 0.201 af, Atten= 1%, Lag= 0.7 min

 Routed to Reach DMH104 : TO DMH#104
 TO DMH#104
 100 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.30 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.52 fps, Avg. Travel Time= 2.0 min

Peak Storage= 127 cf @ 12.21 hrs Average Depth at Peak Storage= 0.68', Surface Width= 1.25' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 7.49 cfs

15.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 187.0' Slope= 0.0096 '/' Inlet Invert= 467.30', Outlet Invert= 465.50'

Reach DMH105: TO DMH#104

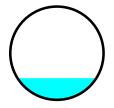
Summary for Reach DMH106: TO DMH#105

[52] Hint: Inlet/Outlet conditions not evaluated

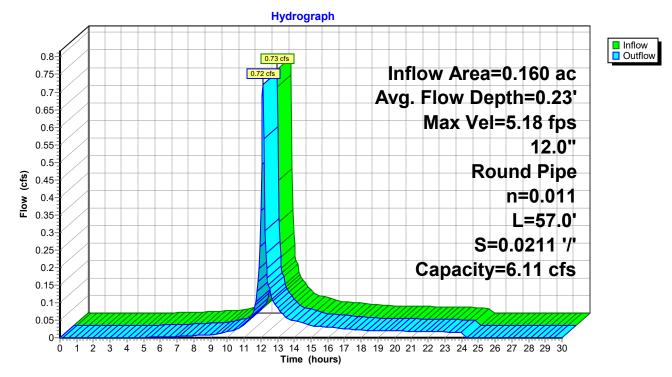
- [61] Hint: Exceeded Reach DCB10 outlet invert by 0.13' @ 12.10 hrs
- [61] Hint: Exceeded Reach DCB11 outlet invert by 0.13' @ 12.10 hrs

 Inflow Area =
 0.160 ac, 44.63% Impervious, Inflow Depth = 4.22" for 100-Year event

 Inflow =
 0.73 cfs @
 12.12 hrs, Volume=
 0.056 af


 Outflow =
 0.72 cfs @
 12.13 hrs, Volume=
 0.056 af, Atten= 1%, Lag= 0.5 min

 Routed to Reach DMH105 : TO DMH#104
 TO DMH#104


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.18 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.79 fps, Avg. Travel Time= 0.5 min

Peak Storage= 8 cf @ 12.12 hrs Average Depth at Peak Storage= 0.23', Surface Width= 0.84' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.11 cfs

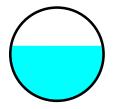
12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 57.0' Slope= 0.0211 '/' Inlet Invert= 470.00', Outlet Invert= 468.80'

Reach DMH106: TO DMH#105

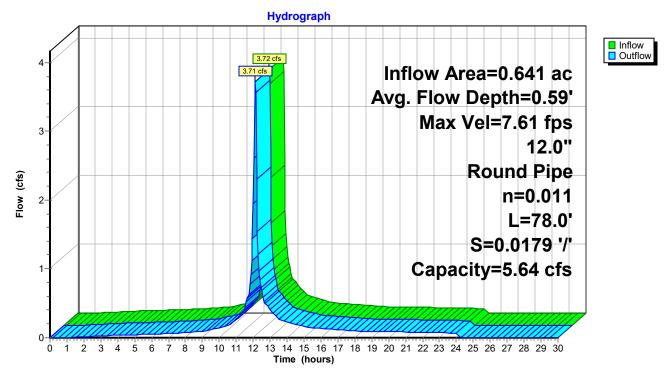
Summary for Reach DMH107: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated

[62] Hint: Exceeded Reach DCB6 OUTLET depth by 0.15' @ 12.15 hrs


[61] Hint: Exceeded Reach DMH108 outlet invert by 0.38' @ 12.10 hrs

Inflow Area =0.641 ac, 68.12% Impervious, Inflow Depth =5.87" for 100-Year eventInflow =3.72 cfs @12.12 hrs, Volume=0.313 afOutflow =3.71 cfs @12.13 hrs, Volume=0.313 af, Atten= 0%, Lag= 0.4 minRouted to Reach DMH100 : TO DMH-A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.61 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.75 fps, Avg. Travel Time= 0.5 min

Peak Storage= 38 cf @ 12.12 hrs Average Depth at Peak Storage= 0.59', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.64 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 78.0' Slope= 0.0179 '/' Inlet Invert= 466.70', Outlet Invert= 465.30'

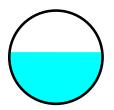
Reach DMH107: TO DMH#100

Summary for Reach DMH108: TO DMH#107

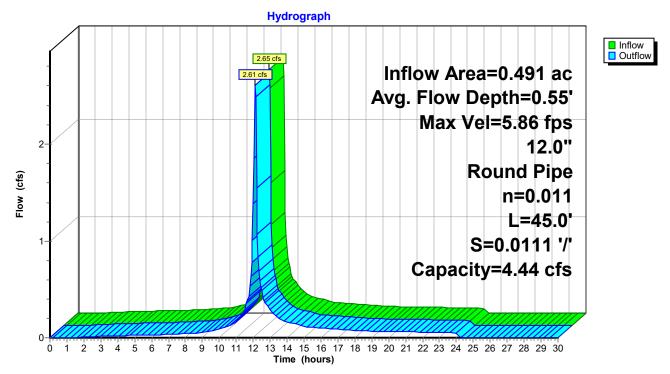
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DCB12 outlet invert by 0.45' @ 12.10 hrs

 Inflow Area =
 0.491 ac, 60.11% Impervious, Inflow Depth =
 5.30" for 100-Year event

 Inflow =
 2.65 cfs @
 12.12 hrs, Volume=
 0.217 af


 Outflow =
 2.61 cfs @
 12.12 hrs, Volume=
 0.217 af, Atten= 1%, Lag= 0.3 min

 Routed to Reach DMH107 : TO DMH#100
 TO DMH#100
 0.217 af, Atten= 1%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.86 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.07 fps, Avg. Travel Time= 0.4 min

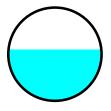
Peak Storage= 20 cf @ 12.12 hrs Average Depth at Peak Storage= 0.55', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.44 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 45.0' Slope= 0.0111 '/' Inlet Invert= 467.40', Outlet Invert= 466.90'

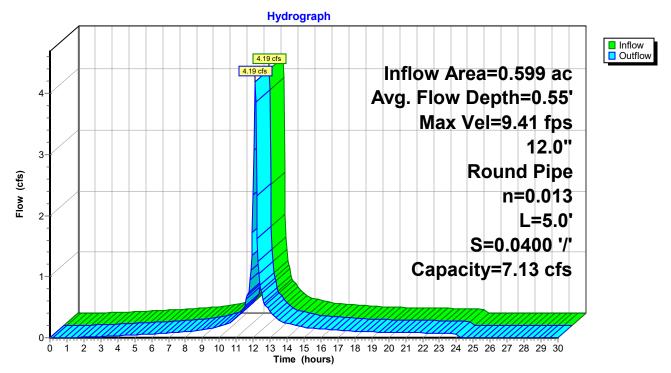
Reach DMH108: TO DMH#107

Summary for Reach DMH109: TO DMH#110

[52] Hint: Inlet/Outlet conditions not evaluated


- [62] Hint: Exceeded Reach DCB14 OUTLET depth by 0.10' @ 12.10 hrs
- [61] Hint: Exceeded Reach DCB20 outlet invert by 0.35' @ 12.10 hrs
- [61] Hint: Exceeded Reach DMH109A outlet invert by 0.35' @ 12.10 hrs

Inflow Area =0.599 ac, 83.64% Impervious, Inflow Depth =6.98"for 100-Year eventInflow =4.19 cfs @12.11 hrs, Volume=0.348 afOutflow =4.19 cfs @12.12 hrs, Volume=0.348 af, Atten= 0%, Lag= 0.0 minRouted to Reach DMH110 : TO UGS#2A


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 9.41 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.31 fps, Avg. Travel Time= 0.0 min

Peak Storage= 2 cf @ 12.12 hrs Average Depth at Peak Storage= 0.55', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 7.13 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0400 '/' Inlet Invert= 466.20', Outlet Invert= 466.00'

Reach DMH109: TO DMH#110

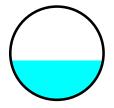
Summary for Reach DMH109A: TO DMH109

[52] Hint: Inlet/Outlet conditions not evaluated

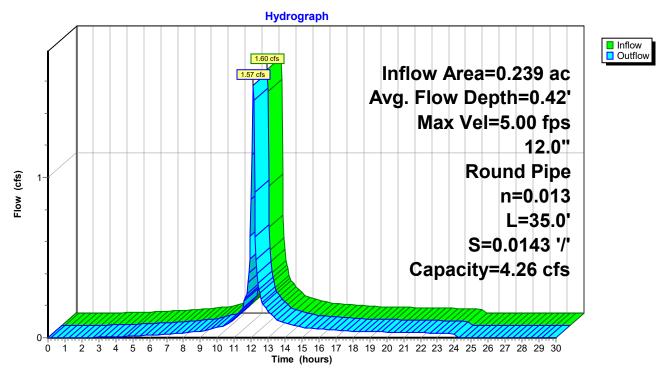
- [61] Hint: Exceeded Reach DCB21 outlet invert by 0.32' @ 12.10 hrs
- [62] Hint: Exceeded Reach DCB25 OUTLET depth by 0.10' @ 12.10 hrs

 Inflow Area =
 0.239 ac, 75.90% Impervious, Inflow Depth =
 6.42" for 100-Year event

 Inflow =
 1.60 cfs @
 12.11 hrs, Volume=
 0.128 af


 Outflow =
 1.57 cfs @
 12.12 hrs, Volume=
 0.128 af, Atten= 1%, Lag= 0.3 min

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110
 0.128 af, Atten= 1%, Lag= 0.3 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.00 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.70 fps, Avg. Travel Time= 0.3 min

Peak Storage= 11 cf @ 12.12 hrs Average Depth at Peak Storage= 0.42', Surface Width= 0.99' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.26 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0143 '/' Inlet Invert= 466.90', Outlet Invert= 466.40'

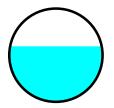
Reach DMH109A: TO DMH109

Summary for Reach DMH110: TO UGS#2A

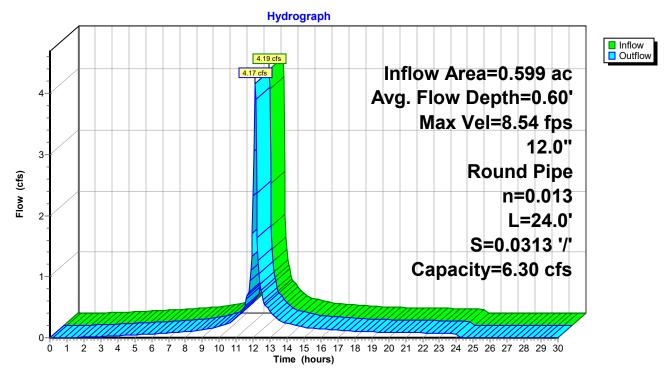
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH109 outlet invert by 0.34' @ 12.10 hrs

 Inflow Area =
 0.599 ac, 83.64% Impervious, Inflow Depth =
 6.98" for 100-Year event

 Inflow =
 4.19 cfs @
 12.12 hrs, Volume=
 0.348 af


 Outflow =
 4.17 cfs @
 12.12 hrs, Volume=
 0.348 af

 Routed to Reach UGS2A : TO UGS#2
 0.348 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.54 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.04 fps, Avg. Travel Time= 0.1 min

Peak Storage= 12 cf @ 12.12 hrs Average Depth at Peak Storage= 0.60', Surface Width= 0.98' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.30 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 24.0' Slope= 0.0313 '/' Inlet Invert= 465.75', Outlet Invert= 465.00'

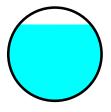
Reach DMH110: TO UGS#2A

Summary for Reach DMH111: TO DMH#112

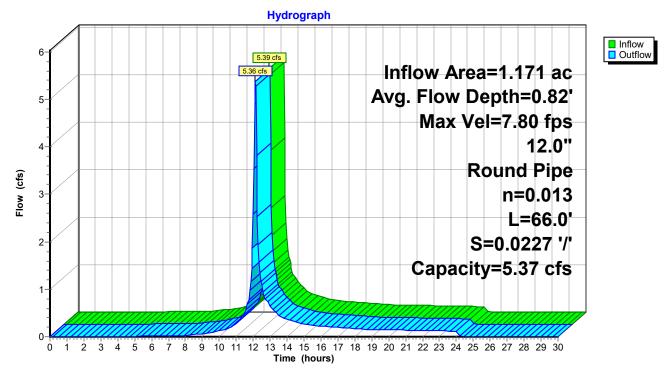
[52] Hint: Inlet/Outlet conditions not evaluated
[63] Warning: Exceeded Reach DCB19 INLET depth by 0.25' @ 12.15 hrs
[62] Hint: Exceeded Reach DCB22 OUTLET depth by 0.43' @ 12.15 hrs
[62] Hint: Exceeded Reach DCB23 OUTLET depth by 0.02' @ 12.15 hrs

 Inflow Area =
 1.171 ac, 46.54% Impervious, Inflow Depth = 4.36" for 100-Year event

 Inflow =
 5.39 cfs @
 12.13 hrs, Volume=
 0.426 af


 Outflow =
 5.36 cfs @
 12.14 hrs, Volume=
 0.426 af, Atten= 0%, Lag= 0.3 min

 Routed to Reach DMH112 : TO DMH#113


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.80 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.78 fps, Avg. Travel Time= 0.4 min

Peak Storage= 46 cf @ 12.13 hrs Average Depth at Peak Storage= 0.82', Surface Width= 0.77' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.37 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 66.0' Slope= 0.0227 '/' Inlet Invert= 463.50', Outlet Invert= 462.00'

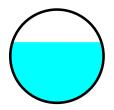
Reach DMH111: TO DMH#112

Summary for Reach DMH112: TO DMH#113

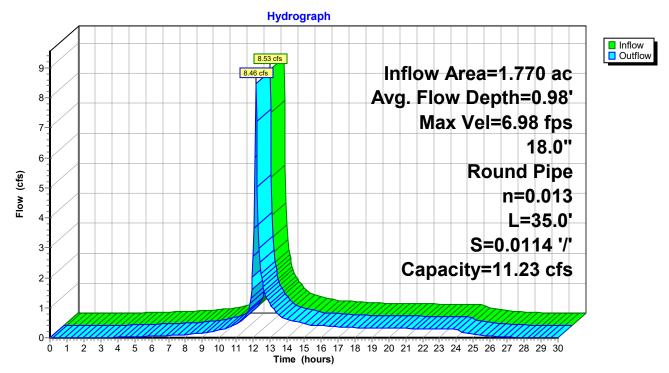
[52] Hint: Inlet/Outlet conditions not evaluated [62] Hint: Exceeded Reach UGS2B OUTLET depth by 0.35' @ 12.05 hrs

 Inflow Area =
 1.770 ac, 59.09% Impervious, Inflow Depth > 5.23" for 100-Year event

 Inflow =
 8.53 cfs @
 12.16 hrs, Volume=
 0.772 af


 Outflow =
 8.46 cfs @
 12.16 hrs, Volume=
 0.772 af, Atten= 1%, Lag= 0.1 min

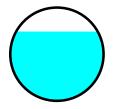
 Routed to Reach DMH113 : TO DMH#114
 TO DMH#114
 0.772 af, Atten= 1%, Lag= 0.1 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.98 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.36 fps, Avg. Travel Time= 0.2 min

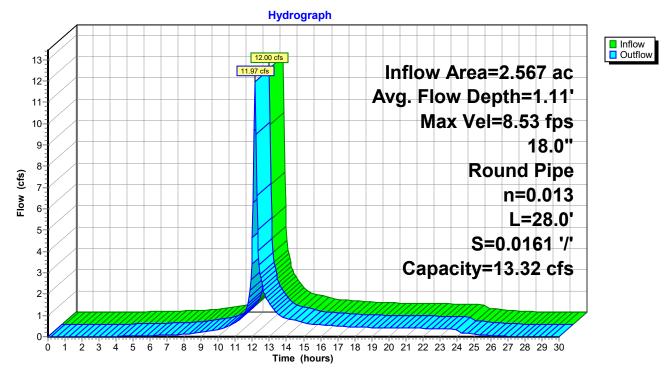
Peak Storage= 43 cf @ 12.16 hrs Average Depth at Peak Storage= 0.98', Surface Width= 1.43' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 11.23 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0114 '/' Inlet Invert= 460.20', Outlet Invert= 459.80'

Reach DMH112: TO DMH#113


Summary for Reach DMH113: TO DMH#114

[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach DCB24 outlet invert by 0.51' @ 12.15 hrs
[62] Hint: Exceeded Reach DMH112 OUTLET depth by 0.07' @ 12.10 hrs
Inflow Area = 2.567 ac, 55.34% Impervious, Inflow Depth > 4.97" for 100-Year event
Inflow = 12.00 cfs @ 12.15 hrs, Volume= 1.064 af
Outflow = 11.97 cfs @ 12.15 hrs, Volume= 1.064 af, Atten= 0%, Lag= 0.1 min
Routed to Reach DMH114 : TO DMH-K1


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.53 fps, Min. Travel Time= 0.1 min Avg. Velocity = 2.85 fps, Avg. Travel Time= 0.2 min

Peak Storage= 39 cf @ 12.15 hrs Average Depth at Peak Storage= 1.11', Surface Width= 1.31' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 13.32 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 28.0' Slope= 0.0161 '/' Inlet Invert= 459.70', Outlet Invert= 459.25'

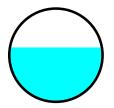
Reach DMH113: TO DMH#114

Summary for Reach DMH114: TO DMH-K1

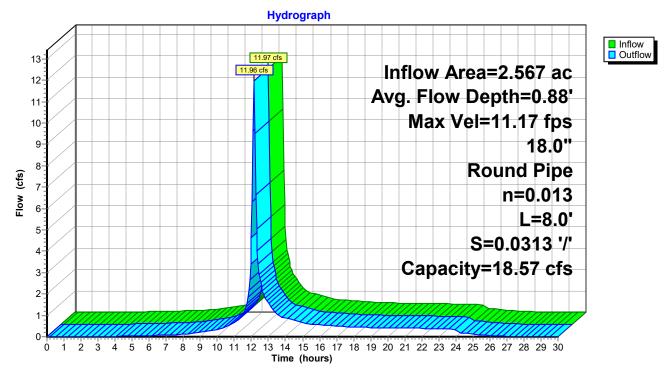
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH113 outlet invert by 0.63' @ 12.15 hrs

 Inflow Area =
 2.567 ac, 55.34% Impervious, Inflow Depth > 4.97" for 100-Year event

 Inflow =
 11.97 cfs @ 12.15 hrs, Volume=
 1.064 af


 Outflow =
 11.96 cfs @ 12.15 hrs, Volume=
 1.064 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DP4 : DMH-K1
 1.064 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 11.17 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.61 fps, Avg. Travel Time= 0.0 min

Peak Storage= 9 cf @ 12.15 hrs Average Depth at Peak Storage= 0.88', Surface Width= 1.48' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 18.57 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 8.0' Slope= 0.0313 '/' Inlet Invert= 459.00', Outlet Invert= 458.75'

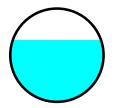
Reach DMH114: TO DMH-K1

Summary for Reach DMHR1: TO DMH#104

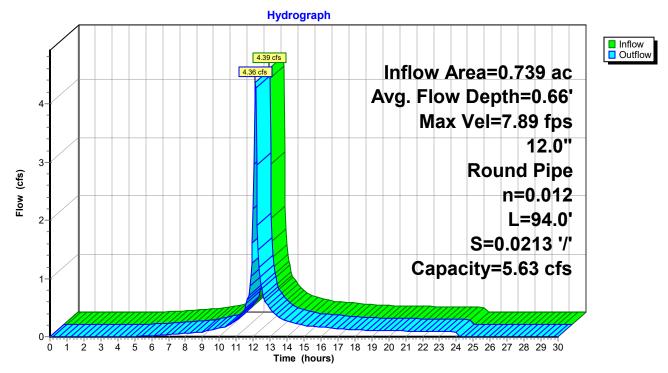
[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMHR2 outlet invert by 0.55' @ 12.15 hrs

 Inflow Area =
 0.739 ac, 65.00% Impervious, Inflow Depth =
 5.59" for 100-Year event

 Inflow =
 4.39 cfs @
 12.13 hrs, Volume=
 0.344 af


 Outflow =
 4.36 cfs @
 12.13 hrs, Volume=
 0.344 af

 Routed to Reach DMH103 : TO CMH#2
 TO CMH#2
 0.344 af


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 7.89 fps, Min. Travel Time= 0.2 min Avg. Velocity = 2.92 fps, Avg. Travel Time= 0.5 min

Peak Storage= 52 cf @ 12.13 hrs Average Depth at Peak Storage= 0.66', Surface Width= 0.94' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.63 cfs

12.0" Round Pipe n= 0.012 Steel, smooth Length= 94.0' Slope= 0.0213 '/' Inlet Invert= 467.00', Outlet Invert= 465.00'

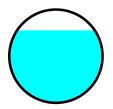
Reach DMHR1: TO DMH#104

Summary for Reach DMHR2: TO DMH#R2

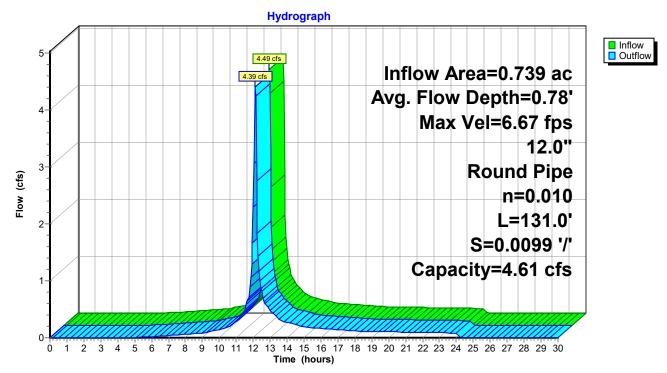
[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.739 ac, 65.00% Impervious, Inflow Depth =
 5.59" for 100-Year event

 Inflow =
 4.49 cfs @
 12.11 hrs, Volume=
 0.344 af


 Outflow =
 4.39 cfs @
 12.13 hrs, Volume=
 0.344 af, Atten= 2%, Lag= 0.8 min

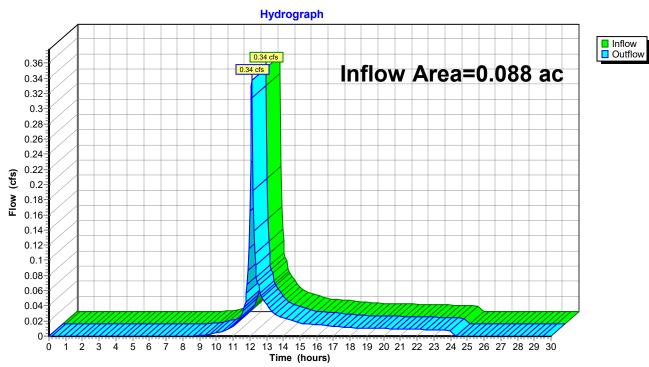
 Routed to Reach DMHR1 : TO DMH#104
 5.50
 5.50


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.67 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.55 fps, Avg. Travel Time= 0.9 min

Peak Storage= 86 cf @ 12.12 hrs Average Depth at Peak Storage= 0.78', Surface Width= 0.83' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.61 cfs

12.0" Round Pipe n= 0.010 PVC, smooth interior Length= 131.0' Slope= 0.0099 '/' Inlet Invert= 468.40', Outlet Invert= 467.10'

Reach DMHR2: TO DMH#R2



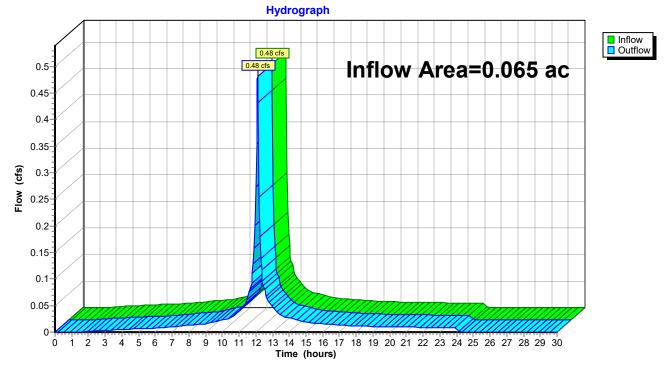
Summary for Reach DP#6: OFFSITE LOW POINT

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.088 ac, 33.45% Impervious, Inflow D	epth = 3.48" for 100-Year event
Inflow =	0.34 cfs @ 12.12 hrs, Volume=	0.026 af
Outflow =	0.34 cfs @ 12.12 hrs, Volume=	0.026 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

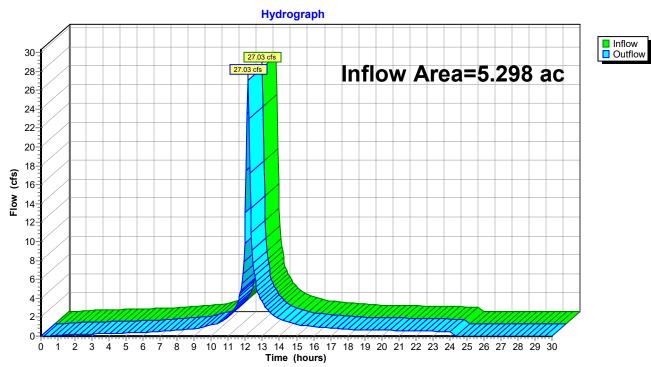
Reach DP#6: OFFSITE LOW POINT


Summary for Reach DP1: GUTTER POINT FRANKLIN (WEST)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.065 ac, 89.73% Impervious, Inflow D	epth = 7.38" for 100-Year event
Inflow =	0.48 cfs @ 12.11 hrs, Volume=	0.040 af
Outflow =	0.48 cfs @ 12.11 hrs, Volume=	0.040 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs



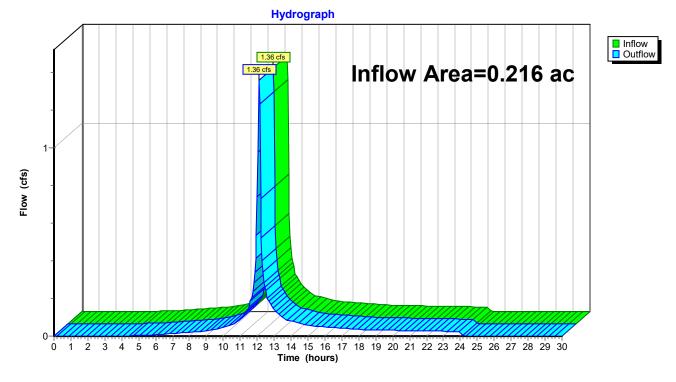
Summary for Reach DP2: MUNICIPAL SYSTEM

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	5.298 ac, 79.01% Impervious, Inflo	ow Depth = 5.69"	for 100-Year event
Inflow =	27.03 cfs @ 12.15 hrs, Volume=	2.513 af	
Outflow =	27.03 cfs @ 12.15 hrs, Volume=	2.513 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

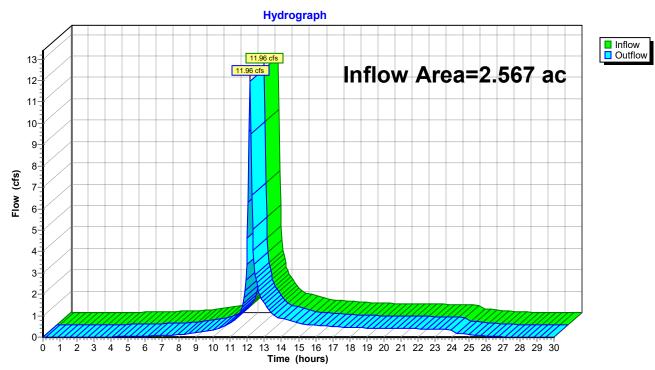
Reach DP2: MUNICIPAL SYSTEM


Summary for Reach DP3: CATCHBASIN (FIRE STATION)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.216 ac, 68.08% Impervious, Inflow I	Depth = 5.83" for 100-Year event
Inflow =	1.36 cfs @ 12.11 hrs, Volume=	0.105 af
Outflow =	1.36 cfs @ 12.11 hrs, Volume=	0.105 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs



Summary for Reach DP4: DMH-K1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	2.567 ac, 55.34% Impervious, Inflow Depth > 4.97" for 100-Year event
Inflow	=	11.96 cfs @ 12.15 hrs, Volume= 1.064 af
Outflow	=	11.96 cfs @ 12.15 hrs, Volume= 1.064 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach DP4: DMH-K1

Summary for Reach DP5: DCB-H

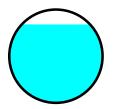
[40] Hint: Not Described (Outflow=Inflow)

Summary for Reach RF1: TO DMH#101

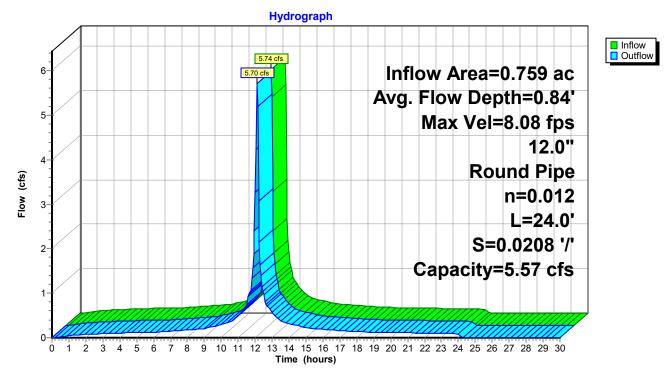
[52] Hint: Inlet/Outlet conditions not evaluated[55] Hint: Peak inflow is 103% of Manning's capacity

 Inflow Area =
 0.759 ac,100.00% Impervious, Inflow Depth =
 8.10" for 100-Year event

 Inflow =
 5.74 cfs @
 12.11 hrs, Volume=
 0.513 af


 Outflow =
 5.70 cfs @
 12.11 hrs, Volume=
 0.513 af, Atten= 1%, Lag= 0.1 min

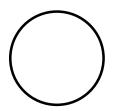
 Routed to Reach DMH101 : TO DMH#100
 TO DMH#100
 0.513 af, Atten= 1%, Lag= 0.1 min

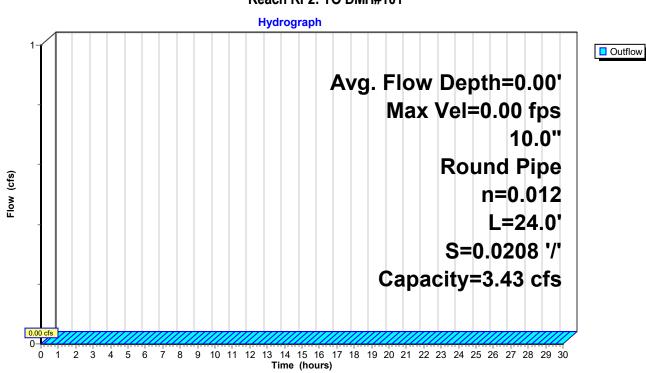

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 8.08 fps, Min. Travel Time= 0.0 min Avg. Velocity = 3.22 fps, Avg. Travel Time= 0.1 min

Peak Storage= 17 cf @ 12.11 hrs Average Depth at Peak Storage= 0.84', Surface Width= 0.73' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.57 cfs

12.0" Round Pipe n= 0.012 Steel, smooth Length= 24.0' Slope= 0.0208 '/' Inlet Invert= 466.20', Outlet Invert= 465.70'

Reach RF1: TO DMH#101

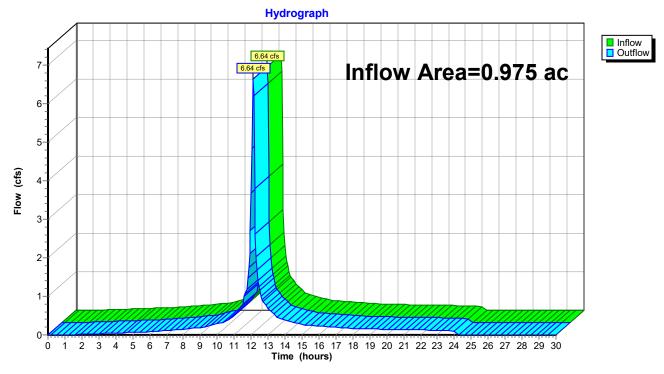



Summary for Reach RF2: TO DMH#101

[43] Hint: Has no inflow (Outflow=Zero)

Bank-Full Depth= 0.83' Flow Area= 0.5 sf, Capacity= 3.43 cfs

10.0" Round Pipe n= 0.012 Steel, smooth Length= 24.0' Slope= 0.0208 '/' Inlet Invert= 466.20', Outlet Invert= 465.70'


Reach RF2: TO DMH#101

Summary for Reach UGS1A: TO UGS#1

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.975 ac, 81.42% Impervious, In	flow Depth = 6.77" for 100-Year event
Inflow =	6.64 cfs @ 12.12 hrs, Volume=	0.550 af
Outflow =	6.64 cfs @ 12.12 hrs, Volume=	0.550 af, Atten= 0%, Lag= 0.0 min
Routed to Pond	d UGS1 : TO DMH#106	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach UGS1A: TO UGS#1

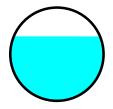
Summary for Reach UGS1B: TO DMH106

[52] Hint: Inlet/Outlet conditions not evaluated

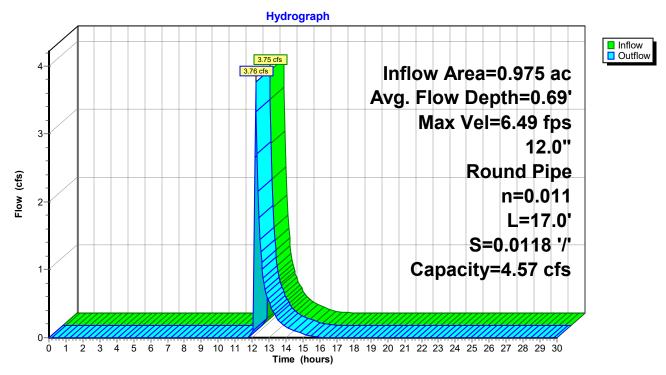
- [88] Warning: Qout>Qin may require smaller dt or Finer Routing
- [79] Warning: Submerged Pond UGS1 Primary device # 1 by 0.54'

 Inflow Area =
 0.975 ac, 81.42% Impervious, Inflow Depth =
 1.78" for 100-Year event

 Inflow =
 3.75 cfs @
 12.21 hrs, Volume=
 0.145 af


 Outflow =
 3.76 cfs @
 12.21 hrs, Volume=
 0.145 af, Atten= 0%, Lag= 0.0 min

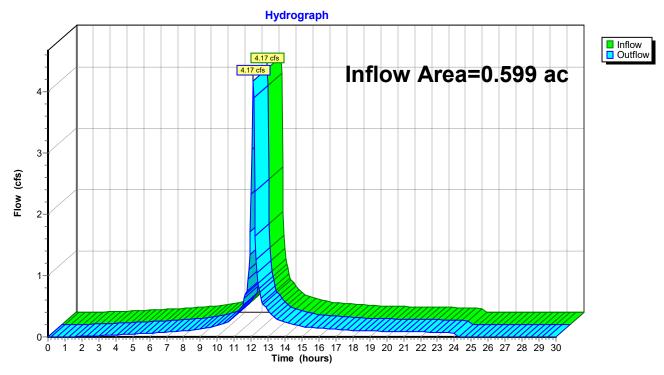
 Routed to Reach DMH105 : TO DMH#104
 TO DMH#104
 0.145 af, Atten= 0%, Lag= 0.0 min


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 6.49 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.82 fps, Avg. Travel Time= 0.1 min

Peak Storage= 10 cf @ 12.21 hrs Average Depth at Peak Storage= 0.69', Surface Width= 0.92' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.57 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 17.0' Slope= 0.0118 '/' Inlet Invert= 467.60', Outlet Invert= 467.40'

Reach UGS1B: TO DMH106



Summary for Reach UGS2A: TO UGS#2

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.599 ac, 83.64% Impervious, I	nflow Depth = 6.98" for 100-Year event
Inflow =	4.17 cfs @ 12.12 hrs, Volume=	0.348 af
Outflow =	4.17 cfs @ 12.12 hrs, Volume=	0.348 af, Atten= 0%, Lag= 0.0 min
Routed to Pon	nd UGS2 : TO UGS#2B	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

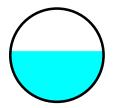
Reach UGS2A: TO UGS#2

Summary for Reach UGS2B: TO DMH#112

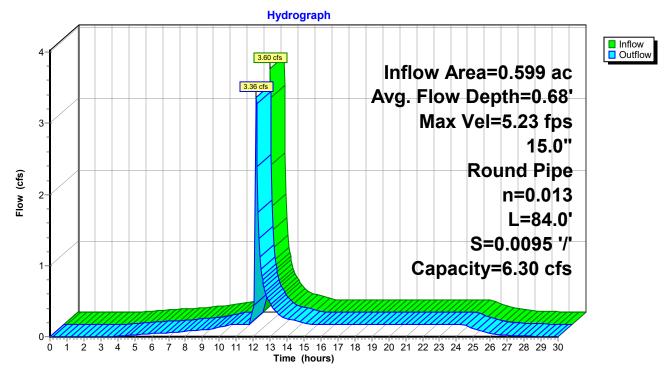
[52] Hint: Inlet/Outlet conditions not evaluated[78] Warning: Submerged Pond UGS2 Primary device # 2 by 0.60'

 Inflow Area =
 0.599 ac, 83.64% Impervious, Inflow Depth > 6.92" for 100-Year event

 Inflow =
 3.60 cfs @
 12.17 hrs, Volume=
 0.346 af


 Outflow =
 3.36 cfs @
 12.18 hrs, Volume=
 0.346 af, Atten= 6%, Lag= 0.6 min

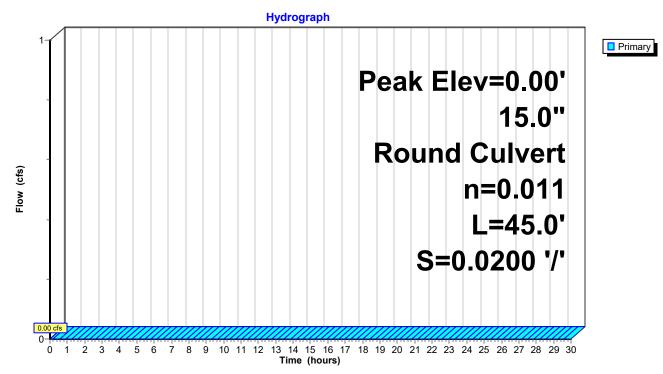
 Routed to Reach DMH112 : TO DMH#113
 TO DMH#113


Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.23 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.92 fps, Avg. Travel Time= 0.7 min

Peak Storage= 57 cf @ 12.17 hrs Average Depth at Peak Storage= 0.68', Surface Width= 1.25' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 6.30 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 84.0' Slope= 0.0095 '/' Inlet Invert= 461.10', Outlet Invert= 460.30'

Reach UGS2B: TO DMH#112


Summary for Pond DMH-B: TO DMH-D

[43] Hint: Has no inflow (Outflow=Zero)

Device	Routing	Invert	Outlet Devices
#1	Primary	456.80'	15.0" Round Culvert L= 45.0' Square-edged headwall, Ke= 0.500 Inlet / Outlet Invert= 456.80' / 455.90' S= 0.0200 '/' Cc= 0.900 n= 0.011 Concrete pipe, straight & clean, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' (Free Discharge)

Pond DMH-B: TO DMH-D

Summary for Pond UGS1: TO DMH#106

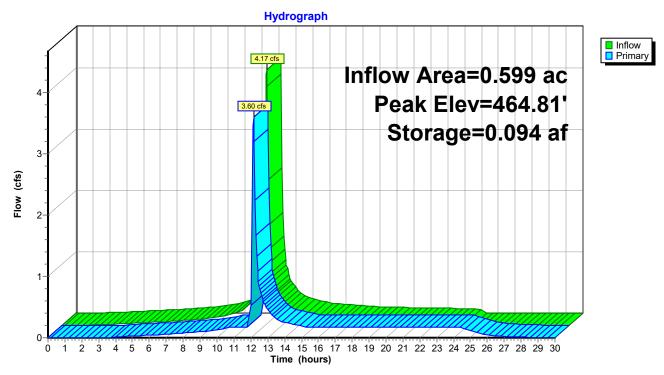
Inflow A Inflow Outflow Discarde Primary Route	= = ed = =	6.64 cfs @ 12. 4.03 cfs @ 12. 0.28 cfs @ 12.	2% Impervious, Inflow Depth = 6.77" for 100-Year event 12 hrs, Volume= 0.550 af 21 hrs, Volume= 0.550 af, Atten= 39%, Lag= 5.6 min 21 hrs, Volume= 0.405 af 21 hrs, Volume= 0.145 af MH106		
			pan= 0.00-30.00 hrs, dt= 0.05 hrs urf.Area= 0.065 ac Storage= 0.162 af		
	Plug-Flow detention time= 171.4 min calculated for 0.550 af (100% of inflow) Center-of-Mass det. time= 171.3 min(960.5 - 789.1)				
Volume	Inver	t Avail.Storag	e Storage Description		
#1	464.75		af 38.00'W x 74.00'L x 6.00'H Prismatoid		
			0.387 af Overall - 0.206 af Embedded = 0.181 af x 40.0% Voids		
#2	465.50	' 0.153 a	af Shea Leaching Chamber 4x4x4 x 144 Inside #1		
			Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf		
			Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf		
		0.226 a	af Total Available Storage		
Device	Routing	Invert	Outlet Devices		
#1	Primary	467.75'	12.0" Vert. Orifice/Grate X 2.00 C= 0.600 Limited to weir flow at low heads		
#2	Discarded	464.75'	2.410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 460.00'		
Discarded OutFlow Max=0.28 cfs @ 12.21 hrs HW=468.49' (Free Discharge)					

Primary OutFlow Max=3.64 cfs @ 12.21 hrs HW=468.49' (Free Discharge) —1=Orifice/Grate (Orifice Controls 3.64 cfs @ 2.93 fps)

Pond UGS1: TO DMH#106

Summary for Pond UGS2: TO UGS#2B

Inflow Area =	0.599 ac, 83.64% Impervious, Inflow	Depth = 6.98" for 100-Year event
Inflow =	4.17 cfs @ 12.12 hrs, Volume=	0.348 af
Outflow =	3.60 cfs @ 12.17 hrs, Volume=	0.346 af, Atten= 14%, Lag= 3.1 min
Primary =	3.60 cfs @ 12.17 hrs, Volume=	0.346 af
Routed to R	each UGS2B : TO DMH#112	


Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 464.81' @ 12.17 hrs Surf.Area= 0.041 ac Storage= 0.094 af

Plug-Flow detention time= 154.1 min calculated for 0.345 af (99% of inflow) Center-of-Mass det. time= 149.6 min (933.7 - 784.1)

Volume	Invert	Avail.Storage	e Storage Description	
#1	461.00'	0.052 a	af 38.00'W x 47.00'L x 6.30'H Prismatoid	
			0.258 af Overall - 0.129 af Embedded = 0.130 af x 40.0% Voids	
#2	462.50'	0.096 a	af Shea Leaching Chamber 4x4x4 x 90 Inside #1	
			Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf	
			Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf	
			90 Chambers in 10 Rows	
	0.148 af Total Available Storage			
Device	Routing	Invert (Dutlet Devices	
#1	Primary	464.25' 1	12.0" Vert. Orifice/Grate X 3.00 C= 0.600 Limited to weir flow at low heads	
#2	Primary	461.15'	Special & User-Defined	
	-	ŀ	Head (feet) 0.00 1.00 15.00	
		[Disch. (cfs) 0.000 0.170 0.170	
Primary	OutFlow Ma	ax=3.34 cfs @	12.17 hrs HW=464.78' (Free Discharge)	
1=0r	ifice/Grate (C	Drifice Controls	s 3.17 cfs @ 2.49 fps)	

-2=Special & User-Defined (Custom Controls 0.17 cfs)

Pond UGS2: TO UGS#2B

3.0 STORMWATER MANAGEMENT FORMS

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.

Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

10-18-2024 Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

- No disturbance to any Wetland Resource Areas
- Site Design Practices (e.g. clustered development, reduced frontage setbacks)
- Reduced Impervious Area (Redevelopment Only)
- Minimizing disturbance to existing trees and shrubs
- LID Site Design Credit Requested:
 - Credit 1
 - Credit 2
 - Credit 3
- Use of "country drainage" versus curb and gutter conveyance and pipe
- Bioretention Cells (includes Rain Gardens)
- Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
- Treebox Filter
- Water Quality Swale
- Grass Channel
- Green Roof
- Other (describe): Deep Sump Catchbasins, Hydroworks Proprietary Unit, underground storage System

Standard 1: No New Untreated Discharges

- No new untreated discharges
- Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation-NA Maximum Extent Practicable

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do no exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge - NA Maximum Extent Practicable

Soil Analysis provided.

Required Recharge Volume calculation provided.

Required Recharge volume reduced through use of the LID site Design Credits.

Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static Static

Simple Dynamic

Runoff from all impervious areas at the site discharging to the infiltration BMP.

Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Dynamic Field¹

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.

Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

- The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality NA Maximum Extent Practicable

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs))

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted prior to the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does not cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas (Not Applicable)

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program

Checklist for Stormwater Report

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- Portions of the project are subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
 - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
 - Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
 - Bike Path and/or Foot Path
 - Redevelopment Project
 - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- ☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is not covered by a NPDES Construction General Permit
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Stormwater Compliance Documentation

Franklin Street, Worcester, Massachusetts November 12, 2021 REVISED OCTOBER 18, 2024

Standard 1: No Untreated Discharges or Erosion to Wetlands

The drainage from the site currently overland flows to several points located around the project locus. Design Point #1 has been designated as a point in the gutter along Franklin Street west of the locus property. Design Point #2 has been designated as a combined sewer manhole located in Franklin Street. Design Point #3 is located at a catchbasin located on the abutting Fire Department Property. Design Point #4 is located at a low point on the 2 Keese Street Property that discharges to an existing 48" drainage line that runs under Interstate 290 and Design Point #5 is located at a catchbasin located within Keyes Street. Design Point #6 is designated as runoff to an offsite point within the Interstate 290 Layout.

In the area of the proposed development, the addition of new building and applicable parking and drive entrances, will have the stormwater directed through a series of catch basins, prior to be being discharged directly into the combined sewer system within Franklin Street. Upper Blackstone Wastewater Treatment Plant (WWTP) and, as such, treatment of stormwater from impervious surfaces required to maximum extent practicable. Each treatment discharge will be directed through a hydrodynamic separator to provide treatment prior to discharge.

See the narrative within the Drainage Analysis and Report for further information.

Standard 2: Peak Rate Attenuation

Project is considered redevelopment compliance is required to maximum extent practicable

Design Point		2-yr Storm	10-yr Storm	25-yr Storm	100-yr Storm
#1 Pre-		0.16	0.26	0,33	0.48
#1	Post-	0.16	0.26	0.33	0.48
	Pre-	10.15	16.25	21.00	30.75
#2	Post-	7.44	12.85	17.23	27.03
112	Pre-	0.31	0.61	0.85	1.36
#3	Post-	0.31	0.61	0.85	1.36
	Pre-	4.57	8.59	12.28	19.13
#4	Post-	1.33	3.36	5.19	11.96
IIC	Pre-	0.30	0.46	0.58	0.83
#5	Post-	0.00	0.00	0.00	0.94
46	Pre-	0.07	0.15	0.21	0.35
#6	Post-	0.02	0.09	0.16	0.34

Table	#1: Peak	Rate	of Runoff	

All flows are in cubic feet per second.

As outline above, the post-development peak rates of runoff have been mitigated for all design. Compliance has been provided.

Standard 3: Stormwater Recharge

Project is considered redevelopment compliance is required to maximum extent practicable

Impervious Area Proposed: (This area includes all proposed buildings, driveways, gravel parking areas)

The soils within the reviewed project area classified as HSG AExisting Impervious HSG-A:6.022 ac262,318 sfProposed Impervious HSG-A:5.361 ac233,525 sfNet New Impervious HSG-A:-0.659 ac-28,793 s.f.

Total New Impervious area = -28,793 s.f. Total Project Impervious = 231,846 s.f.

Required Recharge Volume:

Net Increase HSG Soil A

Net New Impervious HSG A = -28,793 s.f. HSG A: -7,868 s.f. x (0.6 in/12) = 0 c.f.

Required Recharge Volume = 0 c.f.

Capture Rate:

Net Captured Impervious	56,368 sf
Total Impervious to UGS#2	21,824 sf
Total Impervious to UGS#1	34,544 sf

Capture Rate = 56,367 s.f. / 231,846 s.f. = 24.3%

Compliance not provided, Capture rate in less of 65%

Adjustment Calculation

 $(1 / 0.243) \ge 0$ cf = 0.00 c.f. Required recharge volume = 0 c.f.

Recharge Provided:

Total Volume Required: 0 c.f.

UGS#1: 5,053 c.f. of Infiltration Volume provided * 5,053 c.f. of infiltration volume provided *Recharge volume based on 1-Year Storm event.

Required Recharge Volume = 0 c.f.Provided Recharge Volume = 5,053 c.f.

Compliance is provided

Drawdown Volume Provided:

Volume below lowest outlet within detention facility.

UGS#1:	5,488 c.f. of storage volume provided
UGS#2:	3,354 c.f. of storage volume provided

Drawdown Time: (72 Hours Max.)

Time = Storage Volume / (K x Bottom Area)

Where K = Saturated Hydraulic Conductivity (inches/hour) (From table 2.3.3 1982 Rawls Rates – Mass Stormwater Handbook)

UGS#1: 5,488 c.f. of storage volume provided.Time = 5,448 c.f. / (2.41 in/hr x (1 ft/ 12 in) x 2,812 s.f.) = 9.7 hrs

UGS#2: 3,354 c.f. of storage volume provided. Time = 3,354 c.f. / (2.41 in/hr x (1 ft / 12 in) x 1,786 s.f.) = 9.4 hrs

Compliance is provided

Groundwater Offset Review:

Underground System #1

Boring Test PES-B12Elevation of Test Area= 473.5Presumed ESHWT= 458.4Bottom of Basin= 464.75Offset to Groundwater= 6.3 ft

Compliance is provided offset greater than 4.0ft.

Boring Test PES-B14Elevation of Test Area= 473.5Presumed ESHWT= 458.4Bottom of Basin= 464.75Offset to Groundwater= 6.3 ft

Compliance is provided offset greater than 4.0ft.

Standard 4: Water Quality

Project is considered redevelopment compliance is required to maximum extent practicable

Water Quality Volume (WQV) = Water Quality Depth x Impervious Area

Water Quality Depth = 1 inch

 $WQV = [(1 \text{ inch}) / 12 \text{ inches/foot}] \times (231,846 \text{ s.f.}) = 19,320 \text{ cf}$

The project has been designed to incorporate a series of proprietary and structural Best Management Practices (BMPs) in order to achieve the appropriate level of Water Quality Treatment. Runoff from within the development will be captured via deep-sump catchbasin which will direct runoff towards one of several drainage trunklines. These trunklines will then direct runoff towards one of several Hydroworks Hydroguard units within DMH#102, DMH#107, DMH#109 and DMH#114. Upon treatment runoff will be directed towards the combined sewer system within Franklin Street. The treatment trains have been designed to provide in excess of the locally required 80% TSS removal with a total treatment volume of approximately 17,380 c.f. during the 1-year storm event.

Compliance has been provided to the maximum extent practicable. Currently the majority of the stormwater from the development is derived from the roof top runoff (65,266 sf or 28% of total impervious area), which is considered generally clean runoff as it does not generate the sediment load of other impervious surfaces, such as pavements and walkways. If the roof runoff was to be omitted from the calculation the resulting WQV would equate to 13,881 c.f, and compliance would be provided. It should be noted that currently the property does not contain any treatment facilities, thus the incorporation of these systems will provide an improvement over the existing condition.

Standard 5: Land Uses with Higher Potential Pollutant Loads

It is anticipated that the traffic generated from this project will be in excess of 1,000 vehicle trips per day. As such this project would be considered as a Land Use with a Higher Potential Pollutant Load (LUHPPL). To provide compliance with the requirements for Standard 5, the Water Quality depth has been increased to 1" and the treatment system will incorporate oil-grit separators within the treatment train.

Standard 6: Critical Areas

Not Applicable

Standard 7: Redevelopment

As this project is associated with the demolition and general reconstruction of a previously developed parcels of land, this project is being considered as a redevelopment project under stormwater management. As such compliance with Standards 2, 3, 4, 5, and 6 have been provided.

Standard 8: Construction Period Controls

Proper erosion controls have been incorporated into the submitted plans and details to ensure compliance with the standard.

Standard 9: Operation and Maintenance Plan

Operation and Maintenance plans for the project have been incorporated into the submitted plans and details to ensure compliance with the standard.

Standard 10: Illicit Discharges to Drainage System

No Illicit discharges to the drainage system will occur as a result of this proposed project. A No Illicit discharge statement shall be provided prior to construction.

Summary for Pond UGS1: TO DMH#106

Inflow Area	a =	0.975 ac, 8	31.42% Imp	ervious, li	nflow Depth = 1.42" for 1-Year event
Inflow	=	1.46 cfs @	12.12 hrs,	Volume=	0.116 af
Outflow	=	0.19 cfs @	12.85 hrs,	Volume=	0.116 af, Atten= 87%, Lag= 43.6 min
Discarded	=	0.19 cfs @	12.85 hrs,	Volume=	0.116 af <= recharge volume
Primary	=	0.00 cfs @	0.00 hrs,	Volume=	
Routed	to Read	ch UGS1B: T	O DMH106		

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 465.75' @ 12.85 hrs Surf.Area= 0.065 ac Storage= 0.031 af

Plug-Flow detention time= 51.5 min calculated for 0.115 af (100% of inflow) Center-of-Mass det. time= 51.4 min (888.6 - 837.2)

Volume	Invert	Avail.Storage	Storage Description
#1	464.75	0.073 af	38.00'W x 74.00'L x 6.00'H Prismatoid
			0.387 af Overall - 0.206 af Embedded = 0.181 af x 40.0% Voids
#2	465.50'	0.153 af	Shea Leaching Chamber 4x4x4 x 144 Inside #1
			Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf
-			Outside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf
		0.226 af	Total Available Storage
Device	Routing	Invert O	utlet Devices
#1	Primary	467.75' 12	2.0" Vert. Orifice/Grate X 2.00 C= 0.600 Limited to weir flow at low heads
#2	Discarded	464.75' 2.	410 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 460.00'

Discarded OutFlow Max=0.19 cfs @ 12.85 hrs HW=465.75' (Free Discharge) **2=Exfiltration** (Controls 0.19 cfs)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=464.75' (Free Discharge) 1=Orifice/Grate (Controls 0.00 cfs)

3030-Post-R9

Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond UGS1: TO DMH#106

Elevation (feet)	Surface (acres)	Storage (acre-feet)	Elevation (feet)	Surface (acres)	Storage (acre-feet)	Elevation (feet)	Surface (acres)	Storage (acre-feet)	
464.75	0.065	0.000	467.45	0.065	0,112	470.15	0.065	0.210	
464.80	0.065	0.001	467.50	0.065	0.114	470.20	0.065	0.212	
464.85	0.065	0.003	467.55	0.065	0.117	470.25	0.065	0.213	
464.90	0.065	0.004	467.60	0.065	0.119	470.30	0.065	0.214	
464.95	0.065	0.005	467.65	0.065	0.121	470.35	0.065	0.216	
465.00	0.065	0.006	467.70	0.065	0.124	470.40	0.065	0.217	
465.05	0.065	0.008	467.75	0.065	0.126	470.45	0.065	0.218	
465.10	0.065	0.009	467.80	0.065	0.129	470.50	0.065	0.219	
465.15	0.065	0.010	467.85	0.065	0.131	470.55	0.065	0.221	
465.20	0.065	0.012	467.90	0.065	0.133	470.60	0.065	0.222	
465.25	0.065	0.012	467.95	0.065	0.136	470.65	0.065	0.223	
465.30	0.065	0.013	468.00	0.065	0.138	470.00	0.065	0.225	
465.35	0.065	0.014	468.05	0.065			0.065		
465.40	0.065	0.015			0.140	470.75	0.005	0.226	
	0.065		468.10	0.065	0.143				
465.45		0.018	468.15	0.065	0.145	<=sto	rade & D	rawdown Volu	me
465.50	0.065	0.019	468.20	0.065	0.147				
465.55	0.065	0.022	468.25	0.065	0.150				
465.60	0.065	0.024	468.30	0.065	0.152				
465.65	0.065	0.026	468.35	0.065	0.154	1 mm			
465.70	0.065	0.029	468.40	0.065	0.157				
465.75	0.065	0.031	468.45	0.065	0.159				
465.80	0.065	0.033	468.50	0.065	0.161				
465.85	0.065	0.036	468.55	0.065	0.164				
465.90	0.065	0.038	468.60	0.065	0.166				
465.95	0.065	0.041	468.65	0.065	0.168				
466.00	0.065	0.043	468.70	0.065	0.171				
466.05	0.065	0.045	468.75	0.065	0.173	1 million 100			
466.10	0.065	0.048	468.80	0.065	0.175				
466.15	0.065	0.050	468.85	0.065	0.178				
466.20	0.065	0.053	468.90	0.065	0.180				
466.25	0.065	0.055	468.95	0.065	0.182				
466.30	0.065	0.057	469.00	0.065	0.185				
466.35	0.065	0.060	469.05	0.065	0.187				
466.40	0.065	0.062	469.10	0,065	0.189				
466.45	0.065	0.065	469.15	0.065	0.192				
466.50	0.065	0.067	469.20	0.065	0.194				
466.55	0.065	0.069	469.25	0.065	0.196				
466.60	0.065	0.072	469.30	0.065	0.197				
466.65	0.065	0.074	469.35	0.065	0.197				
466.70	0.065	0.076	469.40	0.065	0.198				
466.75	0.065	0.079	469,45	0.065	0.198				
466.80	0.065	0.081	469.50	0.065	0.198				
466.85	0.065	0.084	469.55	0.065	0.199				
466.90	0.065	0.086	469.60	0.065	0.199				
466.95	0.065	0.088	469.65	0.065	0.199				
467.00	0.065	0.091	469.70	0.065	0.200	1.11			
467.05	0.065	0.093	469.75	0.065	0.200				
467.10	0.065	0.095	469.80	0.065	0.201	1.000			
467.15	0.065	0.098	469.85	0.065	0.203	1			
467.20	0.065	0.100	469.90	0.065	0.203				
467.25	0.065	0.103	469.90	0.065	0.204	100			
467.30	0.065	0.105	470.00	0.065	0.205				
467.35	0.065	0.105	470.00	0.065	0.208	100			
467.35	0.065	0.107	470.05	0.065	0.208				
407.40	0.005	0.110	470.10	0.005	0.209	1.11			

Summary for Pond UGS2: TO UGS#2B

Inflow Are	ea =	0.599 ac, 83.64% Impervious, Inflow Depth = 3.71" for Custom event	
Inflow	=	2.28 cfs @ 12.12 hrs, Volume= 0.185 af	
Outflow	=	0.17 cfs @ 13.45 hrs, Volume= 0.182 af, Atten= 92%, Lag= 80.1 min	
Primary	=	0.17 cfs @ 13.45 hrs, Volume= 0.182 af	
Route	d to Rea	h UGS2B : TO DMH#112	

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 464.25' @ 13.45 hrs Surf.Area= 0.041 ac Storage= 0.077 af <= storage & Drawdown Volume

Plug-Flow detention time= 194.6 min calculated for 0.182 af (99% of inflow) Center-of-Mass det. time= 186.3 min (989.9 - 803.6)

Volume	Invert	Avail.Storage	Storage Description					
#1	461.00'	0.052 at	8.00'W x 47.00'L x 6.30'H Prismatoid					
			0.258 af Overall - 0.129 af Embedded = 0.130 af x 40.0% Voids					
#2	462,50'	0.096 a	f Shea Leaching Chamber 4x4x4 x 90 Inside #1 Inside= 42.2"W x 45.0"H => 13.25 sf x 3.50'L = 46.4 cf					
			Dutside= 54.0"W x 51.0"H => 15.58 sf x 4.00'L = 62.3 cf					
			90 Chambers in 10 Rows					
		0.148 a	90 Chambers in 10 Rows					
Device	Routing		90 Chambers in 10 Rows					
Device #1		Invert C	90 Chambers in 10 Rows f Total Available Storage					
#1	Primary	Invert C 464.25' 1	90 Chambers in 10 Rows f Total Available Storage Outlet Devices 2.0" Vert. Orifice/Grate X 3.00 C= 0.600 Limited to weir flow at low heads					
Device #1 #2		Invert C 464.25' 1 461.15' S	90 Chambers in 10 Rows f Total Available Storage Dutlet Devices					

-1=Orifice/Grate (Orifice Controls 0.00 cfs @ 0.15 fps)

-2=Special & User-Defined (Custom Controls 0.17 cfs)

MASS DEP "Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

DMH#102-Water Quality Unit

For First 1.0-Inch Runoff WQV

Step 1: Area of Impervious Surface to Structure

0.975 acres @ 81.42% impervious = 0.794 Acres Impervious 0.794 Acres x .0015625 sq mi = <u>1.24x(10^-3) square miles</u>.

Step 2: Tc of Train

P115 to DCB#15:	5.0 min
DCB#15 to DMH#102	1.0 min
Total Tc to DMH#102	6.0 min or 0.10 hours

Step 3: Determine gu

From Figure 4:

Tc @ 0.083, qu=774csm/in

Step 4: Determine Q(1)

Q(1) = (qu)x(A)x(WQV)

 $Q(1) = (774 \text{csm/in})x(1.24x(10^{-3}))x(1.0 \text{ in})$

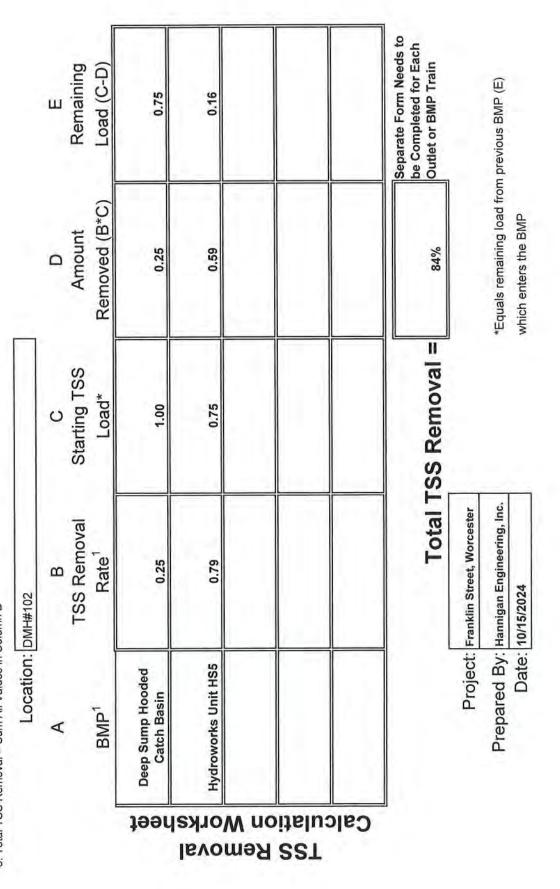
Q(1) = 0.96 CFS

<u>Determination</u> Determination of Water Quality Flow rates for units by Connecticut DOT (CONNDOT)

From Technology Verification HS 5 Treatment Flow rate 1.7 cf.s > 0.96 c.f.s. "Pass"

HydroGuard HS5 to be utilized in Design.

INSTRUCTIONS:


1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

Non-automated: Jan. 31, 2019

Summary for Reach DMH102: TO UGS#1A

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DCB15 outlet invert by 0.13' @ 12.10 hrs

Inflow Area =0.975 ac, 81.42% Impervious, Inflow Depth =1.42" for 1-Year eventInflow =1.46 cfs @12.12 hrs, Volume=0.116 af <= VVQV</td>Outflow =1.46 cfs @12.12 hrs, Volume=0.116 af, Atten= 0%, Lag= 0.0 minRouted to Reach UGS1A : TO UGS#10.116 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.41 fps, Min. Travel Time= 0.0 min Avg. Velocity = 1.82 fps, Avg. Travel Time= 0.0 min

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.34', Surface Width= 1.11' Bank-Full Depth= 1.25' Flow Area= 1.2 sf, Capacity= 9.14 cfs

15.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 5.0' Slope= 0.0200 '/' Inlet Invert= 466.10', Outlet Invert= 466.00'

Summary for Subcatchment P115: TO DCB#15

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.36 cfs @ 12.12 hrs, Volume= 0.027 af, Depth= 0.89" Routed to Reach DCB15 : TO DMH#102

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 1-Year Rainfall=2.58"

A	rea (sf)	CN	Description		
	5,220 10,880		>75% Gras Paved park	and the second second	ood, HSG A
	16,100 5,220 10,880	79	Weighted A 32.42% Per 67.58% Imp	verage rvious Area	
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
0.8	50	0.0170) 1.11		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.13"
0.5	72	0.0170	2.65		Shallow Concentrated Flow, Paved Kv= 20.3 fps
1.3	122	Total,	Increased 1	to minimum	Tc = 5.0 min <=Tc

Summary for Reach DCB15: TO DMH#102

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.370 ac, 67.58% Impervious, Inflow Depth =
 0.89" for 1-Year event

 Inflow =
 0.36 cfs @
 12.12 hrs, Volume=
 0.027 af

 Outflow =
 0.35 cfs @
 12.13 hrs, Volume=
 0.027 af, Atten= 2%, Lag= 0.9 min

 Routed to Reach DMH102 : TO UGS#1A
 TO UGS#1A
 0.027 af, Atten= 2%, Lag= 0.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.88 fps, Min. Travel Time= 0.4 min Avg. Velocity = 1.14 fps, Avg. Travel Time= 1.0 min <= Tc

Peak Storage= 9 cf @ 12.13 hrs Average Depth at Peak Storage= 0.21', Surface Width= 0.82' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.56 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 70.0' Slope= 0.0100 '/' Inlet Invert= 467.00', Outlet Invert= 466.30'

****************************** ************************* Storm Water Management Sizing Model Continuous Simulation Program Based on SWMM 4.4H Hydroworks, LLC Hydroworks, LLC Graham Bryant Version 4.4 2003 - 2021 *

÷

Developed by

 *	*	*	nc. *	c.) *	*
Hydroworks, LLC	Metcalf & Eddy, Inc.	University of Florida	Water Resources Engineers, I	(Now Camp Dresser & McKee, Inc.	Modified SWMM 4.4
*	*	*	*	*	*

Distributed and Maintained by

|--|

If any problems occur executing this

- model, contact Mr. Graham Bryant at
- Hydroworks, LLC by phone at 888-290-7900 or by e-mail: support@hydroworks.com

- This model is based on EPA SWMM 4.4
- "Nature is full of infinite causes which

Created by the University of Florida - 1988 * Entry made to the Rain Block *

Goventure Captial Group, Frankin Street, Worcester DMH#102

HydroStorm Simulation

	so Ap	ts														
	Worcester Wso Ap	Massachusetts	m	1/1	12/31											outer
##	Worce	Massa	9923	1957/ 1/	2001/12/31	н	10	÷	0	0	o	0	0,40	1100	2 values. ist. rain. 0 immary:	oto l'um
******	Station Name	Location	station, ISTA	Beginning date, IYBBG (Yr/Mo/Dy)	Ending date, IYEND (Yr/Mo/Dy)	Minimum interevent time, MIT	Number of ranked storms, NFTS	IFORM (See text)	Print storm summary, ISUM (O-No 1-Yes)	Print all rainfall, IYEAR (O-No 1-Yes)	<pre>Save storm event data on NSCRAT(1) (IFILE =0 -Do not save, =1 -Save data)</pre>	Create interface file Create file and analyze Synoptic analysis	position parameter, A	event statistics, NOSTAT	<pre>KODEA (from optional group B0) = 0, Do not include NCDC cumulative value = 1, Average NCDC cumulative values. = 2, Use NCDC cumulative value as inst. r KODEPR (from optional group B0) Print NCDC special codes in event summary = 0, only on days with events.</pre>	
********	Station Name	Station Locat	Station, IST	Beginning dat	Ending date,	Minimum inter	Number of ran	NWS format, 1	Print storm	Print all rat	Save storm en (IFILE =0 -Do	IDECID 0 - CJ 1 - CJ 2 - SJ	Plotting pos	Storm event :	KODEA (from (= 0, Do not = 1, Average = 2, Use NCI KODEPR (from Frint NCDC ; = 0, only on	= 1, on all

Location Station Number

1. 9923

STATION ID ON PRECIP. DATA INPUT FILE = 2302 REQUESTED STATION ID = 9923 CHECK TO BE SURE THEY MATCH.

Goventure Captial Group, Frankin Street, Worcester

DMH#102

during time steps with rainfall.

Read evaporation data on line(s) F1 (F2) - IVAP Hour of day at start of storm - NHK	Ŧ	1	г	1.017	0	o	Т	0	0	0 0	10000 (if simulated)	1/ 1/1957	300.	.000	450.	20011231.0 Yr/Mo/DY	25.0	т 0.01000	* * *		OCT. NOV. DEC.	0.10 0.00
<pre>n data on line(s) F1 (F2) start of storm - NHR at start of storm - NMN tart of storm (hours) tart of storm (hours) ary units for most I/O int control ot control</pre>					METRIC					(0=no, 1=yes	messages to 1	1				200	ention depth	* DECA	************** from file **************		AUG.	0.15
<pre>n data on lin start of storm at start of storm tart of storm ary units for int control ot control of control very 50 lines load percenta groundwater ength (second ength (second ength (second start of th is th is th is th is th is th is th is th is ergin (second ength (second start of ength (second ength (second</pre>	e(s) Fl (F2)	ш - ИНК	torm - NMN	(hours)	: most I/0 - 1				- NOHEAD (0	ges -LANDUPR	convergence		:	s)	conds)		ith zero det	II	************ Will be read ***********	*** ** (*	JUN.	0.15
	n data on lin		at start of s	tart of storm	ary units for		ot control	rint control.	very 50 lines	load percenta	groundwater	r of start of	ength (second	ength (second	ep length (se	th is		tion model be ration of inf n for each su	************** recipitation *************	############# Group Fl Rate (in/day ################	APR.	0.10

****************** CHANNEL AND PIPE DATA

NAMEG:	Drains				Invert		R Side	Intial	Max	Mann-	Full
hannel	ţ	-	Width	Length	Slope		Slope	Depth	Depth	ings	FLOW
#	NGTO:		(ft)	(ft)	(ft/ft)		(ft/ft)	(ft)	(ft)	"N"	(cfs)
		÷									
201	200	Ammund	0.0	0.0	0.000	0.0000	0.0000	0.0	0.0	0.0000	0.0 0.0000 0.005+00

* SUBCATCHMENT DATA

4

MENT NO. OR INLET (FT) (AC) IMPERV. (FT/FT) IMPERV. PERV. IMPERV. PERV. NHN.) (1/SEC) NO. VOLUME 1 300 200 206.08 0.98 81.42 0.0200 0.015 0.250 0.0200 0.40 0.00055 1 4.00000 1 300 200 206.08 0.98 81.42 0.0200 0.015 0.200 2.50 0.40 0.00055 1 4.00000 10 300 205.0 0.020 0.020 0.020 0.250 0.200 2.50 0.40 0.00055 1 4.00000 10 0.799 1 1 0.0200 0.200 2.50 0.40 0.00055 1 4.00000 10 0.799 1	(FT) (AC) IMPERV. (i i	2	IMPERV.		TNF TLTKA		FUAY XATE	-ALTE	THE PARTY AND A DESCRIPTION OF
.08 0.98 81.42 0.0200 0.015 0.250 0.020 0.200 2.50 0.40 0.00055 1 4 0.00055 1 4 0.00055 1 4 0.00055 1 4 0.00055 1 4 0.00055 1 4 0.018 0.79 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18					PERV.	RATE (IN, MAXIMUM 1	(HR) IINIMUM	(1/SEC)	NO.	VOLUME (INCHES)
	206.08 0.98 81.42		0.250	0.020	0.200	1	0.40	0.00055	1	4.00000
	JBCATCHMENTS 1									

(IN/HR-FT^2) 0.00E+00 A3 TOW CONSTANTS 1.000 B2 (IN/HR-FT^B2) 0.000E+00 ----------A2 2.600 -----B1 (FT) (IN/HR-FT^B1) 4.500E-05 AI 2.00 MI (LI) 2.00 ł O N S BC 0.00 STAGE (FT) -----0.00 GROUND BOTTOM -----(FT) 10.00 -----(ET) OR 602 CHANNEL TALET ----NUMBER 0 -----CATCH SUB-

*

GROUNDWATER INPUT DATA

4

* GROUNDWATER INPUT DATA (CONTINUED) * **********************************

PROPERTIES SOIL

POINT CAPACITY MOISTURE INITIAL WILTING FIELD HYDRAULIC POROSITY CONDUCTIVITY SATURATED (in/hr) SUBCAT.

PARAMETERS PCO HCO MAX. DEEP PERCOLATION (in/hr)

DEPTH FRACTION OF ET ET PARAMETERS TO UPPER ZONE OF ET

(ft)

PERCOLATION

NO.

ē

o	-4000	5.000	.1500	.3000	.3000	2.000E-03	10.00	15.00	14.00	0.350
*********** * Arranger ************** * See second * of subcatch	Arrangement of Subcatchments Arrangement of Subcatchments ************************************		:*************************************	<pre>************************************</pre>	* * * * * * * * * * * * * * * * * * *					
Channel or Pipe 201	No Tributary No Tributary	tary Channel/Pipes tary Subareas	Pipes							
INLET 200	Tributary Tributary	<pre>/ Channel/Pipes</pre> / Subareas	se	201						
************* * Hydrograph ***********	**************************************	######################################	******* followi *******	1 I II II II 1 IV 1 IX	***** NLTI * SLTI *****					
**************************************	<pre>####################################</pre>	<pre>* ***********************************</pre>	######################################	* * * * * * * * * * * * * * * * * * *						
Description			Vari	Variable	Value					
Number of g	Number of quality constituents.	tituents	NQS		H					
Number of L	Number of land uses		JLAND		H					
Standard ca	tchbasin vol	Standard catchbasin volume	CBVOL	a farmer	4.00	4.00 cubic feet				
Erosion is	Erosion is not simulated	be	IROS		o					
DRY DAYS PR	DRY DAYS PRIOR TO START	T OF STORM	DRYDAY		3.00 DAYS	SIAS				
DRY DAYS RE CATCHBASIN (INITIAL VAL)	DRY DAYS REQUIRED TO RECHARGE CATCHBASIN CONCENTRATION TO INITIAL VALUES	SCHARGE DN TO	DRYBSN		5.00 DAYS	AYS				
DUST AND DIRT STREET SWEEPI)	DUST AND DIRT STREET SWEEPING BFFICIENCY	INCY	REFEDD.		0.300					
DAY OF YEAR SWEEPING BE	DAY OF YEAR ON WHICH STREET SWEEPING BEGINS	1	KINBGN	in the second se	120					

SWEEPING ENDS...... KLNEND..... DAY OF YEAR ON WHICH STREET

270

			DNITIMIL			CLEANING	AVAIL.	DAYS SINCE
			BUILDUP	BUILDUP	BUILDUP	INTERVAL	FACTOR	LAST
AND USE	BUILDUP EQUATION TYPE	FUNCTIONAL DEPENDENCE OF	QUANTITY	POWER	COEFF.	IN DAYS	FRACTION	SWEEPING
LNAME)	(METHOD)	BUILDUP PARAMETER (JACGUT)	(DDLIM)	(DDPOW)	(DDFACT)	(CLEREQ)	(AVSWP)	(DSLCL)
Urban De	EXPONENTIAL (1)	AREA (1)	2.500E+01	0.500	60.000	30.000	0.300	30.000

¢

Total Su	mg/1	0	N	EXPONENTIAL (2)	a	POWER EXPONEN. (0)	F	AREA(1)	0	NO SNOW LINKAGE	25.000	0.500	60.000	0.000	0.000	1,100	3.000	100.000	0.000	0.300	0.000	0.000	T
	Constituent units	Type of units	KALC	Type of buildup calc	KWASH	Type of washoff calc	KACGUT	Dependence of buildup	LINKUP	Linkage to snowmelt	Buildup param 1 (QFACT1).	Buildup param 2 (QFACT2).			Buildup param 5 (QFACT5).	Washoff power (WASHPO)	Washoff coef. (RCOEF)	Init catchb conc (CBFACT)	Precip. conc. (CONCRN)	Street sweep effic (REFF)	Remove fraction (REMOVE).	1st order QDECAY, 1/day	Land use number

****************************** 1/5m 0000.0 Total Susp has a concentration of ...

CHANNEL/ CONSTITUENT PIPE Total Susp

201 0.000

Number	of	Catch-	.0**2ft Basins Total Su		4.10 1.00 0.0E+00	0 1
	Land	Use	No. 1		н	other!
		Land	Usage		300 Urban De	(Toads in 1h or other)
			No.	1	300	(T.oade
				1	н	Totals

* DATA GROUP M1 *

-	0	0
UTTERS/INLETSNPRNT	REN PRINTINGS INTERV	NTOUT DATES
TOTAL NUMBER OF PRINTED GUTTERS/INLETS.	NUMBER OF TIME STEPS BETWEEN PRINTINGS	STARTING AND STOPPING PRINTOUT DATES

0

* DATA GROUP M3 * ********************** CHANNEL/INLET PRINT DATA GROUPS.....

-200

Goventure Captial Group, Frankin Street, Worcester DMH#102

Rainfall Station Worcester Wso Ap State/Province Massachusetts

Rainfall Depth Summary (in)

Year Jan 1957. 0.4 1958. 9.0 1959. 5.1	Feb 1.4	Mar 2.8	Apr 3.6	May 3.4	ир 9.0	Jul 1.1	Aug 2.8	Sep	0ct 3.8	Nov 5.7	Dec 7.3 3.2	Total 36.5	
	1.4	2.8	3.6	3.4	0.0 9.0	1.1	2.8	1	3.8	5.7	7.3	36.5	
	1-4	80 G	3.6	3.4	0 0 m 0	1.1	8.9	-	2. C	2.1	a.2	36.5	
							0	4.4			3.2		
	5.0	4.9	7.2	4.3	2.8	6.1	4.4	8.1	2.8	5.0		60.8	
	2.8	8.2	4.2	2.4	4.7	8.4	4.5	3.1	8.3	6.1	5.1	62.9	
	6.3	4.2	5.4	5.9	3.1	7.2	9.6	7.0	3.0	4.0	5.0	57.4	
	2.5	2.8	5.2	4.2	2.5	4.3	5.3	6.1	3.5	3.3	5.1	51.5	
	5.4	2.6	3.9	4.4	3.5	2.1	4.6	5.7	9.2	4.9	5.8	54.4	
Ì	3.4	4.7	1.9	3.6	2.6	2.0	3.0	4.9	1.7	8.8	3.3	44.0	
	3.6	4.2	4.5	1.5	1.8	3.6	2.9	2.1	2.5	3.5	6.2	42.4	
	4.9	2.7	3.9	3.1	2.0	2.0	3.2	3.8	2.3	3.2	2.9	37.1	
1	4.4	3.2	1.7	а. e	2.6	3.5	2.0	7.5	3.5	4.9	4.2	45.6	
57. 2.8	3.7	4.9	5.2	7.4	3.9	6.5	3.5	5.2	2.4	5.1	5.0	55.7	
58. 3.7	1.4	7.9	2.3	1.1	8.4	1.9	0.7	2.2	2.4	6.2	6.5	50.7	
	4.2	2.7	5.6	3.4	1.7	4.3	4.7	5.4	1.8	1.1	8.5	51.1	
	5.5	4.1	3.9	6.1	2.9	6.0	5.8	3.6	3.0	4.0	3.9	45.7	
1	5.9	1.9	2.0	5.6	2.6	4.9	8.0	1.6	3.6	5.5	3.7	48.3	
72. 3.1	8.2	6.1	4.8	8.4	9.7	9.9	5.1	3.3	6.0	10.2	6.4	77.7	
	4.1	4.9	5.7	4.8	7.3	4.1	4.4	4.1	4.8	3.9	8.8	1.19	
	3.4	5.6	3.6	6.3	3.8	3.4	3.7	13.4	3.6	5.7	4.1	61.0	
75. 6.9	3.3	5.9	1.3	2.0	8.8 0	4.3	5.1	7.6	9.9	6.0	5.2	57.9	
i.	2.9	4.5	2.5	3.2	2.8	3.6	6.6	2.3	5.3	1.0	3.4	45.0	
Ľ	3.2	6.4	4.2	2.7	4.2	4.8	2.4	8.2	5.6	4.2	6.8	55.0	
	1.8	3.4	2.5	3.8	1.8	3.8	5.4	1.3	4.1	2.5	4.3	46.5	
1	3.1	4.0	5.5	4.7	0.6	6.1	7.7	4.1	4.9	4.1	1.8	58.8	
	1.2	2.4	5.2	2.4	4.8	3.9	2.1	3.3	5.4	4.8	2.2	43.4	
81. 1.9	9.4	1.4	4.9	4.1	2.7	8.2	1.2	5.5	5.7	3.9	6.1	55.0	
	4.0	4.2	4.8	3.4	13.1	6.0	2.0	2.1	3.2	4.6	9.9	55.7	
33. 5.3	5.3	0.6	8.4	7.3	2.7	6.0	6.4	1.5	6.3	9.3	1.1	69.5	
ľ	6.7	6.3	5.1	10.3	3.3	6.4	1.2	2.8	9.9	3.0	3.4	55.1	
	3.6	3.5	3.0	5.1	5.2	6.6	4.1	4.7	3.0	7.3	2.7	50.7	
	3.5	3.6	1.9	3.4	9.6	3.5	3.6	6.0	3.0	6.7	7.8	52.9	
	1.9	5.8	6.6	1.5	5.0	1.0	5.4	6.7	4.5	3.1	2.6	53.6	
3.7	3.5	3.3	3.8	5.1	1.4	6.7	4.5	1.2	5.9	5.9	1.8	46.8	
	3.4	3.0	4.8	6.6	7.3	4.6	5.9	5.1	0.0	0.0	0.0	42.3	
0.0 .16	0.0	0.0	0.0	0.0	0.0	3.2	8.1	6.9	3.8	6.0	3.5	31.5	
32. 3.1	3.3	4.7	3.2	2.7	5.0	5.7	7.2	2.3	2.4	6.3	5.1	50.9	
e	2.9	1.1	4.0	1.9	2.9	3.4	2.1	9.4	4.0	5.2	5.8	51.8	
v	2.9	6.6	2.9	6.8	2.5	3.2	8.0	5.3	1.3	6.0	4.2	55.7	
5	2.3	2.2	2.5	0.0	0.0	4.7	2.1	3.7	8.8	5.2	1.4	38.8	
5	3.3	2.5	7.3	4.1	3.1	6.3	4.5	4.9	4.9	3.0	5.0	55.8	
m	1.7	4.6	3.4	2.6	1.6	3.2	2.8	1.6	1.8	5.5	2.3	34.4	
38. 3.9	2.8	6.3	2.8	5.7	9.7	1.8	2.3	1.2	5.0	2.4	1.4	45.4	
5	2.4	4.6	1.1	3.3	1.8	2.4	2.4	8.6	4.6	3.1	4.3	45.7	

49.3 3.2 4.0 2.4 а. в а. Б 2.5 4.5 5.4 9.9 7.6 4.2 9.9 9.9 3.5 2000.

2227.9 (in) Total Rainfall Depth for Simulation Period

Rainfall Intensity Analysis (in/hr)

(%)	30.5	25.6	6.5	10.1	4.5				÷.	1.1	0.8				0.3		0.3	0.6	0.3	0.4	1.3	
(ii)	679.	571.	211.	224.	100.	80.	92.	64.	26.		18.	18.	17.	13.	7.	15.	7.	12.	7.	8.	30.	
(%)	69.5	19.4	1.1				 • 				0.1	•		1.0	•	0.0	0.0	0.0		0.0	1.4	
(#)	55294	15423	3295	2538	868	597	577	337	120	123	70	64	56	38	18	38	16	28	14	16	48	
(in/hr)	0.10		0.30	0.40	0.50	0.60	0.70	0.80	06.0		1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	> 2.00	

Total # of Intensities 79578

Daily Rainfall Depth Analysis (in)

(%)							1.5				4.2		3.9	3.0	3.6	3.0	
(ii)	85.	143.		99	3	23	34	H	80	-	93.	0	86.	.99	81.	68.	
(%)		17.7	10.2	8.7	5.4					1.0	1.6	1.0	23		1.0		
(#)		5	575	00	0	5	0				68						
(ii)	0.10	0.20	e.		ŝ		Г.		σ.	1.00	1.10	1.20	1.30	1.40	1.50	1.60	

2.9	2.2	1.6	1.4	12.1	
64.	49.	37.	31.	270.	
0.7	0.5	0.4	0.3	1.8	
39	28	20	16	104	
1.70	1.80	1.90	2.00	> 2.00	

Total # Days with Rain 5639

******************************* * End of time step DO-loop in Runoff +

			seconds.			days.
12/31/2001	3055995	2001365	86400.	24.00	394464.0000	16436.0000
ar) =	steps =					Final running time =
'Yea	Be	8	II.	H	H	
/Day/	of tir	Date	day	day	time	time
(Mo	H	an	θĐ	đ	ing	fug
Date	dmun	Juli	time	time	runn	Lunn
Final	Total	Final	Final	Final	Final	Final

* ************************************ * # Steps ==> Total Number of Extrapolated Steps * * # Calls ==> Total Number of OVERIND Calls Extrapolation Summary for Watersheds

Subca	tch	# Steps	# Calls	Subcatch # Steps # Calls Subcatch # Steps # Calls Subcatch # Steps # Calls	# Steps	# Calls	Subcatch	# Steps	# Calls
	ł								
	300	300 13574739 3380113	3380113						
A									
*****	****	*********	******	************************	*****				
*	Extra	apolation :	Summary fo	* Extrapolation Summary for Channel/Pipes *	ipes *				
+0 # *	- ouo	I Leton V-	Wimhar of	Twtranolate	* otore *				

* # Steps ==> Total Number of Extrapolated Steps *
* # Calls ==> Total Number of GUTNR Calls *

Calls Chan/Pipe *********************************** # Steps # Calls Chan/Pipe # Steps Chan/Pipe

Calls -----# Steps -------------------------0 0 -----201 -----

************************* *********************** Continuity Check for Surface Water *

ŧ

*

Total Water remaining in Surface Storage Infiltration over the Pervious Area... Total Precipitation (Rain plus Snow) Surface Runoff from Watersheds -----Total Infiltration Total Evaporation

Water remaining in Surface Storage + Surface Runoff + Snow removal + Infiltration + Evaporation +

Total Basin 2225. Inches over 408. .88 1742. 0 2196. 43. 1444378. 7873132. 312069. 6164248. cubic feet

1444378.

Water remaining in Snow Cover	7920738.	2238.	
Total Precipitation + Initial Storage.	7873132.	2225.	
The error in continuity is calculated as ***********************************			
* Precipitation + Initial Snow Cover * * - Infiltration - *			
*Evaporation - Snow removal - *			
*Surface Runoff from Watersheds - *			
*Water in Surface Storage - *			
*Water remaining in Snow Cover *			
# Decompletetion + tottion State 20000 20000 +			

BITOI	-0.605 Percent		
***********************	*		
<pre>* Continuity Check for Channel/Pipes * ***********************************</pre>	* *		
		Inches over	

		Inches over
	cubic feet	Total Basin
Initial Channel/Pipe Storage	0.	0.
Final Channel/Pipe Storage	0.	0.
Surface Runoff from Watersheds	6164248.	1742.
BaseflowBaseflow	0.	
Groundwater Subsurface Inflow	0.	0.
Evaporation Loss from Channels	0,	0.
Channel/Pipe/Inlet Outflow	6164248.	1742.
Initial Storage + Inflow	6164248.	1742.
Final Storage + Outflow	6164248.	1742.
<pre>Final Storage + Outflow + Evaporation - * Watershed Runoff - Groundwater Inflow - * Initial Channel/Pipe Storage *</pre>		
* * * ************************		
Error	0.000 Percent	
Continuity Check for Subsurface Water ************************************	***	
	cubic feet	Inches over Subsurface Basin
Total Infiltration	0.	0.
Total Upper Zone ET	0.	0.
Total Lower Zone ET	0.	0.
Total Groundwater flow	0.	0.
Total Deep percolation	0.	0.
Initial Subsurface Storage	127413.	36.

Upper Zone ET over Pervious Area Lower Zone ET over Pervious Area Final Subsurface Storage

36.

127413. ...

> ************************* * Infiltration + Initial Storage - Final * Storage - Upper and Lower Zone ET -Groundwater Flow - Deep Percolation

******************************* Error Infiltration + Initial Storage

0.000 Percent

SUMMARY STATISTICS FOR SUBCATCHMENTS

TOTAL PEAK	TOTAL	TOTAL	TOTAL	TOTAL
RUNOFF TOTAL RUNOFF RUNOFF	RUNOFF TOTAL RUNOFF I	RUNOFF TOTAL RUNOFF I	RUNOFF TOTAL RUNOFF I	RUNOFF TOTAL RUNOFF I
RATE	DEPTH LOSSES RATE	RAINFALL DEPTH LOSSES RATE	PERCENT RAINFALL DEPTH LOSSES RATE	AREA PERCENT RAINFALL DEPTH LOSSES RATE
DEPTH LOSSES RATI	DEPTH LOSSES	DEPTH LOSSES	RAINFALL DEPTH LOSSES	PERCENT RAINFALL DEPTH LOSSES
RUNOFF TOTA	м Д	SIMULATED R RAINFALL D	SIMULATED R PERCENT RAINFALL D	SIMULATED R AREA PERCENT RAINFALL D
RUNOF	нкр	TOTAL T SIMULATED R RAINFALL D	TOTAL T SIMULATED R PERCENT RAINFALL D	TOTAL T SIMULATED R AREA PERCENT RAINFALL D
	TOTAL SIMULATED RAINFALL	S H	S: PERCENT 1	S: AREA PERCENT I

*** NOTE *** IMPERVIOUS AREA STATISTICS AGGREGATE IMPERVIOUS AREAS WITH AND WITHOUT DEPRESSION STORAGE

SUMMARY STATISTICS FOR CHANNEL/PIPES

HANNEL		FULL	FULL	MAXIMUM COMPUTED TNFLOW	COMPUTED	MAXIMUM COMPUTED	MAXIMUM COMPUTED	11 0 CCUTRING	TIME OF URRENCE	LENGTH OF SURCHARGE	MAXIMUM SURCHARGE VOLUME	RATIO OF MAX. TO FULL	RATIO OF RATIO OF MAX. TO MAX. DEPTH FULL TO FULL
NUMBER	(CES)	(EPS)	(ET)	(CFS)	(CES)	(ET)	(FPS)	DAY HR.	HR.	(HOUR)	(AC-FT)	FLOW	DEPTH
201				0.00			1	0/19	1/ 0/1900 0.00				
200				3.28			12	6T/6T,	7/19/1972 17.50				

2 TOTAL NUMBER OF CHANNELS/PIPES =

*** NOTE *** THE MAXIMUM FLOWS AND DEPTHS ARE CALCULATED AT THE END OF THE TIME INTERVAL

Runoff Quality Summary Page loads kg b

mass rates lb/sec

kg/sec

If NDIM = 1 Loads are in units of quantity

METRIC = 1 METRIC = 2

If NDIM = 0 Units for:

¢

times volume and mass rates have units# of concentration times volume/second # ****** # If NDIM = 2 loads are in units of concentration and mass rates are quantity/sec

0 I Total Su NDIM METRIC = 1 Total Su

... . . . 19. 36874. 1539. 0 35308. 35308. 36874. 35334. 35308. 0 35308, ò 35308. ----->>Removal in channel/pipes (17a, 17b): TOTAL SURFACE BUILDUP. INITIAL CATCHBASIN LOAD. TOTAL CATCHBASIN LOAD. TOTAL CATCHBASIN AND 1. INITIAL SURFACE LOAD..... 14. LOAD FROM OTHER CONSTITUENTS LOAD REMAINING ON SURFACE... REMAINING IN CATCHBASINS.... REMAINING IN CHANNEL/PIPES.. 15a.SUM SURFACE LOAD (13+14+15). 17a. REMOVE BY BMP FRACTION 17b.REMOVE BY 1st ORDER DECAY ... 18. TOTAL LOAD TO INLETS SURFACE BUILDUP (2+4) 9. STREET SWEEPING REMOVAL 10. NET SURFACE BUILDUP (2-9) ... 12. CATCHBASIN WASHOFF 13. TOTAL WASHOFF (11+12) 15. PRECIPITATION LOAD 16. TOTAL GROUNDWATER LOAD (15a-15b-15c-15d+16+16a) 11. SURFACE WASHOFF..... Remaining Loads Removals Inputs

....

Percentages

92.

19. FLOW WT'D AVE.CONCENTRATION mg/l

(INLET LOAD/TOTAL FLOW)

00

	4.	96.	100.	100.
	(9/2)	(11/2)	NET SURFACE WASHOFF (11/10)	LOAD (11/17)
1	SWEEPING	WASHOFF	FACE WASH	SUBCAT
	STREET	SURFACE	NET SUR	WASHOFF/
1	20.	21.	22.	23.

	100.		.0		.0		.0		0.		.0		0.		0.		.0		0.		.0		.0		.0		.0	
CIERTA TALENCES TALE TALE	(11/18)	CATCHBASIN WASHOFF/	SUBCATCHMENT LOAD (12/17)		INLET LOAD (12/18)		SUBCATCHMENT LOAD (14/17)		INLET LOAD (14/18)	1	SUBCATCHMENT LOAD (15/17)		INLET LOAD (15/18)	- 31		100	INLET LOAD (16/18)	.INFILTRATION/INFLOW LOAD/	SUBCATCHMENT LOAD (16a/17)	32b. INFILTRATION/INFLOW LOAD/	INLET LOAD (16a/18)	. CH/PIPE BMP FRACTION REMOVAL/	SUBCATCHMENT LOAD (17a/17)	32d.CH/PIPE 1st ORDER DECAY REMOVAL/	SUBCATCHMENT LOAD (17b/17)		(18+8+6a+17a+17b-17)/17	
VC		25.		26.		27.		28.		29.		30.		31,		32.		32a.		32b		320.		32d		33.		

CAUTION. Due to method of guality routing (Users Manual, Appendix IX) guality routing through channel/pipes is sensitive to the time step. Large "Inlet Load Summation Errors" may result. These can be reduced by adjusting the time step(s).

These can be reduced by adjusting the time step(s). Note: surface accumulation during dry time steps at end of simulation is not included in totals. Buildup is only performed at beginning of wet steps or for street cleaning.

Settling Velocity Critical Peclet (ft/s) Number	000002 0.022000	000035 0.049420	000108 0.068516	0.00710 0.118919	004352 0.203034	010215 0.262779	016354 0.304305	029465 0.368637	0.48502	13 0.7
Specific Settl Gravity (2.65 0.	.0	. 65 0.	5 0.	2.65 0.	2.65 0.	2.65 0.	2.65 0.	2.65 0.
æ	5.0	5.0	10.01	15.0	10.01	5.0	10.01	15.0	15.0	5.0
Diameter (um)	1.	4.	7.	18.	45.	70.	90.	125.	200.	400.

0.321303 2.65 5.0 850.

1.128801

4

+

Summary of TSS Removal

TSS Removal based on NJCAT Lab Performance Curve

3 0.579 9.13 5 4 0.997 9.13 5 1.245 9.13 5 1.245 9.13 5 1.245 9.13 5 2.092 9.13 5 2.773 9.13 5 3.94 9.13 5 10 3.984 5 10 5.410	Model #	Low Q Treated (cfs)	High Q Treated (cfs)	Runoff Treated (%)
4 0.997 9.136 98.1 5 1.245 9.136 99.1 6 1.488 9.136 99.1 7 2.092 9.136 99.1 8 2.773 9.136 99.1 10 3.984 9.136 99.1 12 5.410 9.136 100.0	E SH	5	-	
5 1.245 9.136 99.1 6 1.488 9.136 99.1 7 2.092 9.136 99.1 8 2.773 9.136 99.1 10 3.984 9.136 100.0 12 5.410 9.136 100.0	100	99	-	7.86
6 1.488 9.136 99.1 7 2.092 9.136 99.1 8 2.773 9.136 90.1 10 3.984 9.136 100.1 12 5.410 9.136 100.1	S	4	.13	99.2
7 2.092 9.136 8 2.773 9.136 1 10 3.984 9.136 1 12 5.410 9.136 1	100	1.488	-	174
8 2.773 9.136 1 10 3.984 9.136 1 12 5.410 9.136 1			4	6.99
10 3.984 9.136 12 5.410 9.136	22	777	-	100.0
s 12 5.410 9.136	HS 10	.98	9.136	100.0
	HS 12	11.	9.136	100.0

63.7 72.0 79.3 <=TSS Removal 84.2 87.2 89.6 93.9

TSS Removed (%)

4

								*
Summary	of	Annual	FLOW	Summary of Annual Flow Treatmnet & TSS Removal	10	SS	Removal	*
								*

	CEO.
410. 240. 533. 362.	895.
	.068
	863.
	852.
	799.
	780.
	761.
	738.
	.191.
	902.
	769.
	783.
	756.
	838.
	1087.
	921.
	875.
	814.
	810.

64.9	66.8	61.5	61.2	61.2	61.4	62.9	64.5	- -	65.4	67.1	64.5		66.6	14.1	64.8	63.9	64.8	63.0	67.1	62.0	65.2	1 ¥.	65.8	Tanana oom	TENOUSA SST.	(%)	1.1	69.4	71.0	73.1	73.3	72.6	73.8	73.7	74.0	72.7	9.11			13.5	69.10	1.00	1.00	1.10	4	0.51				
1.76	98.5	92.7	96.5	95.2	95.2	97.2	98.6	92.7	68.7	99.2	96.9	r'		÷.	93.7	ió	io'	96.9	1.99	97.0	96.8	1.86	94.9		FLOW Treated	(%)	0	99.5	96.2	1.86	98.1	99.5	100.0	99.66		59.4	5.99	0.00	2.22	0.95	1.99	2.05	2.0	0.001	100.0	20.00	0.00	1 40	÷	
0.	0.	.0	.0	.0	.0	.0			.0	.0					.0		.0	.0	0.	0.	.0	.0	0.		dia sat	(वा)	.0	.0	0,	.0		0.	.0		.0	.0													;	
314.	241.	325.	296.	330.	326.	364.	295.	279.	269.	255.	275.	237.	134.	279.	304.	318.	224.	330.	226.	282.	261.	00	233.	the com	TES OUT	(वा)	190.	274.	258.	232.	227.	219.	205.	201.	192.	216.	256.	202	210.	202	256.	3/2.	. 500	.707	.012	. 612				
580.	485.	520.	468.	520.	519.	618.	538.	547.	508.	520.	499.	430.	267.	577.	560.	563.	412.	562.	461.	460.	490.	535.	449.		HOX NOT	(वा)	460.	621.	632.	631.	625.	580.	575.	560.	547.	575.	646.		. 1.95	. 1995	283.	119.	.170	. 760	504.	165				
894.	726.	845.	764.	850.	845.	982.	833.	826.	. 777.	774.	774.	667.	401.	856.	865.	881.	636.	892.	687.	742.	752.	820.	682.		UT SST	(qt)	650.	895.	.068	863.	852.	799.	780.	761.	738.	.191.	.205	104.	.58/	126.	838.	./ BOT	. 176	8/2.	. 518	.018		845		
1617560.	1380327.	1670198.	1258984.	1588006.	1614074.	2084177.	1658920.	1421885.	1577001.	1630581.	1367186.	1228696.	880794.	1515725.	1478624.	1637395.	1150914.	1646143.	1030228.	1342792.	1344065.	1441455.	1042467.		F.TOW TREATED	(ft3)	1094714.	1828012.	1846743.	1722863.	1530414.	1654646.	1334268.	1275336.	1115518.	1381062.	1681725.	. 1220248.	1242930.	13/6619.	147171.	2293669.	. 187/CRT	. 198308.	. 98486/T	13326/9.	- NUCLAR	1730111		
1665254.	1401690.	1800989.	1305212.	1668480.	1694760.	2143746.	1682574.	1533337.	1597411.	1642915.	1411344.	1262447.	976348.	1535285.	1578012.	1689998.	1189278.	1699024.	1039562.	1383807.	1388298.	1469348.	1098436.		TOA MOTA	(ft3)	1101261.	1837267.	1920240.	1756867.	1559329.	1662506.	1334268.	1280700.	1115518,	1389806.	1693253.	- #T9200T	1555414.	139/148.	1485555.	2407718.	1800/18T	. 1920201	. 88486/T	1666054		1800080		
1977.	1978.	1979.	1980.	1981.	1982.	1983.	1984.	1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	2001.	HS 4	rear		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1961	1200	1969.	1970.	1971.	1972.	1014		- C/21	- 9/6T		1070	ñ	

70.2	70.0	70.8	71.3	73.1	73.8	73.2	74.9	72.5	72.5		74.4	72.6		72.2	71.0	74.3	69.7	72.4	72.9	1.4.1		TSS Removal	(%)	77.7	77.0	78.5	80.0	80.9	80.1	80,3	H.	80.7	1.08	18.4	4.00		6 22	73.8	76.0	75.5	81.1	80.6	80.7			77.5	77.6	78.6	
0.66	6.1	5.66	6.00	7.66	96.5	6.96		98.9	56°3	96.4	99.7			98.9	98.8	99.9	99.4	1.99	8.66	-		Flow Treated	(%)	8.66	99.8	97.2	2.86	0.99	99.8	100.0		100.0	66.0		20.00		00	5.90	99.66		100.0	99.2	99.2	100.0	1.16	7.66	99.3	100.0	
0.	0	. 0		.0	0.					0.	.0		.0	0.	0.	0.	.0	0.	0.	0.		TSS BYP	(वा)	.0	.0	.0	0.	.0	0.	0.	.0	0.							0.	.0	0.	0.	0.	.0	0.		.0	0.	
228.	255	247	282	225.	216.	208.	195.	213.	183.	106.	219.	237.	248.	177.	259.	177.	225.	207.	222.	184.		TSS Out	(वा)	145.	206.	192.	173.	163.	159.	154.	143.	142.	157.	.06T	. net	146	101	285	221.	214.	154.	157.	173.	126.	187.	172.	190.	181.	
536.	595	208	100	609	610.	569.	580.	561.	484.	295.	637.	628.	633.	459.	633.	510.	517.	544.	597.	498.		TSS Rem	(qT)	505.	690.	698.	690.	689.	640.	626.	618.	596.	634.	.71/	. 210	610	547	BOD -	700.	660.	660.	653.	721.	600.	629.	592.	659.	664.	
764.	850	845.	982	833.	826.	. 177.	774.	774.	667.	401.	856.	865.	881.	636.	892.	687.	742.	752.	820.	682.		TSS In	(पा)	650.	895.	890.	863.	852.	799.	780.	761.	738.	.161	.205	. 691	156		1087	921.	875.	814.	810.	894.	726.	845.	764.	850.	845.	
1291591	1641863	1686631	2129776	1677086.	1479755	1595791.	1642915.	1395403.	1253039.	941339.	1531025.	1545025.	1683497.	1176018.	1679343.	1038855.	1376133.	1375904.	1465999.	1066602.		Flow Treated	(ft3)	1098804.	1834384.	1867398	1733843	1543498.	1659480.	1334268.	1280700.	1115518.	1385855.	1690428.	. BC119C1	1319167	8207741	0310570	1870164.	1836620.	1758488.	1345474.	1651213.	1401690.	1754994.	1301818.	1656414.	1694752.	
1305212.	1668480	1694760	2143746	1682574.	1533337	1597411.	1642915.	1411344.	1262447.	976348.	1535285.	1578012.	1689998.	1189278.	1699024.	1039562.	1383807.	1388298.	1469348.	1098436.		Flow Vol	(£t3)	1101261.	1837267.	1920240.	1756867.	1559329.	1662506.	1334268.	1280700.	1115518.	1389806.	1693253.	. #T080CT	1397148	1485555	240771R	1877088.	1886241.	1758488.	1356149.	1665254.	1401690.	1800989.	1305212.	1668480.	1694760.	
1980	Lao	1982	1083	1984.	1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	2001.	HS 5	Year		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	. 8951	. 0701	1071	1970	1973.	1974.	1975.	1976.	1977.	1978.	1979.	1980.	1981.	1982.	

. e.	80.7	81.0	80.3	81.7	79.4	80.2	79.8		1.0			1.4	81.5		79.7	79.7	80.3		TSS Removal	(%)	82.3		83.7			85.0	85.0				84.0			81.8	79.5	81.4	81.0		85.3	85.5	86.8	82.8	82.4			83.5	85.4	85.5
99.6	100.0	97.9	100.0	100.0	99.2	99.8	98.2	100.0	98.8	100.0	99.3	99.5	100.0	8.66	1.66	100.0	98.3		Flow Treated	(%)	100.0	100.0	97.9	99.2	99.6	100.0	100.0	100.0	100.0	100.0	100.0	8 00	100.0	7.66	97.1	6.99	98.7	100.0	8.66	99.6	100.0	98.2	100.0	6.66	100.0	.66	100.0	98.6
.0	.0	.0	.0	0.	0.	0.	.0	.0	.0	.0	.0	0.		.0	.0	.0	.0		TSS BYP	(q1)	0.	0.	0.	0.	0.	0.	0.	0.	.0				.0	.0	0.	0.	.0				.0			.0	.0	.0	.0	0.
214.	161.	157.	153.	142.	160.	132.	81.	158.	174.	184.	132.	196.	127.	173.	153.	166.	135.		TSS Out	(qT)	115.	162.	145.	129.	121.	120.	117.	105.	107.	118.	144.	115	111.	153.	223.	171.	166.	113.	119.	130.	.96	146.	134.	149.	142.	162.	122.	120.
769.	673.	669.	624.	633.	615.	535.	320.	698.	690.	698.	503.	696.	560.	569.	599.	654.	547.		TSS Rem	(qT)	535.	733.	745.	734.	732.	679.	663.	656.	631.	673.	758.	.000	645.	685.	865.	750.	708.	701.	. 169	764.	630.	700.	630.	701.	703.	820.	711.	707.
982.	833.	826.	. 777.	774.	774.	667.	401.	856.	865.	881.	636.	892.	687.	742.	752.	820.	682.		TSS In	(पा)	650.	895.	890.	863.	852.	. 667	780.	. 191	738.	.191.	902.	102	756.	838.	1087.	921.	875.	814.	810.	894.	726.	845.	764.	850.	845.	982.	833.	826.
2135512.	9	1500790.	1597411.	1642915.	1400291.	1259463.	959031.	1534871.	1559321.	1689968.	1180884.	1689735.	1039562.	1380926.	1384081.	4	1079445.		Flow Treated	(ft3)	1101261.	1837267.	1879838.	1742462.	1552931.	1662506.	1334268.	1280700.	1115518.	1389633.	1693253.	1550162	1396607.	1481256.	2337976.	1875383.	1861986.	1758488.	1353765.	1659247.	1401690.	1769260.	1305212.	1666401.	1694760.	2139526.	1682574.	1512562.
2143746.	1682574.	1533337.	1597411.	1642915.	1411344.	1262447.	976348.	1535285.	1578012.	1689998.	1189278.	1699024.	1039562.	1383807.	1388298.	4	1098436.		Flow Vol	(ft3)	1101261.	1837267.	1920240.	1756867.	1559329.	1662506.	1334268.	1280700.	1115518.	1389806.	1693253.	.#T0000T	1397148	1485555.	2407718.	1877088.	1886241.	1758488.	1356149.	1665254.	1401690.	1800989.	1305212.	1668480.	1694760.	2143746.	1682574.	1533337.
1983.	1984.	1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	2001.	HS 6	Year		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1060	1970.	1971.	1972.	1973.	1974.	1975.	1976.	1977.	1978.	1979.	1980.	.1981.	1982.	1983.	1984.	1985.

85.0	86.3	1 18	1.20	6 V8	0.30	9 48		2.00	0.00	0.70	80.00	- 70 - 70	0.4.0	84.9	5		TSS Removal	(응)	85.3	85.2	86.6	88.4	88.8	88.0		89.0	88.7	87.9	87.0	88.2	88.3	88.3	9.98	1.55	V V0		88.1	88.6	89.6	85.8	85.2	85.4	86.3	86.6	88.4	88.3	88.0	89.0	87.2	
100 0	0 001	200		9 00	0.001	00.001	0.001	0.004	0.00		0.001	0.001		1 00 T	à		Flow Treated	(%)	100.0	100.0	1.99	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	8.66	100.0	100.0	100.0	7.001	0.001	100.0	100.0	100.0	100.0	4.66	100.0	100.0	100.0	100.0	100.0	5.7	100.0	100.0	1.1	
0																	TSS BYP	(qI)	0.	.0	.0	0.	.0	.0	0.	.0	.0	.0	.0	.0	.0						.0		. 0	.0	.0	0.		.0		.0	.0	0.	0.	
717	301				.001	133						. 121	.021	103			TSS Out	(पा)	95.	133.	119.	100.	96.	96.	91.	84.	84.	96.	117.	.06	92.	. 88	127.	104.			96	102.	75	120.	113.	124.	116.	132.	97.	96.	94.	85.	. 66	
660	888		. +00	. 100		131		.001			.040	. 110	.150	570			TSS Rem	(qT)	555.	762.	771.	763.	756.	703.	689.	677.	654.	695.	785.	678.	691.	668.	.217	. 202	. 701	106	714.	792.	650	725.	651.	726.	729.	850.	736.	730.	684.	689.	675.	
LLL	ALL			100		.000		. 100	.070		. 1.80	. 26/	. 261	.028			TSS In	(पा)	650.	895.	890.	863.	852.	799.	780.	761.	738.	.191.	902.	769.	783.	756.	838.	.1901	. 176	010	810.	894	726	845	764.	850.	845.	982.	833.	826.	. 777.	774.	774.	
1597411	1642015	LOVADA L	14044044	- 155707T	1005305	1567070		-000001	COCTOR T	TD24321.	.296550T	1283807.	. 138819U	10880348.			Flow Treated	(ft3)	1101261.	1837267.	1902575.	1756313.	1559329.	1662506.	1334268.	1280700.	1115518.	1389806.	1693253.	1556270.	1555414.	1397148.	1485555.	23/5560.	1000515	1758488	1356149	1665254	1401690	1790890.	1305212	1668480.	1694760	2143746.	1682574.	1528466.	1597411.	1642915.	1411344.	
1597411	1642015	VVCLLVL		. 1442021	102000	. CD20001	1000001	.0000011	. 2/762TT	. 520220T	1039562.	./085851	1388298.	10001368.	.0010001		FLOW VOL	(ft3)	1101261.	1837267.	1920240.	1756867.	5932	1662506.	1334268.	1280700.	1115518.	0	1693253.	1558614.	1555414.	1397148.	1485555.	.8T//082	.000//0T	1758488	1356149	1665254	1401690	1800989	1305212.	1668480.	1694760.	143	1682574.	1533337.	597	1642915.	41134	
1 986	1087	000	000	1001		1003	100	-	.0221		.1991.	. 9221	1999.	2000	. +007	HS 7	Year		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1968.	1969.	1970.	1971.	.2/61	. CIAT	1075	1976.	1977.	1978	1979.	1980	1981.	1982.	1983.	98	985	1986.	86	60	

87.9	5	1.88	87 A		0.00	85.9	a	in	ŕ	-	1.88			TSS Removal (%)	0	1.00	0.88	7.06	0.16	50.3	6.06	1.19	6.06	20.2	500	90.6	90.2	87.6	85.9	87.4	87.1		90.4	20.00				88.7		50.7			à	1.41	. · ·	0.06	1.16
100.0						100.0					6,99			Flow Treated (%)		0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	0.001	100.0	100.0	100.0	99.8	100.0	100.0	100.0	100.0	0.00T	1000	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	100.0
0	c		ic		òc	.0	.0	0.	0.	0.	0.			TSS BYP (1b)				.0	0.	.0	.0						. 0	0.	.0	0.	0.						, c	.0	0.	0.	0.	.0	.0		.0		0,
18	105			118		126.	72.	106.	97.	103.	81.			TSS Out (1b)	ł		. 211	80.	76.	78.	. 14	68.	67.	11.		74	74.	104.	153,	116.	113.	70.	- 8/		101		103	96.	107.	. 77 .	78.	74.	68.	82.	.99	40.	76.
285	. 198	150	756	163	550	766.	615.	636.	655.	717.	601.			TSS Rem (1b)			. 581	783.	776.	721.	. 607	693.	671.	.114.	507	001	682.	734.	934.	805.	761.	744.	132.	. 718	745	671	147	749.	875.	756.	748.	703.	706.	693.	601.	361.	780.
667	100			188		892.	687.	742.	752.	820.	682.			(1D)	C L L	.000	.008	863.	852.	799.	780.	.191	738.	.16/		783	756.	838.	1087.	921.	875.	814.	.018	476	845	764		845.	982.	833.	826.	. 777.	. 417	774.	667.	401.	856.
1262447		1535285	0100101	1680008	1180278	1699024.	1039562.	1383807.	1388298.	1469348.	1097822.			Flow Treated (ft3)	to to to	. 1021011	οσ	1756867.	1559329.	1662506.	1334268.	1280700.	1115518.	1503053	155951 A	յտ	1 (1)	1485555.	2402279.	1877088.	1886241.	1758488.	1356149.	- #CZC001	1800766	1305212	1668480	1694760.	2143746.	1682574.	1533337.	1597411.	1642915.	1411344.	1262447.	976348.	1535285.
1262447		1525285	0 0		1180078	1699024.	1039562.	1383807.	1388298.	1469348.	098436			Flow Vol (ft3)		TOTTOTT	1920240	1756867.	1559329.	1662506.	1334268.	1280700.	1115518.	1563665	155551A	1555414	1397148.	1485555.	2407718.	1877088.	1886241.	1758488.	1356149.	- 867699T	1800080		1668480	1694760.	2143746.	1682574.	1533337.	1597411.	1642915.		1262447.	976348.	1535285.
1 989	1001	1000	1002	1004	1005	1996.	1997.	1998.	1999.	0	2001.		HS 8	Year			1959	1960.	1961.	1962.	1963.	96	1965.	1960.	1060	1060	1970.	1971.	1972.	1973.	1974.	1975.	1976.	1151	1070	1980	1081	1982.	1983.	98	98	1986.	98	86	1989.	1991.	1992.

89.7	0 08	0.00	1 4 4	92.0	88.3	89.2	1.06	50.4		TSS Removal	(%)	93.2	N	93.4	94.5	94.9	94.3	in	94.5	95.1	94.2	90.6	64.7	94.3	92.6	90.8	92.5	H	5	94.4	94.7	4.00	92.6	92.4	93.2	93.8	94.8	94.7	4	95.3	m.		4		0.00	93.3	
100.0		0.001	0.001	100.0	100.0	100.0	100.0	100.0		Flow Treated	(8)	100.0		100.0	100.0	100.0					100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.4		100.0	0.00T
0				.0	.0	.0	0.	0.		TSS BYP	(qt)	.0	.0	0.	0.	.0	.0	.0	.0			ic		.0	0.	.0	.0	.0				<i>.</i> , ,		0.		0.	.0	.0	.0	.0	.0						
68			102	55.	87.	81.	81.	66.		TSS Out	(qT)	44.	69.	59.	47.	43.	45.	38.	42.	36.	46.	14	42	43.	62.	100.	. 69	72.	37.	45.	. 1.4		57.	65.	57.	61.	44.	44.	42.	36.	48.	36.	23.	. 10		59.	
775	184	268	190	632.	655.	670.	738.	616.		TSS Rem	(qŢ)	605.	826.	831.	816.	809.	753.	742.	719.	702.	745.	120	741	713.	776.	987.	852.	802.	.911	765.	847.	.020	707	785.	788.	921.	789.	783.	735.	738.	726.	631.	379.	.118	808	822.	.040
865	881	. 496	892	687.	742.	752.	820.	682.		TSS In	(पा)	650.	895.	.068	863.	852.	799.	780.	761.	738.	.191.	769	783	756.	838.	1087.	921.	875.	814.	810.	374.	945	764.	850.	845.	982.	833.	826.	. 777 .	774.	774.	667.	. 104	826.	001	.188	-000
1578012	1680008	1189278	1699024	1039562.	1383807.	1388298.	1469348.	1098436.		Flow Treated	(ft3)	1101261.	1837267.	1920240.	1756867.	1559329.	1662506.	1334268.	1280700.	1115518.	1389806.	1558614	1555414.	1397148.	14855555.	2407718.	1877088.	1886241.	1758488.	1356149.	. 4025001	1800080	1305212.	1668480.	1694760.	2143746.	1682574.	1533337.	1597411.	1642915.	1411344.	1262447.	976348.	1535285.	.2108/01	1100770	.0176011
1578012	1680008	1189278	1699024			1388298.	1469348.	1098436.		Flow Vol	(£t3)	1101261.	1837267.	1920240.	1756867.	1559329.	1662506.	1334268.	1280700.	1115518.	1502055	1558614	1555414.	1397148.	1485555.	2407718.	1877088.	1886241.	1758488.	1356149.	. 907 COOT	1800080	1305212.	1668480.	1694760.	2143746.	1682574.	1533337.	1597411.	1642915.	1411344.	1262447.	97634	1535285.		1180778	. D) 720TT
1993	1004	1995.	1996	1997.	1998.	1999.	2000.	2001.	HS 10	Year		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1965.	1968	1969.	1970.	1971.	1972.	1973.	1974.	1975.	1976.	-1/61	1070	1980.	.1981.	1982.	1983.	1984.	1985.	1986.	1987.	1988.	1989.	21 (5) (n

6 20	2.52	95.9	93.1	93.8	94.2	93.9			TSS Removal	(&)	96.2	95.6	96.2	1.76	97.1	96.8	97.6	- 11	97.8	96.8		1.00		96.9	96.1				1	o r	- 1	-1		20. P		8 90	2.79	97.3	97.2	97.9	96.7	97.2	97.2	7.76	96.7	96.6	6		0.86		
0 001	D'OT	100.0	100.0	100.0	100.0	100.0			Flow Treated	(%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0			100.0					0.001		100.0	0.001		0 001				100.0	100.0						. 4		100.0	100.0	
			.0	.0	0.	0.			TSS Byp	(qt)	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	.0	.0	.0										òc	ic	. 0	0.	.0	0.	0.	0.	.0	.0	.0	.0		.0	.0	.0	
13	- 10	28.	51.	46.	47.	41.			TSS Out	(पा)	25.	40.	34.	25.	24.	25.	19.	23.	17.	25.	29.	22.	23.	23.	32.	. 09	37.	45.		- 97	.07		.95	. 16		31	23	23.	22.	17.	26.	19.	11.	19.	28.	30.	21.	34.	14.	27.	
0.21	. 100	629	691.	705.	772.	640.			TSS Rem	(qt)	625.	856.	856.	838.	828.	773.	761.	738.	722.	766.	874.	746.	760.	732.	806.	1027.	884.	829.		184.		. 110	. 1.08		A14	951	810.	804.	755.	758.	749.	648.	390.	837.	836.	851.	615.	858.	673.	- 714 -	
000		687.	742.	752.	820.	682.			TSS In	(पा)	650.	895.	.068	863.	852.	799.	780.	761.	738.	791.	902.	769.	783.	756.	838.	1087.	921.	875.		.018	201	.971	. 649	. 401	.000	080	833.	826.	. 177.	774.	774.	667.	401.	856.	865.	.188	636.	892.	687.	742.	
A CODO T	TOARDY.	1039562.	1383807.	1388298.	1469348.	1098436.			Flow Treated	(ft3)	1101261.	1837267.	1920240.	1756867.	1559329.	1662506.	1334268.	1280700.	1115518.	868	1693253.	1558614.	1555414.	1397148.	14855555.	2407718.	1877088.	1886241.	. 88486/T	1356149.	. \$0075091	1401090.	1205010	. 212COCT	1694760	2143746	1682574	1533337.	1597411.	1642915.	1411344.	1262447.	976348.	1535285.	1578012.	1689998.	1189278.	1699024.	1039562.	1383807.	
1 60003	- 52020T	1039562.	1383807.	1388298.	1469348.	30			Flow Vol	(ft3)	1101261.	1837267.	1920240.	1756867.	1559329.	1662506.	1334268.	1280700.	1115518.	1389806.	1693253.	1558614.	1555414.	1397148.	14855555.	2407718.	1877088.	1886241.	. 98486/T	TSDD149.	. #C7C00T	1401690.	TRUUSED.	1668480	1694760	2143746	1682574.	1533337.	1597411.	1642915.	1411344.	1262447.	976348.	1535285.	1578012.	1689998.	18927	1699024.	1039562.	1383807.	
1 006	- 066T	1997.	1998.	1999.	2000.	2001.		HS 12	Tear		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1968.	1969.	1970.	1971.	1972.	1973.	- 5/6T		19/61	.1751	. B/61	- 5/5T	1081	1982	1983	1984.	1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	966	1997.	1998.	

1999.	1388298.	138	1388298.	752.	727.	24.	 100.0	
2001.	1469348. 1098436.	146.1098	1469348. 1098436.	682.	794. 656.	26.	 100.0	
*******	*******************************	******	*****	*****				
* Summary o	12	nd Quality	V Results	at *				
* Location * Values are ins **************	* Location 200 INFlow in cfs. * Values are instantaneous at indicated time step * ***********************************	INFlow in cfs. eous at indicat ***************	<pre>200 INFlow in cfs. tantaneous at indicated time step ************************************</pre>	* me step * *******				
Goventure DMH#102	Captial	o, Frankii	Group, Frankin Street, Worcester	Worcester				
Date	Time	FLOW	Total Su					
Mo/Da/Year	Hr:Min	cfs	mg/1					
Flow wtd means	ans	0.010	92.					
Flow wtd std devs	i devs	0.048	68.					
Maximum value	1e	3.282	293.					
Minimum value		0.000						
Total loads	:	6159740. Cub-Ft	BOUNDS					
===> Runoff simul	simulation en	ation ended normally.	. YLLE					
> SWAM 4.4		on ended	simulation ended normally.					
Always check		file for	possible	output file for possible warning messages.	ages.			
********	*******	*****	********	************				
SWMM		Simulation Date and	te and Tim	Time Summary *				
***********	*******	******	******	******************				
Starting Date	Date June	22,	2023	*				
H	Time	11:14:49.712	49.712	*				
Ending Date	Date June	22,	2023	*				
F	Time	11:14:55.501	55.501	*				
Elapsed Time.	lime		0.096 minutes.	ttes. *				
Elapsed Time	lime		5.789 seconds	* .spu				
***************		Constant of the New York,	N N N N N N N N N N N N					

96.8 96.9 96.2

MASS DEP "Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

DMH#107-Water Quality Unit

For First 1.0-Inch Runoff WQV

Step 1: Area of Impervious Surface to Structure

0.641 acres @ 68.12% Impervious = 0.436 Acres Impervious 0.436 Acres x .0015625 sq mi = $6.8x(10^{-4})$ square miles.

Step 2: Tc of Train

P112 to DCB#12:	5.0 min
DCB#12 to DMH#108	0.3 min
DMH#108 to DMH#107	0.6 min
Total Tc to DMH#107	5.9 min or 0.098 hours

Step 3: Determine qu

From Figure 4:

Tc @ 0.083, qu=795csm/in

Step 4: Determine Q(1)

Q(1) = (qu)x(A)x(WQV)

 $Q(1) = (795 \text{csm/in})x(6.8x(10^{-4}))x(1.0 \text{ in})$

Q(1) = 0.538 CFS

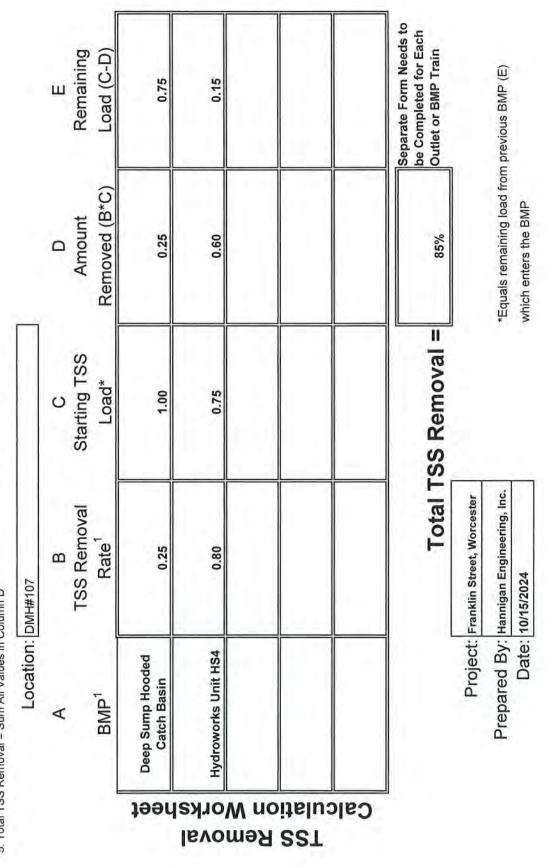
<u>Determination</u> Determination of Water Quality Flow rates for units by Connecticut DOT (CONNDOT)

From Technology Verification HS 4 Treatment Flow rate 1.1 cf.s > 0.538 c.f.s.

"Pass"

HydroGuard HS4 to be utilized in Design.

INSTRUCTIONS:


1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

4. To complete Chart Column E value, subtract Column D value within Row from Column C within Row

5. Total TSS Removal = Sum All Values in Column D

Non-automated: Jan. 31, 2019

Summary for Reach DMH107: TO DMH#100

[52] Hint: Inlet/Outlet conditions not evaluated
 [61] Hint: Exceeded Reach DCB6 outlet invert by 0.06' @ 12.15 hrs
 [61] Hint: Exceeded Reach DMH108 outlet invert by 0.06' @ 12.15 hrs

 Inflow Area =
 0.487 ac, 89.00% Impervious, Inflow Depth =
 1.76" for 1-Year event

 Inflow =
 0.88 cfs @
 12.12 hrs, Volume=
 0.071 af <= WQV</td>

 Outflow =
 0.88 cfs @
 12.13 hrs, Volume=
 0.071 af <= WQV</td>

 Routed to Reach DMH100 : TO DMH-A
 TO DMH-A
 0.071 af <= 0%, Lag= 0.5 min</td>

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.19 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.79 fps, Avg. Travel Time= 0.7 min

Peak Storage= 13 cf @ 12.13 hrs Average Depth at Peak Storage= 0.27', Surface Width= 0.89' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.64 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 78.0' Slope= 0.0179 '/' Inlet Invert= 466.70', Outlet Invert= 465.30'

Summary for Subcatchment P112: TO DCB#12

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.43 cfs @ 12.11 hrs, Volume= 0.034 af, Depth= 1.95" Routed to Reach DCB12 : TO DMH#12

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 1-Year Rainfall=2.58"

A	rea (sf)	CN	Description			
	575 8,479		>75% Gras Paved park		bod, HSG A	
	9,054 575 8,479		Weighted A 6.35% Perv 93.65% Imp	vious Area	ea	
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description	
0.8	50	0.0130	1.00		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.13"	
0.7	100	0.0130	2.31		Shallow Concentrated Flow, Paved Kv= 20.3 fps	
1.5	150	Total,	Increased 1	to minimum	Tc = 5.0 min <=TC	

Summary for Reach DCB12: TO DMH#12

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.208 ac, 93.65% Impervious, Inflow Depth =
 1.95" for 1-Year event

 Inflow =
 0.43 cfs @
 12.11 hrs, Volume=
 0.034 af

 Outflow =
 0.42 cfs @
 12.12 hrs, Volume=
 0.034 af, Atten=

 Routed to Reach DMH108 : TO DMH#107
 TO DMH#107

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.91 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.37 fps, Avg. Travel Time= 0.3 min<=TC

Peak Storage= 3 cf @ 12.12 hrs Average Depth at Peak Storage= 0.23', Surface Width= 0.64' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 1.63 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 28.0' Slope= 0.0107 '/' Inlet Invert= 467.80', Outlet Invert= 467.50'

Summary for Reach DMH108: TO DMH#107

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DCB12 outlet invert by 0.14' @ 12.10 hrs

 Inflow Area =
 0.336 ac, 86.65% Impervious, Inflow Depth =
 1.63" for 1-Year event

 Inflow =
 0.58 cfs @
 12.12 hrs, Volume=
 0.046 af

 Outflow =
 0.58 cfs @
 12.13 hrs, Volume=
 0.046 af, Atten=

 Routed to Reach DMH107 : TO DMH#100
 100
 100

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.87 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.34 fps, Avg. Travel Time= 0.6 min<=TC

Peak Storage= 7 cf @ 12.12 hrs Average Depth at Peak Storage= 0.24', Surface Width= 0.86' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.44 cfs

12.0" Round Pipe n= 0.011 Concrete pipe, straight & clean Length= 45.0' Slope= 0.0111 '/ Inlet Invert= 467.40', Outlet Invert= 466.90'

****************** ****************************** ************************* * Updated by Oregon State University, March 2000 ************************* ******************************* ************************************ *********************************** ************************ *********************************** ******************************* Hydroworks, LLC by phone at 888-290-7900 * Created by the University of Florida - 1988 "Nature is full of infinite causes which If any problems occur executing this Storm Water Management Sizing Model or by e-mail: support@hydroworks.com model, contact Mr. Graham Bryant at This model is based on EPA SWMM 4.4 (Now Camp Dresser & McKee, Inc.) Water Resources Engineers, Inc. Continuous Simulation Program Distributed and Maintained by University of Florida Metcalf & Eddy, Inc. www.hydroworks.com Based on SWMM 4.4H Hydroworks, LLC Modified SWMM 4.4 Hydroworks, LLC Hvdroworks, LLC Hydroworks, LLC 888-290-7900 * Entry made to the Rain Block Graham Bryant Developed by Version 4.4 2003 - 2021

€

GoVenture Captial, Franklin Street DMH#107

HydroStorm Simulation

	des in event summary:	KODEFR (from optional group B0) 0	2, Use NCDC cumulative values.		Storm event statistics, NOSTAT 1100	Plotting position parameter, A 0.40	- Synoptic analysi	- Create interface - Create file and	(IFILE =0 -Do not save, =1 -Save data)	storm event data on NSCRAT(1) 0	Print all rainfall, IYEAR (O-No 1-Yes) 0	Print storm summary, ISUM (O-No 1-Yes) 0	NWS format, IFORM (See text) 1	Number of ranked storms, NPTS 10	Minimum interevent time, MIT1	Ending date, IYEND (Yr/Mo/DY) 2001/12/31	Beginning date, IYBEG (Yr/Mo/DY) 1957/ 1/ 1	station, ISTA	đ	2 0.40 1100 1100 2 1ues. . rai	ze Live va Lues. A inst	sy s TAT TAT B0) blo B0) n ever	aalysi ameter s, NOS group CCDC c mulati tive v group group	r para stics stics nal g cur mulat onal a	ition stati optio bC cu opti opti
ja t s	t B	t B	Te la																23 / 1/ 1 /12/31	99 1957 1 2001 1 10 10 1 0 0 0	L-Yes) L-Yes) L-Yes) data)	o/Dy) bo/Dy) тт т т т т о-No о-No о-No сскат (1 -Save file	(Tr/M (Tr/Mo/D me, MT ms, NF ms, NF ms, NF s text text (SUM (TEAR (on NS s, =1 srface and	The second state of the se	A te, I ItyEN reven reven infal infal infal o not vent vent
	4 b	tt ba	n.																achusetts 23 / 1/ 1 /12/31	Massa 99, 1957, 1 1 1 1 1 1 0 0 0 0		o(Dy) o(Dy) T T T O-No O-No O-No CRAT(1 -Save file	<pre>(Yr/Mo/D/ re/Mo/D/ me, MI me, MI me, MI me, MI me, MI me, MI me, MI reat on NS on NS e, =1 erface e and</pre>	The service of the se	A A Le, I IYEN reven reven infal infal infal vent o not reate reate reate

Location Station Number

1. 9923

STATION ID ON PRECIP. DATA INPUT FILE = 2302 REQUESTED STATION ID = 9923 CHECK TO BE SURE THEY MATCH.

GoVenture Captial, Franklin Street

DMH#107

during time steps with rainfall.

<pre>Bour of day at start of storm - NBK 1 Minute of hour at start of storm - NBK 1.017 Time TZERO at start of storm (hours) 1.017 Use U.S. Customary units for most I/O - NETRIC 0 Runoff graph plot control 1.017 Brunoff graph plot control 1.017 Runoff output print control 1 Runoff output print control 0 Print headers every 50 lines - NOHEAD (0-yes, 1=no) 0 Print land use load percentages -LANDURR (0-no, 1-yes) 0 Print land use load percentages -LANDURR (0-no, 1-yes) 0 Drint number of groundwater convergence messages to 1000 (if simulated) Month, day, year of start of storm is: 1/1/1957 Wet time step length (seconds) 2001.1231.0 fr/Mo/Dy Percent of inpervious area with zero detention depth 25.0 Forth infiltration length is 2001.1231.0 fr/Mo/Dy Percent of inpervious area with zero detention depth 25.0 Forth infiltration and infiltration a REGEN * DECA Summation length is 0.01000 At the step length seconds) 0.01000 At the step length seconds area with zero detention depth 25.0 Forth infiltration 2000 0.00 0.00 0.00 0.00 0.00 0.00 0.0</pre>	Read evaporation data on line(s) F1 (F2) -	ratio	b d	ata on	line ((s) F1	(E2) -	IVAP	y.	H		
finite of hour at start of storm - NMN 1017 fime TZERO at start of storm (hours) 1.017 // is U.S. Customary units for most I/O - METRIC 0 // unoff input print control // unoff graph plot for a control // noo 0.00 0.00 0.00 0.00 0.00 0.00 0.00	of	at	sta	of	storm	- NHR.			4	H	ŝ	
<pre>time TZERO at start of storm (hours) 1.017 See U.S. Customary units for most 1/0 - METRIC 0 Sunoff input print control Sunoff graph plot control Drunoff graph plot control Drunoff output print control Drunoff output (seconds) Drunoff output 25.0 Drunoff print step length (seconds) Drunoff preserversed print ste</pre>	dinute of		ät	start	of sto	N - HI	MN			н	å	
Jee U.S. Customary units for most I/O - METRIC 0 Runoff input print control 0 Runoff graph plot control 0 Runoff graph plot control 0 Print headers every 50 lines - NOHEAD (0=yes, 1=no) 0 Print land use load percentages -LANDURR (0=no, 1=yes) 0 Print land use load percentages - LANDURR (0=no, 1=yes) 0 Print land use load percentages - LANDURR (0=no, 1=yes) 0 Print land use load percentages - LANDURR (0=no, 1=yes) 0 Print land use load percentages - LANDURR (0=no, 1=yes) 0 Print land use load percentages - LANDURR (0=no, 1=yes) 0 Print land use langth (seconds) 20011231.0 tr Percent of impervious area with zero detention depth 25.0 Proton infiltration model being used atte for regeneration of infiltration = REGEN * DECAR Percent of impervious area with zero detention depth 25.0 Proton infiltration will be read from file * * * * * * * * * * * * * * * * * * *	Time TZERC	at s	tar	t of s	torm ((hours)				1.017	Ļ	
Runoff input print control 1 Runoff graph plot control 1 Runoff output print control 0 Print headers every 50 lines - NOHEAD (0=yes, 1=no) 0 Print land use load percentages -LANDUPR (0=no, 1=yes) 0 Print land use load percentages -LANDUPR (0=no, 1=yes) 0 Print land use load percentages -LANDUPR (0=no, 1=yes) 0 Print in umber of groundwater convergence messages to 10000 (if s Wonth, day, year of start of storm is: 1/ 1/1957 Wonth, day, year of start of storm is: 1/ 1/1957 Wonth, day, year of start of storm is: 2001231.0 Yr Wonth, day time step length (seconds) 2001231.0 Yr Wonth, day time step length (seconds) 2001231.0 Yr Percent of impervious area with zero detention depth 25.0 Morton infiltration model being used Mate for regeneration of infiltration = REGEN * DECAY Bercent of impervious area with zero detention depth 25.0 Morton infiltration model being used Mate for regeneration of infiltration = REGEN * DECAY Bercent of impervious area with zero detention depth 25.0 Morton infiltration model being used Mate for regeneration of infiltration = REGEN * DECAY Bercent of impervious area with zero detention depth 25.0 Morton infiltration model being used Mate for regeneration of infiltration = REGEN * DECAY Bercent of impervious area with zero detention depth 25.0 Morton infiltration model being used Mate for regeneration of infiltration = REGEN * DECAY Bercent of infiltration = REGEN * DECAY Bercent of infiltration = REGEN * DECAY Mate for regeneration of infiltration = REGEN * DECAY Bercent of infiltration = REGEN * DECAY Bercent of infiltration infiltration will be read from file * * ##################################		ustom	ary	units	for n	lost I/		TRIC.	Q.	0	1	
Runoff graph plot control 1 Runoff output print control 0 Frint headers every 50 lines - NOHEAD (0=yes, 1=no) 0 Print headers every 50 lines - NOHEAD (0=yes, 1=no) 0 Frint land use load percentages -LANDUPR (0=no, 1=yes) 0 for the step length (seconds) 300. Net time step length (seconds) 300. Studition length (seconds) 20011231.0 Yr Studition length is 20011231.0 Yr Fercent of impervious area with zero detention depth 25.0 Simulation length is 0.01000 Met/Dry time step length (seconds) 20011231.0 Yr Fercent of impervious area with zero detention depth 25.0 Simulation infiltration model being used Rate for regenerion of infiltration = REGEN * DECAY Simulation infiltration of infiltration = REGEN * DECAY Scort is read in for each subcatchment RGEN =	Runoff inp	ut pr	int	contr	ol					0		
<pre>Runoff output print control 0 Print headers every 50 lines - NOHEAD (0=yes, 1=no) 0 Print land use load percentages -lANDUPR (0=no, 1=yes) 0 Cimit number of groundwater convergence messages to 10000 (if s Konth, day, year of start of storm is: 1/1/1957 Wet time step length (seconds) 300. Dry time step length (seconds) 20011231.0 Yr Simulation length is 20011231.0 Yr Percent of impervious area with zero detention depth 25.0 Gorton infiltration model being used ate for regeneration of infiltration = REGN * DECAY Simulation length is 0.01000 Wet time step length (seconds) 20011231.0 Yr Percent of impervious area with zero detention depth 25.0 Gorton infiltration model being used ate for regeneration of infiltration = REGN * DECAY Subtry is read in for each subcatchment DECAY is read in for each sub</pre>		Iq hq	ot	contro	J					н		
<pre>print headers every 50 lines - NOHEAD (0=yes, 1=no) 0 print land use load percentages -IANDUPR (0=no, 1=yes) 0 idmit number of groundwater convergence messages to 10000 (if s donth, day, year of start of storm is: 1/ 1/1957 aet time step length (seconds) 300. Dry time step length (seconds) 450. Dry time step length (seconds) 20011231.0 rr aet/Dry time step length (seconds) 20011231.0 rr aet firm step length is 20011231.0 rr firmulation length is 20011231.0 rr aet for reach subcatchment Bercent of impervious area with zero detention depth 25.0 forton infiltration model being used atte for reach subcatchment Bercent of impervious area with zero detention depth 25.0 forton infiltration model being used atte for reach subcatchment after for reach subcatchment</pre>		put p	rin	t cont	rol					0		
<pre>print land use load percentages -LANDUPR (0=no, 1=yes) 0 Limit number of groundwater convergence messages to 10000 (if s donth, day, year of start of storm is: 1/ 1/1957 det time step length (seconds) 300. Dry time step length (seconds) 450. det/Dry time step length (seconds) 20011231.0 rr det/Dry time step length (seconds) 20011231.0 rr Percent of impervious area with zero detention depth 25.0 Simulation length is 0.01000 ate for regeneration of infiltration = REGEN * DECAY SECAY is read in for each subcatchment ate for regeneration of infiltration = REGEN * DECAY SEGN = 0.01000 ate for regeneration of infiltration = REGEN * DECAY Derton infiltration model being used ate for regeneration of infiltration = REGEN * DECAY SEGN = 0.01000 ate for regeneration of infiltration = REGEN * DECAY Decay is read in for each subcatchment ate for regeneration of infiltration = REGEN * DECAY Decay is read in for each subcatchment ate for regeneration of infiltration = REGEN * DECAY Decay is read in for each subcatchment ate for regeneration of infiltration = REGEN * DECAY Decay is read in for each subcatchment ate for regeneration of infiltration = REGEN * DECAY Decay is read in for each subcatchment ate for regeneration for each subcatchment ate for regeneration of infiltration = REGEN * DECAY Decay is read in for each subcatchment ate for regeneration of infiltration = REGEN * DECAY Decay is read in for each subcatchment ate for regeneration of infiltration = REGEN * DECAY Decay is read in for each subcatchment ate for regeneration of infiltration = REGEN * DECAY ate for regeneration for each subcatchment ate for regeneration for each subcatchme</pre>	Print head	erse	Ver		ines -	NOHEA	Δ=0) G	es, 1=	(ou	0		
<pre>climit number of groundwater convergence messages to 10000 (if s Month, day, year of start of storm is: 1/ 1/1957 Ret time step length (seconds) 300. Dry time step length (seconds) 450. Simulation length is 20011231.0 rr Ret/Dry time step length (seconds) 20011231.0 rr Ret/Dry time step length (seconds) 20011231.0 rr Ret/Dry time step length seconds) 20011231.0 rr Ret/Dry time step length seconds seconds second seco</pre>	Print land	use	loa	d perc	entage	NAL- 25	DUPR (, on=0	1=yes)	0		
<pre>h, day, year of start of storm is: time step length (seconds) bry time step length (seconds) Dry time step length (seconds) lation length is ent of impervious area with zero detention dep on infiltration model being used for regeneration of infiltration = REGEN * DE r is read in for each subcatchment M =</pre>	Limit numb	er of	ъ	oundwa	ter oc	nverge	ance me	ssages	to 10	i) 000	f simu	lated)
<pre>time step length (seconds) time step length (seconds) Dry time step length (seconds) lation length is ent of impervious area with zero detention dep on infiltration model being used for regeneration of infiltration = REGEN * DE Y is read in for each subcatchment N =</pre>	fonth, day	, yea	0 H			torm i	:0		1/	1/195	5	
<pre>length (seconds) itep length (seconds) igth is ervious area with zero detention dep ation model being used in for each subcatchment </pre>	Wet time s	tep 1	eng	th (se	(spuos)		8			300.	1	
<pre>step length (seconds) ngth is pervious area with zero detention dep tration model being used neration of infiltration = REGEN * DE in for each subcatchment </pre>	Dry time s	tep 1	eng	th (se	conds)					.006	5	
<pre>length is impervious area with zero detention dep intration model being used generation of infiltration = REGEN * DE ad in for each subcatchment </pre>	Wet/Dry ti			length	(secc	(spu	÷			450.		
<pre>impervious area with zero detention depth 25.0 Iltration model being used detenation of infiltration = REGEN * DECAY ad in for each suboatchment ad in for each suboatchment</pre>	Simulation	leng	된	is	÷				2001	1231.0	M/II	Ad/
<pre>n infiltration model being used for regeneration of infiltration = REGEN * DECAY is read in for each subcatchment =</pre>	Percent of	impe	IVI	ous ar	ea wit	th zero	deten	tion d	lepth	25.0		
		iltra egene ead i	h f	n mode ion of or eac	l beir infil h subc	ug used tratio atchme		8 :	DECAY	00010.		
######################################	********* * Proces ********	**** 000 *****	***	***** ipitat *****	***** IM UOI	.****** 11 be ******	r***** read f	***** Ton fi *****	***** 1e *****	***		
FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT.	####### # # Evapor #######	##### Data ation #####	### Gr ###	###### oup F1 te (in ######	###### /day) ######	****						
0.00 0.00 0.10 0.10 0.15 0.15 0.15 0.10 0.10			ei l	APR.	MAY	JUN.	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.
			00	0.10	0.10	0.15	0.15	0.15	0.10	0.10	0.00	00.00

********************************** * CHANNEL AND PIPE DATA

:53	Drains				Invert	L Side	R Side	Intial		Mann-	Full
	to	Channel	Width		Slope	Slope	Slope	Depth	A	ings	FLOW
	NGTO:	Type	(ft)	(£t)	(ft/ft)	(ft/ft)	(ft/ft)	(£t)		"Nu	(cfs)
									ł		
	200	Dummy	0.0		0.000	0.0000	0.000	0.0		0.0000	0.0 0.0000 0.00E+00

•

********************************** SUBCATCHMENT DATA

E MAXIMUM VOLUME (INCHES)	4.0000	
I CAGE NO.	1	
DECAY RATE GAGE (1/SEC) NO.	0.00055	
24	0.40	
INFILT RATE (MAXIMU	2.50	
DEPRES. STORAGE (IN) INFILTRATION MERV. PERV. RATE (IN/HR) MAXIMUM MINIMU	0.200	
DEPRES. IMPERV.	0.020	
FACTOR PERV.	0.250	
RESISTANCE FACTOR IMPERV. PERV.	0.015	
METERS* SLOPE (FT/FT)	0.0200	****
CATCHMENT PARA AREA PERCENT (AC) IMPERV.	0.49 89.00	0.49 0.43 0.05 89.05 ********
SUBCATCH AREA (AC)	0.49	0.43 0.43 0.43 0.05 145.05 89.005
OPTIONAL WIDTH (FT)	145.65	**************************************
NOTE. SEE LATER TABLE FOR OFTIONAL SUBCATCHMENT PARAMETERS SUBCATCH- CHANNEL WIDTH AREA PERCENT SLOPI MENT NO. OR INLET (FT) (AC) IMPERV. (FT/F'	200 145.65 0.49	TOTAL NUMBER OF SUBCATCHMENTS 1 TOTAL TRIBUTARY AREA (ACRES) 0.49 IMPERVIOUS AREA (ACRES) 0.49 PERVIOUS AREA (ACRES) 0.43 PERVIOUS AREA (ACRES) 0.43 PERVIOUS AREA (ACRES) 0.45 PERVIOUS AREA (ACRES) 145.65 PERCENT IMPERVIOUSNESS 89.00
SEE LATER TABLE FO SUBCATCH- CHANNEL MENT NO. OR INLET	300	WUMBER OF S FRIBUTARY 2 FOUS AREA (AC JJS AREA (AC JJS AREA (AC UDPH (FEET F INPERVIOU
*NOTE.	-	TOTAL TOTAL IMPERV. PERVIO TOTAL 1 PERCEN

0.00E+00 CONSTANTS -----(IN/HR-FT^2) -----EN 1.000 ****** 82 (IN/HR-FT^B2) 0.000E+00 A2 2.600 MOT E ----BI (IN/HR-FT^B1) 4.500E-05 TH (ET) 2.00 111111 MI TEVATIONS ==== (FT) 2.00 -----BC 0.00 (ET) STAGE -----BOTTOM 00.00 -----(EI) GROUND 10.00 -----(ET) CHANNEL OR TALET 602 -----NUMBER 0 -----CATCH -EUS

* GROUNDWATER INPUT DATA *

÷

* GROUNDWATER INPUT DATA (CONTINUED) * *******************************

PROPERTIES SOIL

****** CAPACITY MOISTURE WILTING FIELD INITIAL ----------TNIOT -----HYDRAULIC POROSITY CONDUCTIVITY SATURATED (in/hr) ------------SUBCAT. NO. 1111

(ft) PARAMETERS PCO HCO MAX. DEEP PERCOLATION (in/hr)

DEPTH FRACTION OF ET ET PARAMETERS TO UPPER ZONE OF ET

PERCOLATION

0 4000 5.000 .3000 .3000 Arrangement of Subcatchments and Channel/Fipes ************************************
--

..... KLNEND..... DAY OF YEAR ON WHICH STREET SWEEPING ENDS......

270

			DNILIWIT			CLEANING	AVAIL.	
			BUILDUP	BUILDUP	BUILDUP	INTERVAL	FACTOR	
AND USE	BUILDUP EQUATION TYPE	FUNCTIONAL DEPENDENCE OF	QUANTITY	POWER	COEFE.	IN DAYS	FRACTION	
LINAME)	(METHOD)	BUILDUP PARAMETER (JACGUT)	(MIIDD)	(MOADD)	(DDFACT)	(CLFREQ)	(AVSWP)	(DSLCL)
			6					
Urban De	EXPONENTIAL (1)	AREA (1)	2.500E+01	0.500	60.000	30.000	0.300	

÷

Total Su	 T/Jm	0	0	EXPONENTIAL (2)	0	POWER EXPONEN. (0)	н	AREA(1)	0	NO SNOW LINKAGE	25,000	0.500	60.000	0.000	0.000	1.100	3.000	100.000	0.000	0.300	0.000	0.000	1
	Constituent units	Type of units	KALC	Type of buildup calc	KWASH	Type of washoff calc	KACGUT	Dependence of buildup	LINKUP	Linkage to snowmelt	Buildup param 1 (QFACT1).	Buildup param 2 (QFACT2).		Buildup param 4 (QFACT4).	Buildup param 5 (QFACT5).	Washoff power (WASHPO)	Washoff coef. (RCOEF)	Init catchb conc (CBFACT)	Precip. conc. (CONCRN)	Street sweep effic (REFF)	Remove fraction (REMOVE).	1st order QDECAY, 1/day	Land use number

0.0000 mg/l Total Susp has a concentration of ...

************************ * REMOVAL FRACTIONS FOR SELECTED CHANNEL/PIPES * × * FROM J7 LINES

CHANNEL/ CONSTITUENT PIPE Total Susp ----------

0.000 201

				Total	Number	Input
			Land	Gutter	of	Loading
		Land	Use	Length	Catch-	load/ac
	No.	Usage	No.	10**2£t	Basins	Total Su
i			111			
H	300	Urban De	н	2.90	1.00	0.00+00
Totals	(Loads	s in lb or	c other)	2.90	1.00	0.0E+00

* DATA GROUP MI *

H	0	0
SNPRNT	INTERV	
TOTAL NUMBER OF PRINTED GUTTERS/INLETS.	NUMBER OF TIME STEPS BETWEEN PRINTINGS.	STARTING AND STOPPING PRINTOUT DATES
OF PRINTED G	IE STEPS BETV	STOPPING PRI
TOTAL NUMBER	NUMBER OF TIM	STARTING AND

0

* ******* DATA GROUP M3

CHANNEL/INLET PRINT DATA GROUPS.....

-200

************************* * Rainfall from Nat. Weather Serv. file

GoVenture Captial, Franklin Street DMH#107

Rainfall Station Worcester Wso Ap State/Province Massachusetts

Rainfall Depth Summary (in)

Year	Jan	Feb	Mar	Apr	May	Jun	Int	Aug	Sep	Oct	Nov	Dec	Total
1001			0	0	•	0 0		o c					
. / CAT		a		2.0		ж.	1.1	V.0	•				
1958.		5.9		1.2		•	6.1	4.4					
1959.		2.8		4.2			8.4	4.5		1.14	1.0	- 9	
1960.		6.3		5.4			7.2	3.9					
1961.		2.5		5.2			4.3	5.3					÷
1962.		5.4		3.9			2.1	4.6					
1963.		3.4	1.1	6.T			2.0	3.0			() x	1.14	4
1964.	5.9	3.6	4.2	4.5	1.5	1.8	3.6	2.9		 • 	3.5	6.2	42.4
1965.	1.04	4.9		9.9			2.0	3.2	•				37.1
1966.		4.4		1.7	1.1		3.5	2.0				4.2	45.6
1967.	2.8	3.7	1.16	5.2			6.5	3.5			5.1		55.7
1968.	3.7	1.4		2.3	1.1		1.9	0.7	•		6.2	6.5	50.7
1969.	1.8	4.2		5.6	1.1		4.3	4.7			7.1		51.1
1970.	2.2	5.5		9.9			0.9	5.8			4.0		45.7
.1791.	3.2	5.9	1.9	2.0	5.6	1.4	4.9	8.0			5.5		48.3
1972.	3.1	8.2		4.8	8.4		6.6	5.1			10.2		7.77
1973.	4.4	4.1		5.7	4.8		4.1	4.4			9.9		61.1
1974.	4.2	3.4		3.6	6.3		3.4	3.7	1.1		5.7		61.0
1975.	6.9	3.3		1.3	2.0		4.3	5.1			6.0		57.9
1976.	6.9	2.9		2.5	3.2		3.6	6.6			1.0		45.0
.7791.	2.4	3.2		4.2	2.7		4.8	2.4			4.2		55.0
.8791	11.9	1.8	- 4	2.5	3.8		3.8	5.4			2.5		46.5
1979.	12.2	3.1		5.5	4.7		6.1	1.7	•		4.1		58.8
1980.	0.8	1.2	.	5.2	2.4		3.9	2.1			4.8		43.4
1981.	1.9	9.4		4.9	4.1		8.2	1.2			9.6	6.1	55.0
1982.	4.4	4.0		4.8	3.4		6.0	2.0			4.6		55.7
1983.	5.3	5.3		8.4	7.3	•	0.9	6.4	•		9.3		69.5
1984.	3.3	6.7		5.1	10.3		6.4	1.2			3.0		55.1
1985.	1.9	3.6	3.5	3.0	5.1	5.2	9.9	4.1	4.7	3.0	7.3	2.7	50.7
1986.	5.5	3.5		1.9	3.4		3.5	3.6			6.7		52.9
1987.	6.2	1.9		6.6	1.5		1.0	5.4			3.1		53.6
1988.	3.7	3.5		3.8	5.1		6.7	4.5			5.9		46.8
1989.	1.6	3.4		4.8	9.9		4.6	5.9			0.0		42.3
.1991.	0.0	0.0		0.0	0.0		3.2	8.1	•		6.0		31.5
1992.	3.1	3.3		3.2	2.7		5.7	7.2			6.3	5.1	50.9
1993.	3.2	2.9			1.9		3.4	2.1			5.2		51.8
1994.	6.0	2.9			6.8		3.2	8.0	•		6.0		55.7
1995.	5.9	2.3			0.0		4.7	2.1			5.2		38.8
1996.	1.1	3.3		7.3	4.1		6.3	4.5			3.0	5.0	55.8
1997.	3.3	1.7			2.6		3.2	2.8			5.5	2.3	34.4
1998.	9.9	2.8		2.8	5.7		1.8	2.3	•		2.4	1.4	45.4
1999.	1.0	2.4	- 14	1.1	3.3	1.8	2.4	2.4			3.1	÷ 4	45.7

49.3 4.2 4.0 2.4 4.5 2.5 3.4 3.7 1.1 3.5 3.5 3.3 4.2 7.6 4.2 5.4 2.2 3.2 7.4 1.0 3.9 5.0 2000.

Total Rainfall Depth for Simulation Period 2227.9 (in)

Rainfall Intensity Analysis (in/hr)

(%)		ŝ	9.5		4.5	3.6	4.1				0.8	1.1	0.8	1.18	0.3		1.18	0.6	0.3	0.4	1.3	
(ii)	679.	571.	211.	224.	100.	80.	92.	64.	26.	29.	18.	18.	17.	13.	7.	15.	. 1	12.	. 1	80	30.	
(%)	69.5	19.4	4.1	3.2	1.1	0.8	0.7	0.4		0.2			1.0					1.0			1.0	
(#)	55294	54	3295	2538	868	597	577	337	120		70						16		14	16	48	
(in/hr)	0.10	2		0.40		0.60		œ.	0.90	0.	7	2		1.40	1.50	1.60	1.70	1.80	٩,		> 2.00	

Total # of Intensities 79578

Daily Rainfall Depth Analysis (in)

(%)		- 6	1.4						1.1	1.1	1.1		3.9			1.14	
(ii)	85.	143.	138.	166.	134.	N	134.	m	8	0	m	O	86.	6	81.	68.	
(%)	31.7	17.7	10.2	8.7	5.4	•			•	1.9			1.2	1.1		- 16	
(#)	S)	5	5	489	0	279	0		N	N	68			49	56	44	
(ii)	۲.	2	m,	0.40	5	9	F .	α,	9	0.		1.20	1.30	1.40	1.50	1.60	

2.9	2.2	1.6	1.4	12.1	
64.	49.	37.	31.	270.	
0.7	0.5	0.4	0.3	1.8	
39	28	20	16	104	
1.70	1.80	1.90	2.00	> 2.00	

Total # Days with Rain 5639

			seconds.	hours.	hours.	days.
1/ 1/2002	3055971	2002001	т.	0.00	394464.0000	16436.0000
II) =	steps =					
Tea	ue s	n	8	1	11	
/Day/	of tir	Date	day	day	time	time
(Mo	BL	an L	θĘ	Ŧo	pui	ing
Date	danua	Juli	time	time	Tunn	runn
Final Date (Mo/Day/Year) =	Total	Final	Final	Final	Final	Final

# Calls	
# Steps	
Subcatch	
# Calls	
# Steps	
Subcatch	
# Calls	 3364141
# Steps	 13553147
Subcatch	 300

calls

Steps

Total Precipitation (Rain plus Snow) Total Infiltration Total Evaporation Surface Runoff from Watersheds Total Water remaining in Surface Storage Infiltration over the Pervious Area...

Infiltration + Evaporation +
Surface Runoff + Snow removal +
Water remaining in Surface Storage +

Inches over 3932529. Total Basin 3932529. 2225. 426729. 241. 166388. 94. 3369661. 1906. 426729. 2194.

Total Precipitation + Initial Storage.		3962801. 3932529.	2242.
The error in continuity is calculated as ************************************	00 * *		
- Infiltration -	*		
*Evaporation - Snow removal -	*		
*Surface Runoff from Watersheds -	*		
*Water in Surface Storage -	*		
*Water remaining in Snow Cover	* *		
* Precipitation + Initial Snow Cover * **********************************	* *		
Brror	0.770 Percent	ent	

<pre>itial Channel/Pipe Storage nal Channel/Pipe Storage rface Runoff from Watersheds seflow oundwater Subsurface Inflow appedion Loss from Channels annel/Pipe/Inlet Outflow itial Storage + Outflow</pre>	cubic feet 0. 3369661. 0. 3369661. 3369661. 3369661.	Inches over Total Basin 0. 1906. 1906. 1906.
<pre>Initial Channel/Pipe Storage Final Channel/Pipe Storage Surface Runoff from Watersheds Baseflow Croundwater Subsurface Inflow Evaporation Loss from Channels Channel/Pipe/Inlet Outflow Initial Storage + Inflow Final Storage + Outflow</pre>	cubic reet 3369661. 0. 3369661. 3369661. 3369661.	1906. 1906. 1906. 1906. 1906.
itial Channel/Pipe Storage nal Channel/Pipe Storage rface Runoff from Watersheds seflow soundwater Subsurface Inflow oundwater Subsurface Inflow annel/Pipe/Inlet Outflow itial Storage + Outflow	3369661. 3369661. 0. 3369661. 3369661. 3369661.	0. 1906. 1906. 1906.
Final Channel/Pipe Storage Surface Runoff from Watersheds Baseflow	3369661. 3369661. 3369661. 3369661. 3369661.	1906. 0. 1906. 1906.
<pre>rface Runoff from Watersheds seflow oundwater Subsurface Inflow aporation Loss from Channels annel/Pipe/Inlet Outflow itial Storage + Inflow</pre>	3369661. 0. 3369661. 3369661.	1906. 0. 1906. 1906.
<pre>seflow</pre>	0. 3369661. 3369661. 3369661.	0. 0. 1906. 1906.
oundwater Subsurface Inflow	0. 3369661. 3369661. 3369661.	0. 1906. 1906. 1906.
<pre>aporation Loss from Channels annel/Pipe/Inlet Outflow itial Storage + Inflow nal Storage + Outflow</pre>	0. 3369661. 3369661. 3369661.	0. 1906. 1906.
annel/Pipe/Inlet Outflow	3369661. 3369661. 3369661.	1906. 1906. 1906.
<pre>itial Storage + Inflow nal Storage + Outflow</pre>	3369661. 3369661.	1906.
nal Storage + Outflow	3369661 +	1906,

Rinal Storade + Outflow + Evanoration - *		
Watershed Runoff - Groundwater Inflow - *		
Initial Channel/Pipe Storage *		
Final Storage + Outflow + Evaporation *		

BrrorBrror	0.000 Percent	
***************************************	***	
* Continuity Check for Subsurface Water * ***********************************	* ***	
	cubic feet	Inches over Subsurface Basin
Total Infiltration	0.	0.
Total Upper Zone ET	.0	0,
Total Lower Zone ET	0.	0.
Total Groundwater flow	0.	0.
Total Deep percolation	0.	0.
Initial Subsurface Storage	63641.	36.

********************** * Infiltration + Initial Storage - Final * Upper Zone ET over Pervious Area Lower Zone ET over Pervious Area Final Subsurface Storage

36.

... 63641.

> ************************ Storage - Upper and Lower Zone ET -Groundwater Flow - Deep Percolation Infiltration + Initial Storage

0.000 Percent

SUMMARY STATISTICS FOR SUBCATCHMENTS

		PERVIOUS AREA	EA	IMPERVIOUS AREA	AREA	TOTAL SUBCATCHMENT AREA	CATCHMENT	AREA
	TOTAL	TOTAL	PEAK		PEAK		PEAK	PEAK
MIS	IMULATED	RUNOFF TOTAL R	UNOFF	RUNOFF	RUNOFF	RUNOFF	RUNOFF	TINU
RAII	NFALL	DEPTH LOSSES	RATE	DEPTH	RATE	DEPTH	RATE	RUNOFF
Ð	4)	(IN) (IN) (CES)	(CES)	(NI)	(CES)	(NI)	(CES)	(IN/HR)
89.0 2224.52	N	28.3182197.288 0.133 2136.686	0.13	3 2136.686		1904 . / 6b	1. /Ub	3.004

*** NOTE *** IMPERVIOUS AREA STATISTICS AGGREGATE IMPERVIOUS AREAS WITH AND WITHOUT DEPRESSION STORAGE

SUMMARY STATISTICS FOR CHANNEL/PIPES

TO MAX. DEPTH	FULL TO FULL	
	VOLUME (AC-FT)	
LENGTH	SURCHARGE (HOUR)	
TIME	DAY HR.	1/19/1972 17.50
H	DAY	1/0/
MAXIMUN COMPUTED	VELOCITY (FPS)	46
	DEPTH VELOCITY OC (FT) (FPS) D2	
MAXIMUM COMPUTED	OUTELOW (CES)	
MAXIMUM COMPUTED	(SAD)	0.00
FULL	DEPTH (FT)	
FULL	VELOCITY (FPS)	
LULL	ELOW (CES)	
	CHANNEL	201

THE MAXIMUM FLOWS AND DEPTHS ARE CALCULATED AT THE END OF THE TIME INTERVAL *** NOTE ***

N

TOTAL NUMBER OF CHANNELS/PIPES =

Runoff Quality Summary Page loads d b

mass rates 1b/sec

kg/sec

If NDIM = 1 Loads are in units of quantity

METRIC = 1 METRIC = 2

If NDIM = 0 Units for:

#

and mass rates are quantity/sec
If NDIM = 2 loads are in units of concentration
times volume and mass rates have units#

Total Su NDIM = 0 METRIC = 1 Total Su Second Second

1. INITIAL SURFACE LOAD	Inputs	lts	
 INITIAL SURFACE LOAD TOTAL SURFACE BUILDUP INITIAL CATCHBASIN LOAD TOTAL CATCHBASIN LOAD TOTAL CATCHBASIN AND SURFACE BUILDUP (2+4) 	1	1	
. TOTAL SURFACE BUILDUP INITIAL CATCHBASIN LOAD TOTAL CATCHBASIN LOAD TOTAL CATCHBASIN AND SURFACE BUILDUP (2+4)	Ĥ	INITIAL SURFACE LOAD	.0
. INITIAL CATCHBASIN LOAD . TOTAL CATCHBASIN LOAD . TOTAL CATCHBASIN AND SURFACE BUILDUP (2+4)	N	TOTAL SURFACE BUILDUP	19228.
T LOAD	'n	INITIAL CATCHBASIN LOAD	.0
(2+4)	4.	~	.0
(2+4)	'n	TOTAL CATCHBASIN AND	
			19228.
	1		

LOAD REMAINING ON SURFACE... REMAINING IN CATCHBASINS.... REMAINING IN CHANNEL/PIPES...

- 1
- 43
. 19
- 4

	a start from the start of the s	
Remo	Removals	
0	STREET SWEEPING REMOVAL	766.
10.	NET SURFACE BUILDUP (2-9)	18462.
11.	SURFACE WASHOFF	18450.
12.	CATCHBASIN WASHOFF	.0
13.	TOTAL WASHOFF (11+12)	18450.
14.	LOAD FROM OTHER CONSTITUENTS	.0
15.	PRECIPITATION LOAD	.0
15a.	15a.SUM SURFACE LOAD (13+14+15).	18450.
16.	TOTAL GROUNDWATER LOAD	.0
16a.	16a. TOTAL I/I LOAD	.0
17.	17. NET SUBCATCHMENT LOAD	
	(15a-15b-15c-15d+16+16a)	18450.
>>Re	>>Removal in channel/pipes (17a, 17b):	17b) :
17a.	17a. REMOVE BY BMP FRACTION	0.
17b.	17b. REMOVE BY 1st ORDER DECAY	.0
18.	TOTAL LOAD TO INLETS	18449.
19.	19. FLOW WT'D AVE. CONCENTRATION	mg/1
		88.
Perc	Percentages	

į	11111	-										
i.	STREET	ET	T SWEEPING	DNIA	15	(6/2)	2).		3		Ċ	4
4	SURE	ACE	JREACE WASHOFF	HOFE	(m	IT)	1/2)	:	3		6	.0
22.	NET	SUR	NET SURFACE WASHOFF (11/10)	WAS	SHC	FF	(11	/IC	:	ų,	10	.0
m	WASHOFF/SUBCAT LOAD (11/17)	OFF	/ SUB(CAT	H	DEC	(11)	17	5		10	.0

	100.		0.		.0		0.		.0		.0		0		0.		.0		0		.0		.0		.0		.0
SURFACE WASHOFF/INLET LOAD	(11/18)	CATCHBASIN WASHOFF/	SUBCATCHMENT LOAD (12/17)	CATCHBASIN WASHOFF/	INLET LOAD (12/18)	OTHER CONSTITUENT LOAD/	SUBCATCHMENT LOAD (14/17)	INSOLUBLE FRACTION/	INLET LOAD (14/18)	PRECIPITATION/	SUBCATCHMENT LOAD (15/17)		INLET LOAD (15/18)		SUBCATCHMENT LOAD (16/17)	GROUNDWATER LOAD/	INLET LOAD (16/18)	.INFILTRATION/INFLOW LOAD/	SUBCATCHMENT LOAD (16a/17)	. INFILTRATION/INFLOW LOAD/	INLET LOAD (16a/18)	32c.CH/PIPE BMP FRACTION REMOVAL/	SUBCATCHMENT LOAD (17a/17)	32d.CH/FIFE 1st ORDER DECAY REMOVAL/	SUBCATCHMENT LOAD (17b/17)	INLET LOAD SUMMATI	(18+8+6a+17a+17b-17)/17
24.		25.		26.		27.		28.		29.		30.		31.		32.		32a.		32b.		320		32d		33.	

CAUTION. Due to method of quality routing (Users Manual, Appendix IX) quality routing through channel/pipes is sensitive to the time step. Large "Inlet Load Summation Errors" may result. These can be reduced by adjusting the time step(s).

These can be reduced by adjusting the time step(s). Note: surface accumulation during dry time steps at end of simulation is not included in totals. Buildup is only performed at beginning of wet steps or for street cleaning.

********	*******	***************	***************************************	*****
Diameter (um)	dQ	Specific Gravity	Settling Velocity (ft/s)	Critical Peclet Number
1.	5.0	2,65	0.000002	0.022000
4.	5.0	2.65	0.000035	0.049420
7.	10.0	2.65	0.000108	0.068516
18.	15.0	2.65	0.000710	0.118919
45.	10.01	2,65	0,004352	0.203034
70.	5.0	2.65	0.010215	0.262779
90.	10.01	2.65	0.016354	0.304305
125.	15.0	2.65	0.029465	0.368637
200.	15.0	2.65	0.063279	0.485025
400.	5.0	2.65	0.156843	0.726951

1.128801 0.321303 2.65 5.0 850.

ŧ

Summary of TSS Removal

*

TSS Removal based on NJCAT Lab Performance Curve

#	Low Q Treated (cfs)	High Q Treated (cfs)	Runoff Treated (%)
HS 3	0.536	4.911	98.6
HS 4	0.913	4.911	99.8
HS 5	1.142	4.911	6.99
HS 6	1.391	4.911	100.0
L SH	1.937	4.911	100.0
HS 8	2.582	4.911	100.0
HS 10	3.711	4.911	100.0
HS 12	4.911	4.911	100.0

73.5 80.3 90.1 92.6 94.6 97.3 98.6

TSS Removed (%)

************************************ * Summary of Annual Flow Treatmnet & TSS Removal * *

4

************************************ *

(Ib)(Ib)(Ib)(Ib)(B)(B)(B)(B)(B)(B) 246 . 94 . 0 . 99.3 72.4 72.4 335 . 1286 . 0 . 99.5 72.4 72.4 334 . 1114 . 0 . 98.2 72.4 72.4 72.4 72.4 334 . 1114 . 0 . 98.2 72.4 72.4 310 . 107 . 0 . 98.2 72.4 74.5 310 . 107 . 0 . 99.5 74.5 74.5 300 . 99.6 0 . 99.5 74.5 74.5 301 . 102 . 0 . 99.5 74.7 74.5 302 . 126 . 0 . 99.5 74.7 74.6 304 . 102 . 0 . 99.5 74.7 74.6 313 . 126 . 0 . 99.5 77.7 74.6 313 . 126 . 0 . 99.6 77.7 74.6 313 . 126 . 0 . 99.6 77.7 74.6 313 . 126 . 0 . 99.6 77.7 74.6 313 . 126 . 0 . 99.6 77.7 74.6 314 . 100.0 99.6 77.6 77.6 314 . 102 . 0 . 99.6 77.7 314 . 102 . 0 . 99.6 77.7 314 . 102 . 0 . 99.6 77.7 314 . 102 . 0 . 99.6 77.7 315
94. 0. 94. 136. 0. 99.3 114. 0. 96.2 114. 0. 98.2 111. 0. 98.2 111. 0. 98.2 111. 0. 98.2 101. 0. 98.2 101. 0. 99.5 101. 0. 99.5 102. 0. 99.5 126. 0. 99.5 101. 0. 99.5 126. 0. 99.3 126. 0. 99.3 126. 0. 98.5 126. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.1 129.5 98.1 98.5
136. 0. 99.5 114. 0. 98.2 111. 0. 98.2 101. 0. 98.2 101. 0. 98.2 101. 0. 98.2 101. 0. 99.5 101. 0. 109.5 102. 0. 109.5 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.1 128. 0. 98.1 109. 98.1 98.1
128. 0. 96.2 111. 0. 98.2 107. 0. 98.0 107. 0. 98.0 107. 0. 98.0 107. 0. 98.0 101. 0. 98.5 101. 0. 100.0 105. 0. 99.5 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 98.5 126. 0. 98.5 126. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.1
114. 0. 98.2 111. 0. 98.0 107. 0. 98.0 101. 0. 101. 99.5 0. 100.0 101. 0. 100.0 101. 0. 100.0 102. 0. 99.5 102. 0. 99.3 102. 0. 99.3 102. 0. 99.3 101. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 109. 98.1 98.1 109. 98.1 98.1 109. 98.1 98.1
111. 0. 98.0 107. 0. 99.5 99. 0. 100.0 99. 0. 100.0 105. 0. 199.5 105. 0. 99.5 105. 0. 99.5 106. 0. 99.5 126. 0. 99.3 101. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 126. 0. 99.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.1 109. 98.1 98.1
107. 0. 99.5 99. 99.5 99.5 95. 0. 99.5 105. 0. 99.5 126. 0. 99.5 126. 0. 99.5 126. 0. 99.5 126. 0. 99.5 126. 0. 98.5 126. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 128. 0. 98.5 109. 98.5 98.5 109. 98.5 98.5
101. 0. 100.0 99. 99.5 95. 0. 95. 0. 105. 0. 105. 0. 105. 0. 105. 0. 126. 0. 126. 0. 126. 0. 126. 0. 121. 0. 122. 0. 126. 0. 126. 0. 126. 0. 1226. 0. 1227. 0. 138. 0. 138. 0. 104. 0. 105. 95.3
99. 99. 95. 0. 105. 0. 105. 0. 126. 0. 126. 0. 126. 0. 126. 0. 126. 0. 126. 0. 126. 0. 126. 0. 126. 0. 126. 0. 126. 0. 126. 0. 128. 0. 138. 0. 104. 0. 104. 0. 104. 0.
95. 0. 106.0 126. 0. 99.3 126. 0. 99.3 126. 0. 99.3 101. 0. 98.6 126. 0. 99.3 126. 0. 99.3 126. 0. 98.6 126. 0. 98.5 126. 0. 98.5 128. 0. 98.5 138. 0. 98.5 104. 0. 98.5 104. 0. 98.1 104. 0. 98.1
105. 0. 99.3 126. 0. 99.3 102. 0. 98.6 106. 0. 98.6 101. 0. 98.5 126. 0. 98.5 121. 0. 98.5 126. 0. 98.5 126. 0. 98.5 1282. 0. 98.5 1382. 0. 98.9 104. 0. 98.9 104. 0. 98.1
126. 0. 99.3 102. 0. 98.6 106. 0. 98.5 101. 0. 98.5 126. 0. 98.5 126. 0. 98.5 126. 0. 98.5 126. 0. 98.5 128. 0. 98.5 145. 0. 98.5 104. 0. 98.9 104. 0. 98.1 109. 0. 98.1
102. 0. 98.6 106. 0. 99.1 101. 0. 98.5 126. 0. 98.5 126. 0. 98.5 126. 0. 98.5 128. 0. 95.3 145. 0. 95.3 145. 0. 95.3 124. 0. 95.2 104. 0. 95.2 109. 0. 95.2
106. 0. 99.1 101. 0. 98.5 126. 0. 99.0 126. 0. 95.3 182. 0. 95.3 182. 0. 95.3 138. 0. 95.3 145. 0. 95.3 138. 0. 95.3 104. 0. 95.2 109. 0. 95.2
101. 0. 98.5 126. 0. 99.0 182. 0. 95.3 145. 0. 98.9 138. 0. 100.0 104. 0. 100.0 109. 0. 98.1
126. 0. 99.0 182. 0. 95.3 145. 0. 98.9 138. 0. 100.0 104. 0. 100.0 109. 0. 98.1
182. 0. 95.3 145. 0. 98.9 138. 0. 100.0 104. 0. 100.0 109. 0. 98.1
145. 0. 98.9 138. 0. 95.2 104. 0. 100.0 109. 0. 98.1
138. 0. 95.2 104. 0. 100.0 109. 0. 98.1
104. 0. 100.0 109. 0. 98.1
109. 0. 98.1

910/16, 77112,																									4	4																								
910761 697732 668 349 118 0 777112 766713 311 221 118 0 777125 766713 311 221 1124 0 771575 766713 311 220 1124 0 747126 766713 311 220 1124 0 714657 707301 441 220 1124 0 951734 607931 433 225 1124 0 951734 67932 404 207 1124 0 951734 67932 404 207 1124 0 951734 67932 404 207 1124 0 951734 67202 203 123 1124 0 951734 67303 233 113 102 0 951746 393 124 102 112 0 951746 393 124 102 <t< td=""><td>74.7</td><td>76.5</td><td>4 12</td><td>6 12</td><td>72.1</td><td>72.6</td><td>72.7</td><td>74.2</td><td>75.1</td><td>74.8</td><td>76.1</td><td>73.8</td><td>74.1</td><td>75.4</td><td></td><td></td><td></td><td></td><td>72.5</td><td>75.5</td><td>71.0</td><td></td><td>÷.</td><td>4</td><td>TOC Demonstr</td><td>T22 VEMOVA</td><td>(%)</td><td></td><td></td><td>79.5</td><td>81.1</td><td>81.8</td><td>81.2</td><td>81.0</td><td>82.0</td><td>81.6</td><td>81.0</td><td>19.8</td><td>81.4</td><td>80.9</td><td>81.6</td><td>78.0</td><td>75.1</td><td>27.3</td><td></td><td></td><td>81.7</td><td>81.5</td><td>83.2</td><td>o,</td></t<>	74.7	76.5	4 12	6 12	72.1	72.6	72.7	74.2	75.1	74.8	76.1	73.8	74.1	75.4					72.5	75.5	71.0		÷.	4	TOC Demonstr	T22 VEMOVA	(%)			79.5	81.1	81.8	81.2	81.0	82.0	81.6	81.0	19.8	81.4	80.9	81.6	78.0	75.1	27.3			81.7	81.5	83.2	o,
910768 991722 468 349 118 767112 765713 381 349 118 767112 765713 381 341 315 126 714512 765713 381 201 126 126 714512 765713 381 201 126 126 714512 705200 401 200 124 126 912533 920212 404 370 124 126 91730 87202 406 370 117 107 91730 87202 406 370 117 107 91730 87202 406 370 117 107 91430 414 370 117 107 107 91430 518 370 117 107 107 91430 518 346 346 107 106 91430 518 346 106 101 106		0	0 20	8 80	6.86	96.5	5.96	99.6	96.6	99.9	100.0	98.8	99.2	96.5	99.7	97.9	99.66	98.9	98.8	99.9	99.4		5	-	Action in th	LTOW ILEGICAL	(%)	100.0	100.0	98.4	7.66	8.66	100.0	100.0	100.0	100.0	100.0	100.0	99.4	100.0	100.0	99.9	7.76	100.0	99.4	100.0	100.0	100.0	100.0	98.9
910766 897752 466 349 767112 765715 361 341 345 767112 765715 361 341 315 73355 924210 441 320 926513 921021 444 320 926513 921021 444 320 926513 921021 441 320 976744 807931 443 323 976705 91430 87202 444 320 976744 873028 404 307 856745 91430 87525 244 873056 512655 349 307 87316 87329 9446 332 860059 918204 442 307 84005 918204 446 332 84005 918204 442 332 84005 918204 442 332 84005 918205 918 332 84005 918205 918 332 84005 918 912 332 84005 918 912 349 85005 91804 342 342 85015 92075 <	0				. 0	0	.0	.0	0.	0.	0.	.0	0.	0.	.0	.0	.0	.0	0.	.0	0.	.0	.0	.0		dia set	(qT)	.0	.0	.0		.0	.0			.0	.0		.0	.0		.0	.0	.0			.0	.0	.0	0
910768 897752 468 767112 765715 944110 744612 944110 944110 926393 897056 9441 926133 917514 897056 444 926133 917514 897056 444 926133 916731 872021 444 926133 917514 872023 404 893028 897031 84359 404 872202 685459 685459 404 872202 685459 349 333 872202 685459 349 332 872203 843593 51885 404 862039 518264 441 332 862039 643583 642865 338 757312 757312 75732 340 757312 75732 52851 451 757312 75746 332 320 920745 920732 6238 451 757312 75746 75746 323 92405 920732	118	00		113	124	121	139.	113.	108.	102.	97.	106.	90.	51.	108.	117.	124.	87.	N	89.	112.	104.	.011	91.	HIN DOM	Tas out	(qT)	73.	101.	95.	85.	81.	78.	78.	72.	.11.	.61	95.	75.	78.	73.	96.	140.	109.	104.	76.	78.	87.	64.	92.
910768. 897752. 767112. 963619. 926113. 714612. 912639. 921021. 912613. 921021. 1171873. 921021. 913674. 897056. 91430. 921021. 1171873. 91430. 933028. 97320. 873316. 872202. 873316. 872202. 873316. 872202. 873306. 691430. 691430. 693764. 87202.8 83764. 87202.8 833764. 87202.8 833764. 87203.9 84445. 820075. 75439. 924852. 642987. 924853. 924851. 924853. 92495. 924854. 920732. 924853. 92495. 924854. 92406. 924854. 92406. 924854. 92406. 924854. 92406. 924854. 924445. 924854. 92444. 926544. <td>349</td> <td>100</td> <td>. 167</td> <td>288</td> <td>320.</td> <td>320</td> <td>370.</td> <td>323.</td> <td>325.</td> <td>304.</td> <td>307.</td> <td>299.</td> <td>258.</td> <td>157.</td> <td>339.</td> <td>335.</td> <td>337.</td> <td>245.</td> <td>338.</td> <td>273.</td> <td>275.</td> <td>290.</td> <td>319.</td> <td>268.</td> <td></td> <td>Too Kell</td> <td>(वा)</td> <td>267.</td> <td>364.</td> <td>369.</td> <td>363.</td> <td>363.</td> <td>338.</td> <td>332.</td> <td>327.</td> <td>317.</td> <td>335.</td> <td>377.</td> <td>328.</td> <td>331.</td> <td>324.</td> <td>342.</td> <td>423.</td> <td>369.</td> <td>349.</td> <td>349.</td> <td>347.</td> <td>381.</td> <td>317.</td> <td>349.</td>	349	100	. 167	288	320.	320	370.	323.	325.	304.	307.	299.	258.	157.	339.	335.	337.	245.	338.	273.	275.	290.	319.	268.		Too Kell	(वा)	267.	364.	369.	363.	363.	338.	332.	327.	317.	335.	377.	328.	331.	324.	342.	423.	369.	349.	349.	347.	381.	317.	349.
910768 910768 910768 910768 910768 910768 910768 910768 91176 911777 911777 911777 911777 917777 917777 9177777 9177777 91777777 91777777 91777777 91777777	468	381	. 100	101	444	441	509.	436.	433.	406.	404.	406.	349.	209.	448.	452.	461.	332.	466.	361.	388.	393.	429.	S		UT SST	(qT)	340.	466.	464.	448.	444.	417.	410.	399.	388.	414.	472.	403.	410.	397.	438.	563.	478.	453.	425.	425.	468.	381.	441.
Eq. (1)	897752	766515	011100		897056	100105	1163956.	914430.	807931.	872202.	893028.	763440.	685459.	512855.	837684.		920732.	642987.	918204.	568539.	752746.	751832.	802406.	828	3	3	(ft3)	602818.	05594	1031317.	955263.	851407.	907224.	730228.	700829.	610683.	760623.	926544.	844745 .	850996.	763629.	811779.	1284888.	1026530.	1023968.	962155.	742112.	910416.	767112.	972423.
1977. 1977. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1989. 1988. 1988. 1988. 1988. 1988. 1988. 1988. 1971. 1972. 1974. 1974. 1975. 1975. 1977.	910768	CLIPT	.717/0/	013417	012030	026113	1171873.	917877.	836734.	873316.	893028.	772606.	691230.	531464.	840193.	862039.	924852.	650405.	929759.	569075.	757312.	758808.	804445.	601184.	1	TOA MOTA	(ft3)	602818.	1005594.	1048460.	958583.	853084.	907224.	730228.	700829.	610683.	760623.	926544.	849492.	851192.	763629.	812314.	1314650.	1026530.	1029932.	962155.	742112.	910768.	767112.	983619.
	1 977	1070	1010.	1080	1981	1982	1983.	1984.	1985.	1986.	1987.	1988.	1989.	.1991.	1992.	1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	2001.		rear		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1968.	1969.	1970.	1971.	1972.	1973.	1974.	1975.	1976.	1977.	67	1979,

78.5	78.4	7.97	79.5	81.4	81.9	81.4	82.8	80.5	81.2	80.9	82.4	80.8	80.2		78.9	82.2	77.8	80.6	80.5	81.3	and the second second	TSS Removal	101	84.1	84.0	85.5	87.1	87.7	87.0	86.8	88.0	N. 1.0	00.1	0.00	0.78	87.3	83.7	81.8	83.6	83.2	1.88	-	87.5	oo'	4.	84.0	84.2	85.2
100.0	100.0	100.0	100.0	100.0	99.2	100.0	100.0	66.7	100.0	100.0	100.0	99.7	100.0	6.99	99.9	100.0	100.0	100.0		5,99	and a second	Flow Treated	10.1	100.0	100.0	99.2	100.0	100.0	100.0	100.0	100.0	100.0	0.001	0.001		100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0	99.6	-	100.0	100.0
0.	0.	.0	0.	.0	.0	0.		.0			.0	.0	.0	.0	.0		.0	.0	.0	0	Contract in the	TSS BYP	1	0.	.0	.0	0.	.0	.0	.0	.0	ó			ic		0			.0	0.	.0	.0	.0				.0
86.	.96	.06	105.	81.	78.	76.	69.	.62	.99	40.	79.	87.	91.	67.	98.	64.	86.	76.	84.	67.	a section	TSS Out	111	54.	74.	67.	58.	55.	54.	54.	48.					. 05	72.	103.	78.	76.	51.	55.	59.	43.	68.	64.	.01	65.
314.	349.	351.	404.	355.	354.	331.	335.	326.	283.	169.	369.	365.	370.	266.	368.	297.	301.	317.	345.	291.		TSS Rem	1011)	286.	391.	396.	390.	390.	362.	355.	351.	339.	309.	.004	- 120	347	367.	461.	399.	377.	374.	370.	409.	338.	373.	337.	374.	376.
401.	444.	441.	509.	436.	433.	406.	404.	406.	349.	209.	448.	452.	461.	332.	466.	361.	388.	393.	N	359.		TSS ID	(117)	340.	466.	464.	448.	444.	417.	410.	399.	388.	414	. 7/8		307	438	563.	478.	453.	425.	425.	468.	381.	441.	401.	444.	.125
714612.	912939.	926113.	1171450.	917877.	829867.	873316.	893028.	770433.	691230.	531464.	840193.	859814.	924852.	649794.	928884.	569075.	757312.	758808.	804445.	597234.		Flow Treated	(011)	602818.	1005594.	1040035.	958583.	853084.	907224.	730228.	700829.	610683.	760623.	. 55075	851100	763620	812314	1298510.	1026530.	1029932.	962155.	742112.	910768.	767112.	979220.	714612.	912939.	926113.
714612.	912939.	926113.	1171873.	917877.	836734.	873316.	893028.	772606.	691230.	531464.	840193.	862039.	924852.	650405.	929759.	569075.	757312.	758808.	804445.	601184.		Flow Vol	(017)	602818.	1005594.	1048460.	958583.	853084.	907224.	730228.	700829.	610683.	760623.	- 440006	043432.	DCJEJL	812314	1314650.	1026530.	1029932.	962155.	742112.	910768.	767112.	983619.	714612.	912939.	926113.
1980.	1981.	1982.	1983.	1984.	1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	.1002	HS 5	Year		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	. 1961	1060	1070	1971	1972.	1973.	1974.	1975.	1976.	1977.	1978.	1979.	1980.	1981.	1982.

85.3 87.2 87.5 87.7	88888888888888888888888888888888888888	TSS Removal (%)	888899999999999998888999998888999 87944044999999998888999999 89849949999999999
	1001 1001 1000 1000 1000 1000 1000 100	Flow Treated (%)	0.001 9.99 9.99 0.00100000000
		TSS BYP (1b)	
75. 56. 54.	ゆるのでです。 ゆるのののです。 ゆるのののです。 ひろののです。 ひろののです。 ひろうです。 ひょうです。 ひょうです。 ひょうです。 ひょうです。 ひょうです。 ひょうです。 ひょうできる。 ひょうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうできる。 ひゃうでき。 ひゃうでき。 ひゃうでき。 ひゃうでき。 ひゃう	TSS Out (1b)	ы маа маа маа маа маа маа маа маа маа ма
434. 380. 379.	356. 3496. 303. 394. 394. 394. 395. 3195. 3195. 3126. 3126. 3126. 3126.	TSS Rem (1b)	800 400 400 400 3356 3356 3356 3356 3356 3356 3356 33
509. 433.	4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TSS In (dl)	340. 4666. 4666. 3910. 3910. 3910. 3910. 3910. 4441. 3930. 4441. 396. 396. 396. 396. 396. 396. 396. 396
1171873. 917877. 834573.	600904 .	Flow Treated (ft3)	602818. 10055594. 1047201. 958583. 9907224. 730829. 610683. 760683. 760683. 760683. 710829. 851192. 851192. 851192. 1026932. 1026932. 1026932. 1026932. 912633. 7145112. 912939. 912939. 912939. 912939. 912939. 912934. 9171873. 917877. 917877.
1171873. 917877. 836734.	69123028 772606 69123028 531464 531464 862039 924852 924852 924852 924852 924852 924852 924852 924852 924852 929759 757312 757312 757312 757312 804445	Flow Vol (ft3)	602818. 1005594. 958583. 958583. 958583. 958583. 730228. 700829. 610683. 760623. 760623. 851192. 851192. 851192. 851192. 851192. 851192. 763619. 742112. 962155. 742112. 962155. 742112. 9129332. 9129332. 9129332. 9129332. 9129332. 9129333. 917877. 836734.
1983. 1984. 1985.	1988 1988 1988 1988 1998 1998 1998 1998	111	1957. 1958. 1958. 1959. 1959. 1966. 1965. 1966. 1974. 1974. 1974. 1974. 1974. 1978. 1978. 1978. 1984. 1984. 1984.

9.09	8 10	0.10	0.00	0.00	0.05	1.10	1.00	* . CO		1.00	0.00	9 00	0.00	0.16			TSS Removal	(%)	91.2	90.6	92.1	93.3	93.8	93.2	93.7	93.3	93.6	93.0	4.26	93.5	1 20	0 16	89.5	90.9	90.4	94.1	93.2	93.5	94.4	91.4	1.16	1.19	91.6	92.2	m	93.5	93.2	1.46	92.4	
100.0	0.001		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	100.0			Flow Treated	(%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	1.1	100.0	100.0	0.01	100.0	0.001		100.0	100.0	100.0	100.0	ò	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		o'	100.0	
c																	TSS BYP	(qT)	0.	0.	0,	0.	0.	.0					-0						0.	0.		0.	.0			0.	.0			0	.0	.0	.0	
75				. 75		21.			. 45		40.		-16	32.			TSS Out	(qI)	30.	44.	37.	30.	27.	28.	26.	27.	25.	29.	36.	26.	.12	. 00	59.	44.	43.	25.	29.	31.	21.	38.	36.	40.	37.	40.	28.	28.	28.	24.	31,	
949			107	. 115		-015		412.		- 10 T T	.025	. 444.	. 700	326.			TSS Rem	(qT)	310.	422.	427.	418,	417.	388.	384.	373.	363.	385.	436.	377.		300	504.	434.	410.	400.	396.	437.	359.	403.	365.	405.	404.	469.	407.	405.	379.	380.	375.	
406			- 404			. 044	. 204	. 105	332.	400.	. 105	1000		359.			TSS In	(qT)	340.	466.	464.	448.	444.	417.	410.	399.	388.	414.	472.	403.	- 01#	438	563.	478.	453.	425.	425.	468.	381.	441.	401.	444.	441.	509.	436.	433.	406.	404.	406.	
873316	000000		. 1/2006.	. 057759	0.40402	060000	802020	774807	. 504059	. 201222	. 6/0295	12/2/2/	100000	601184.			Flow Treated	(ft3)	602818.	1005594.	1048460.	958583.	853084.	907224.	730228.	700829.	610683.	760623.	926544.	849492.	. 251100	102018	1314650.	1026530.	1029932.	962155.	742112.	910768.	767112.	983619.	714612.	912939.	926113.	1171873.	917877.	836734.	873316.	893028.	772606.	
873316		.070000	. 0002/1	. 057759	. #04040	840133	804059.	728576	. 504059	- 50000	. C/ 059C		. 50800/	601184.			FLOW VOL	(£t3)	602818.	1005594.	1048460.	958583.	853084.	907224.	730228.	700829.	610683.	760623.	926544.	849492.	. 261120	819314	1314650.	1026530.	1029932.	962155.	742112.	910768.	767112.	983619.	714612.	912939.	926113.	1171873.	917877.	836734.	873316.	893028.	772606.	
1 986	000			1984.	. 1661	- 766T		- 400 F	1995.	1995.	. 1990	1000		2001.		L SH	Year		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1968.	. 20201	1071	1972.	1973.	1974.	1975.	1976.	1977.	1978.	1979.	1980.	1981.	1982.	1983.	86	1985.	1986.	86	1988.	

5 50		1.55	4. 45	27.76	0. 20	2.16	94.8	91.5	92.2	92.8	93.0		a second second	TSS REMOVAL (%)	93.5	93.0	1.46	95.1	95.5	94.9	95.7	2.10	6.46	94.7	95.3	95.5	94.9	93.3	91.7	93.0	92.8	96.3	1.00	1.96	93.4	93.4	1.6	93.9	94.6	95.4	95.4	95.3	96.2	94.7	95.3	95.2	1.96
0 001		0.001	0.001	0.001	0.001	100.0	100.0	100.0	100.0	100.0	100.0			FLOW Treated (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100,0
c							0.						Contra Contra	(di)	0.	.0	0.	0.	.0	.0				. 0		0.	0.	.0	.0	.0						0.			0.	0.	.0	0.	.0	.0	.0	0.	.0
50	.07	14.				30.	19.	33.	31.	31.	25.		and the second	TSS Out (1b)	22.	33.	27.	22.	20.	21.	18.	10.	21.	25.	19.	19.	20.	29.	47.	33.	33.	16.	. 17	- 11 - 11	29.	26.	30.	27.	28.	20.	20.	19.	15.	22.	16.	10.	17.
306		194.	. 775	./ 15		428	342.	355.	362.	398.	334.			TSS Rem (1b)	318.	433.	436.	426.	424.	396.	392.		393	447.	384.	391.	377.	409.	517.	445.	420.	409.	404.	366	412.	374.	414.	414.	481.	416.	413.	387.	389.	384.	332.	199.	430,
OVE		.502	440.	.765	. 104	. 766	361.	388.	393.	429.	359.		and the	(1b)	340.	466.	464.	448.	444.	417.	410.		414	472.	403.	410.	397.	438.	563.	478.	453.	425.	.024		441.	401.	444.	441.	509.	436.	433.	406.	404.	406.	349.	209.	448.
066103	.057750	531464.	840193.	862039.	944834.	020402	569075.	757312.	758808.	804445.	601184.		and the second	Flow Treated (ft3)	602818.	1005594.	1048460.	958583.	853084.	907224.	730228.	67000/	760623	926544.	849492.	851192.	763629.	812314.	1314650.	1026530.	1029932.	962155.	010760	767112	983619.	714612.	912939.	926113.	1171873.	917877.	836734.	873316.	893028.	772606.	691230.	531464.	840193.
000103	. 057760	531464.	. 56T058	862039.	324832.	020400	569075.	757312.	758808.	804445.	601184.			Flow Vol (ft3)	602818.	1005594.	1048460.	958583.	853084.	907224.	730228.	100029.	760623	926544.	849492.	851192.	763629.	812314.	1314650.	1026530.	1029932.	962155.	010760	767112	983619.	714612.	912939.	926113.	1171873.	917877.	836734.	873316.	893028.	772606.	691230.	531464.	840193.
1000		1991.	- 766T	- 565T	- 4771	1006	1997.	1998.	1999.	2000.	2001.		HS 8	Year	1957.	1958.	1959.	1960.	1961.	1962.	1963.	1066	1966.	1967.	1968.	1969.	1970.	1971.	1972.	1973.	1974.	1975.	-016T	1978	1979.	1980.	1981.	1982.	1983.	1984.	1985.	1986.	1987.	1.988.	1989.	1991.	1992.

94.5	94.2	94.5	93.8	96.3	93.7	94.6	94.7	94.7			TSS Removal	(%)	96.7	96.6	96.8	97.8	97.7	97.5	1.86	97.6	1.86	97.2	57.3	1.12	0.12 U	0.12	95.2	96.7	95.6	98.3	97.3	97.6	98.2	96.0	4.02	0.79	97.4	97.6	7.72	97.7	98.2	97.3	97.5	97.8	98.1		97.1	97.5	
100.0	÷)	100.0	100.0	100.0	100.0	100.0	100.0	100.0		The second se	Flow Treated	(%)	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0	0.001	0.001	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		100.0	
0	0	.0	.0	0.	0.			0.			TSS BYP	(वा)	0.	0.	0.	0.	.0	0.	.0	.0	.0	.0						.0		0.	0.						0,				0.	0.	0.					.0	
25.	27.	18.	29.	13.	24.	21.	23.	19.		A Decision	TSS Out	(qT)	11.	16.	15.	10.	10.	.11.	80.	10.	. 1	-11	та. Та.				27	16.	20.	7.	11.	11.	. 2.	18.	14. 17	13.	13.	10.	10.	9,	. 7	.11	о	ъ.	6	12.	13.	æ.	
427.	434.	314.	437.	348.	363.	372.	406.	340.		And 1. 1	TSS Rem	(qT)	329.	450.	449.	438.	434.	406.	402.	389.	381.	402.	459.	. 492	400.	.195	537.	462.	433.	418.	414.	456.	374.	423.	. 195	428	496.	425.	423.	397.	397.	394.	340.	204.	439.	440.	448.	324.	
452.	461.	332.	466.	361.	388.	393.	429.	359.			TSS In	(वा)	340.	466.	464.	448.	444.	417.	410.	399.	388.	414.	472.	403.	-015		563	478.	453.	425.	425.	468.	381.	.1441.	. 104	441	509.	436.	433.	406.	404.	406.	349.	209.	448.	452.	461.	332.	
862039	924852	650405.	929759.	569075.	757312.	758808.	804445.	601184.			Flow Treated	(ft3)	602818.	1005594.	1048460.	958583.	853084.	907224.	730228.	700829.	610683.	760623.	926544.	849492.	. 761100	102029.	1314650.	1026530.	1029932.	962155.	742112.	910768.	767112.	983619.	(114012,	926113	1171873.	917877.	836734.	873316.	893028.	772606.	691230.	531464.	840193.	862039.	924852.	650405.	
862039.	924852.	650405.	929759.	569075.	757312.	758808.	804445.	601184.		10000	Flow Vol	(ft3)	602818.	1005594.	1048460.	958583.	853084.	907224.	730228.	700829.	610683.	760623.	926544.	044442.	. ZETTCO	102029.	1314650	1026530.	1029932.	962155.	742112.	910768.	767112.	983619.	.210510	926113	1171873.	917877.	836734.	873316.	893028.	772606.	691230.	531464.	840193.	862039.	924852.	650405.	
1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	2001.		HS 10	Year		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	. 8961	1070	1071.	1972.	1973.	1974.	1975.	1976.	1977.	1978.	.6/6T	1001	1982.	1983.	1984.	1985.	1986.	1987.	1988.	1989.	.1991.	1992.	1993.	1994.	1995.	

1999. 758808. 2000. 804445. 2001. 601184. ************************************	758808. 804445. 601184. 601184. and Quality Res INFlow in cfs. neous at indicat ************************************	<pre>758808. 393. 804445. 429. 601184. 359. 501184. 359. 359. 359. 359. 359. 359. 359. 359.</pre>		388. 352. 352.	برين ب	· · · · · · · · · · · · · · · · · · ·	0.001	
<pre>2000. 804445. 2001. 601184. ************************************</pre>	80494 8049 8049	145. 429 184. 359 Results at afs. 359 afs. 359 afs. 359 afs. 359 afs. 359 afs. 359 afs. 429 afs. 429 afs. 429 afs. 429 afs. 429 afs. 429 afs. 429 afs. 429 afs. 429 afs. 359 afs. 429 afs. 359 afs. 429 afs. 420 afs. 420 afs. 420 afs. 420 afs. 420 afs. 359 afs. 420 afs. 359 afs. 359 afs. 420 afs. 359 afs. 350 afs. 350 a					0.001	
2001. 804445. 2001. 601184. ************************************	804 ************************************	145. 429 184. 359 Results at ficated time ste ************************************		5° CI	 0 T	 	0.0 000 01 F	
2001. 601184.	6011 Quality Low in Quality at ind ******* Low T Lin Str Cfs T 0.005	<pre>184. 355 ***********************************</pre>		Ň		ö	100.0	
A ************************************	**************************************	**************************************	* * * * *					
A ************************************	<pre>************************************</pre>	<pre>************************************</pre>	* * * * *					
<pre>************************************</pre>	**************************************	<pre>k************************************</pre>	* * * * * * * 0:*					
A Summary of Quantity and G values are instantaneous values are instantaneous ************************************	<pre>******** Quality low in d at ind at ind cfs low T cofs</pre>	<pre>t************************************</pre>	* * * * * * & *					
 Summary of Quantity and G Summary of Quantity and C Location Values are instantaneous ************************************	2001 2001 2001 2000 2001 2000 2000 2000	<pre>k************************************</pre>	* * * * * *					
<pre>* Summary of Quantity and G * Location 200 INFD * Values are instantaneous ************************************</pre>	Quality Low in d ************************************	Results at ifs the ste cated time ste ************************************	* * * * B**					
<pre>x Summary or Quantity and g * Location 200 INF1 * Values are instantaneous ************************************</pre>	Liow To cefs - 1 2000 in c 2000 in Stra 2000 To 2000 10	Results at 1fs. Leated time ste ************************************	* * * * Q.*					
<pre>August 200 1001 * Values are instantaneous ************************************</pre>	Lin Stra Cfow T Cffs T Cffs T	115. (cated time ste ************************************	9.* 9.*					
**************************************	**************************************	**************************************	*					
	lin Stre low T cfs 1 0.005	dal						
Date Time F1								
ur Hr:Min	0.005	88. 68.						
Flow wtd means		68.						
	- 0 M							
	1 700	203						
	000 0							
336	3368263.	18460.						
	Cub-Ft	POUNDS						
===> Runoff simulation ended normally.	d norma	.vII						
===> SWMM 4.4 simulation ended normally. Always check output file for possible	le for 1	ulation ended normally. trut file for possible warning messages	id messades.					
******************	******	***************************************	*****					
+ CTANK A A STATE	Hell con	Dimilation Date and Hims Dimension	+					
2 . 5. INTIMO	*******		******					
* Starting Date June	2.	2023	*					
	13:33:57.155	7.155	*					
* Ending Date June	2.	2023	*					
	13:34:	2.984	*					
* Elapsed Time	0	0.097 minutes.	*					
* Elapsed Time	5	5.829 seconds.	*					
***************	******	***********************	*****					

98.7 98.8 98.1

Flow Vol Flow Treated (ft3) 602818. Flow Vol Flow Treated (ft3) 602818. 1005594. 1048460. 958583. 853084. 907222. 907224. 907224. 907224. 907224. 907224. 907224. 907224. 9072	29 19	355. 375. 376. 383. 418. 347. 347. 347. (1b)	21112 2112 2111112 211112 21112 21112 21112 21112 21112 21112 21112 21112 2111		100.0 100.0 100.0 100.0 100.0	8 6 6 6 8 6 6 6 8 6 6 6
	81 Fl	355. 376. 383. 418. 347. 347. ТSS Rem (1b)	81115. 		0,001 0.001 100.001	2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00
	81	376. 383. 418. 347. 347. ТSS Rem (1b)	1111 1111 1111		100.0 100.0 100.0	9.05 6.10
10000000000000000000000000000000000000	ан Н Т	383. 418. 347. З47. ТSS Rem (1b)	111		100.0 100.0 100.0	97.3
89 9000 977 97 14 14	ор н т	418. 347. TSS Rem (1b)	11. 12.	.0	100.0 100.0	
9 9000861 9 11 9 11 9 11	81 El	347. TSS Rem (lb)	12.		100.0	91.4
9 9 9 9 9 1 1 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	то 19 10 10 10 10 10 10 10 10 10 10 10 10 10	TSS Rem (1b)		.0		96.7
100 100 100 100 100 100 100 100 100 100	у ~	TSS Rem (1b)				
99999 9011 9011 9011 9011 9011	ор Н Т	TSS Rem (1b)				
FION 1100 1100 100 100 100 100 100 100 100	д 	TSS Rem (1b)				
· · · · · · · · · · · · · · · · · · ·	~ 	(q1)	TSS Out	TSS Byp	Flow Treated	TSS Removal
44			(41)	(पा)	(8)	(%)
		335.	.9	0.	100.0	98.3
		457.	. 6	0.	100.0	98.2
		455.	8.	.0	100.0	98.2
		443.	ъ.	.0	100.0	0.99
		439.	5.	0.	100.0	98.9
		412.	5.	0.	100.0	98.9
		406.	э.	0.	100.0	99.2
		395.	5.	.0	100.0	98.9
		385.	4.	.0	100.0	
		408.	.0	0.	100.0	98.6
	4. 472.	466.	.9	.0	100.0	98.8
		398.	ъ.	.0	100.0	98.8
		405.	5.	0.	100.0	98.8
		392.	5.	.0	100.0	98.8
812314. 812314	.4. 438.	431.	. 2	0.	100.0	98.3
		547.	16.	.0	100.0	97.1
		470.	.8	.0	100.0	98.3
		442.	11.	.0	100.0	97.6
962155. 962155.	5. 425.	422.	ë.	.0	100.0	99.3
742112. 74211		420.	.9	0.	100.0	7.86
		462.	6.	0.	100.0	98.86
767112. 76711	Ì	377.	ъ.	0.	100.0	99.2
		431.	.6	0.	100.0	97.9
714612. 71461	.2. 401.	394.	.7.	0.	100.0	98.2
912939. 912939.	444.	435.	.6	0.	100.0	98.0
926113. 926113		434.	7.	.0	100.0	98.5
1171873. 1171873		503.	.9	0.	100.0	98.8
		431.	4.	0.	100.0	0.99
836734. 836734.		427.	.9	.0	100.0	98.7
		402.	4.	.0	100.0	0.99
		401.	'n.	0.	100.0	99.2
772606. 77260	16. 406.	400.	.9	.0	100.0	98.5
691230. 691230		345.	4.	0.	100.0	98.86
531464. 531464		206.	2.	0.	100.0	98.9
840193. 840193.		444.	4.	0.	100.0	99.2
862039. 862039		446.	9.	.0	100.0	98.7
924852. 924852		455.	.9	0.	100.0	98.6
650405. 650405		328.	4.	0.	100.0	7.86
6		459.	8.	0.	100.0	98.4
5.		359.	ю.	.0	100.0	99.3
5		382	10	C	100 0	98 5

MASS DEP "Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

DMH#110-Water Quality Unit

For First 1.0-Inch Runoff WQV

Step 1: Area of Impervious Surface to Structure

0.647 acres @ 84.14% Impervious = 0.544 Acres Impervious 0.544 Acres x .0015625 sq mi = $8.5x(10^{-4})$ square miles.

Step 2: Tc of Train

Total Tc to DMH#109	5.9 min or 0.098 hours
DMH#109 to DMH#110	0.0 min
DMH#109A to DMH#109	0.5 min
DCB#25 to DMH#109A	0.4 min
P116 to DCB#25:	5.0 min

Step 3: Determine qu

From Figure 4:

Tc @ 0.083, qu=795csm/in

Step 4: Determine Q(1)

Q(1) = (qu)x(A)x(WQV)

 $Q(1) = (795 \text{csm/in})x(8.3x(10^{-4})) x(1.0 \text{ in})$

Q(1) = 0.66 CFS

<u>Determination</u> Determination of Water Quality Flow rates for units by Connecticut DOT (CONNDOT)

From Technology Verification HS 4 Treatment Flow rate 1.1 cf.s > 0.66 c.f.s. "Pass"

HydroGuard HS4 to be utilized in Design.

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

To complete Chart Column E value, subtract Column D value within Row from Column C within Row
 Total TSS Removal = Sum All Values in Column D

	S C D emoval Starting TSS Amount te ¹ Load* Removed (B*C)	25 1.00 0.25	77 0.75 0.58	Total TSS Removal =	, Worcester	*Equals remaining load from previous BMP (E)
Location: DMH#110	A B TSS Removal BMP ¹ Rate ¹	Deep Sump Hooded Catch Basin 0.25	Hydroworks Unit HS4 0.77		Project: Franklin Street, Worcester	Prepared By: Hannigan Engineering, Inc.

Non-automated: Jan. 31, 2019

Summary for Reach DMH110: TO UGS#2A

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH109 outlet invert by 0.01' @ 12.10 hrs

Inflow Area	a =	0.599 ac,	83.64% Imp	ervious,	Inflow Depth	= 1.	54" for	1-Year event
Inflow	-	0.98 cfs @	12.12 hrs,	Volume	= 0.0	77 af	<=wav	
Outflow	=	0.97 cfs @	12.12 hrs,	Volume	= 0.0	77 af,	Atten= 1	%, Lag= 0.2 min
Routed	to Read	ch UGS2A :	TO UGS#2					

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.77 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.94 fps, Avg. Travel Time= 0.2 min

Peak Storage= 4 cf @ 12.12 hrs Average Depth at Peak Storage= 0.27', Surface Width= 0.88' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 6.30 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 24.0' Slope= 0.0313 '/' Inlet Invert= 465.75', Outlet Invert= 465.00'

Summary for Subcatchment P116: TO DCB#25

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.12 cfs @ 12.11 hrs, Volume= 0.009 af, Depth= 1.77" Routed to Reach DCB25 : TO DMH#109A

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 1-Year Rainfall=2.58"

A	rea (sf)	CN	Description			
	297 2,483		>75% Gras Paved park		ood, HSG A	
3	2,780 297 2,483	92	Weighted A 10.68% Per 89.32% Imp	verage rvious Area		
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
0.7	50	0.0200	1.18		Sheet Flow, Smooth surfaces n= 0.011 P2= 3.13"	
0.2	30	0.0200	2.87		Shallow Concentrated Flow, Paved Kv= 20.3 fps	
0.9	80	Total,	Increased t	to minimum	n Tc = 5.0 min <=tc	

Summary for Reach DCB25: TO DMH#109A

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.064 ac, 89.32% Impervious, Inflow Depth =
 1.77" for 1-Year event

 Inflow =
 0.12 cfs @
 12.11 hrs, Volume=
 0.009 af

 Outflow =
 0.12 cfs @
 12.12 hrs, Volume=
 0.009 af

 Routed to Reach DMH109A : TO DMH109
 TO DMH109
 10.009 af

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.21 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.13 fps, Avg. Travel Time= 0.4 min<=tc

Peak Storage= 1 cf @ 12.12 hrs Average Depth at Peak Storage= 0.11', Surface Width= 0.49' Bank-Full Depth= 0.67' Flow Area= 0.3 sf, Capacity= 2.06 cfs

8.0" Round Pipe n= 0.010 PVC, smooth interior Length= 29.0' Slope= 0.0172 '/ Inlet Invert= 467.50', Outlet Invert= 467.00'

3030-Post-R9 Prepared by Hannigan Engineering Inc HydroCAD® 10.20-3g s/n 00840 © 2023 HydroCAD Software Solutions LLC

Summary for Reach DMH109A: TO DMH109

[52] Hint: Inlet/Outlet conditions not evaluated
[61] Hint: Exceeded Reach DCB21 outlet invert by 0.08' @ 12.15 hrs
[61] Hint: Exceeded Reach DCB25 outlet invert by 0.08' @ 12.15 hrs

 Inflow Area =
 0.239 ac, 75.90% Impervious, Inflow Depth =
 1.20" for 1-Year event

 Inflow =
 0.31 cfs @
 12.12 hrs, Volume=
 0.024 af

 Outflow =
 0.31 cfs @
 12.13 hrs, Volume=
 0.024 af, Atten=

 Routed to Reach DMH109 : TO DMH#110
 TO DMH#110

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.12 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.08 fps, Avg. Travel Time= 0.5 min <= Tc

Peak Storage= 3 cf @ 12.13 hrs Average Depth at Peak Storage= 0.18', Surface Width= 0.77' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 4.26 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0143 '/ Inlet Invert= 466.90', Outlet Invert= 466.40'

***************************** * ************************************** ************************ ************************************* ************************* ******************************* ******************************** ********************************* ******************************* ************************************ have never occurred in experience" da Vinci * Hydroworks, LLC by phone at 888-290-7900 Created by the University of Florida - 1988 "Nature is full of infinite causes which If any problems occur executing this or by e-mail: support@hydroworks.com Storm Water Management Sizing Model model, contact Mr. Graham Bryant at This model is based on EPA SWMM 4.4 Water Resources Engineers, Inc. (Now Camp Dresser & McKee, Inc.) Continuous Simulation Program Distributed and Maintained by University of Florida Metcalf & Eddy, Inc. www.hydroworks.com Based on SWMM 4.4H Hydroworks, LLC Modified SWMM 4.4 Hydroworks, LLC Hydroworks, LLC 888-290-7900 * Entry made to the Rain Block Hydroworks, LLC Graham Bryant Developed by Version 4.4 2003 - 2021

GoVenture Capital Group Franklin Street DMH#110

HydroStorm Simulation

***		1 Massachusetts		IYBEG (Yr/Mo/Dy) 1957/ 1/ 1	END (Yr/Mc/Dy) 2001/12/31	ant time, MIT 1	i storms, NPTS 10	XM (See text) 1	mary, ISUM (O-No 1-Yes) 0	all, IYEAR (O-No 1-Yes) 0	t data on NSCRAT(1) 0 ot save, =1 -Save data)	Create interface file Create file and analyze Synoptic analysis2	on parameter, A 0.40	tistics, NOSTAT 1100	<pre>(from optional group B0) 2 Do not include NCDC cumulative values. Average NCDC cumulative values. Use NCDC cumulative value as inst. rain. (from optional group B0) 0</pre>	= 0, only on days with events. = 1, on all days with codes present.
******	Station NameStation	Station Location	Station, ISTASta	Beginning date, IYBEG (Yr/Mo/Dy)	Ending date, IYEND (Yr/Mo/DY)	Minimum interevent time, MIT	Number of ranked storms, NPTS	NWS format, IFORM (See text)	Frint storm summary, ISUM (O-No 1-Yes)	Print all rainfall, IYEAR (O-No	Save storm event data on NSCRAT(1) (IFILE =0 -Do not save, =1 -Save data)	IDECID 0 - Create interface 1 - Create file and 2 - Synoptic analys	Plotting position parameter, A	Storm event statistics, NOO	<pre>KODEA (from optional group B0) = 0, Do not include NCDC cumulative v = 1, Average NCDC cumulative values. = 2, Use NCDC cumulative value as ins KODEPR (from optional group B0)</pre>	= 0, only on days with events = 1, on all days with codes pi

Location Station Number

1. 9923

STATION ID ON PRECIP. DATA INPUT FILE = 2302 REQUESTED STATION ID = 9923 CHECK TO BE SURE THEY MATCH.

GoVenture Capital Group Franklin Street

DMH#110

during time steps with rainfall.

Read evaporation data on line(s) F1 (F2) - IVAP 1 Hour of day at start of storm - NHR 1.017 Him te of hour at start of storm - NHN 1.017 Time TZERO at start of storm (hours) 1.017 Use U.S. Customary units for most I/O - METRIC 0 Runoff input print control Use U.S. Customary units for most I/O - METRIC 0 Runoff input print control 1.017 Use U.S. Customary units for most I/O - METRIC 0 Runoff input print control 1.017 Use U.S. Customary units for most I/O - METRIC 0 Runoff input print control 1.017 Use U.S. Customary units for most I/O - METRIC 0 Runoff input print control 1.017 Runoff input print control 0 Runoff day, year of storm is: 1/1/1957 Wet time step length (seconds) 20011231.0 300. Dry time step length (seconds) 20011231.0 300. Dry time step length (seconds) 20011231.0 300. Dry time step length (seconds) 20011231.0 300. Met/Dry time step length (seconds) 2001231.0 300. Met/Dry time step length (seconds) 2001231.0 300. Met/Dry time step length (seconds) 20011231.0 300. Met/Dry time step length (seconds) 2001231.0 300. Me	1	T	1	1.017	0	o	т	Q	1=no) D), 1=yes) 0	res to 10000 (if simulated)	1/ 1/1957	300.	.009	450.	20011231.0 Yr/Mo/DY	i depth 25.0	N * DECAY 0.01000	********** 511e **********		SEP. OCT. NOV. 1	5 0.10 0.10 0.00 0.00
<pre>n data on lin start of storn at start of storm ary units for int control ot control ot control rint control very 50 lines load percenta groundwater of start of ength (second ength (</pre>		n - NHR	torm - NMN	(hours)	most I/O - METRIC				- NOHEAD (0=yes,	ges -LANDUPR (0=nc	convergence messac		s)	s)	conds)		ith zero detention	a = REGE at	********************* Will be read from ******************	****	JUN. JUL.	0.15 0.15
	n data on line	start of stor	at start of s		ary units for	int control	ot control	rint control.	very 50 lines	load percenta	groundwater (r of start of	ength (second:	ength (second:	ep length (se	th is	rvious area w.	tion model be ration of inf for each su 	*************** recipitation 1 *************	############## Group F1 Rate (in/day ##############	APR.	0.10

******************************** * ************************ CHANNEL AND PIPE DATA

	Length (ft)	Width Length (ft) (ft)	
i			

****************************** * SUBCATCHMENT DATA

¢

SE	SEE LATER TABLE FO	*NOTE. SEE LATER TABLE FOR OPTIONAL SUBCATCHMENT PARAMETERS* SUBCATCHUE. CHANNET MITCHE ADDA DEPORTM SIGNE	OPTIONAL	SUBCATCH	CATCHMENT PARAN	METERS*	domo ka donkmo to da	domo ka	Saddau	NOTRAGRITANI (NI) SORGOR SAGAR	TNETT		abab amaa Asbau	CACE	MB X TMITM	
W	NT NO.	MENT NO. OR INLET	(FT)	(AC)	IMPERV.	(FT/FT)	IMPERV.	PERV.	IMPERV.	PERV.	RATE		(1/SEC)	NO.	VOLUME (INCHES)	
1	1 300	200 167.88 0.65 87.14	200 167.88	0.65	0.65 87.14	0.0200	0.015	0.250	0.020	0.200	2.50	0.40	0.00055	-	4.00000	
MUM	BER OF S	TOTAL NUMBER OF SUBCATCHMENTS	TS		1											
TRI	BUTARY A	TOTAL TRIBUTARY AREA (ACRES)	(1	0	0.65											
DOIN	S AREA (IMPERVIOUS AREA (ACRES)		0	0.56											
OUS .	AREA (AC	PERVIOUS AREA (ACRES)		0	0.08											
MID	TH (FEET	TOTAL WIDTH (FEET)		167	167.88											
I IN	MPERVIOU	PERCENT IMPERVIOUSNESS		87	87.14											
****	****	***************************************	******	*****	******	***										
U	ROUN	GROUNDWATER INPUT DATA	R INP	D T D	ATA	*										
****	*****	*******************************	*******	******	******	***										

0.00E+00 (IN/HR-FT^2) = FLOW CONSTANTS ---------A3 1.000 -----B2 (IN/HR-FT^B2) 2.600 0.000E+00 -----A2 -----BI (IN/HR-FT^B1) 4.500E-05 -----------AI 2.00 (LI) ELEVATIONS -----ML 2.00 (LI) -----BC 0.00 (LI) -----STAGE 0.00 GROUND BOTTOM -----(FT) 10.00 -----(EI) **N**OR 602 CHANNEL TAINT -----NUMBER 0 ------CATCH SUB-

÷

*********************** ******************************** * GROUNDWATER INPUT DATA (CONTINUED) *

PROPERTIES SOLL

WILTING FIELD HYDRAULIC POROSITY CONDUCTIVITY SATURATED (in/hr) SUBCAT. NO.

(ft) -----PARAMETERS PCO HCO -------(in/hr)

DEPTH FRACTION OF ET ET PARAMETERS TO UPPER ZONE OF ET

PERCOLATION

MAX. DEEP PERCOLATION INITIAL

11111

POINT CAPACITY MOISTURE

-----------------1

+

 Arrangement of Subactionnets and Channel/Papes and Channel and Channel/Papes and Channel and Ch
--

0.350

SWEEPING ENDS...... KLINEND..... DAY OF YEAR ON WHICH STREET

			DNITIMIL			CLEANING	AVAIL.	DAYS SINCE
			BUILDUP	BUILDUP	BUILDUP	INTERVAL	FACTOR	LAST
AND USE	BUILDUP EQUATION TYPE	FUNCTIONAL DEPENDENCE OF	QUANTITY	POWER	COEFF.	IN DAYS	FRACTION	SWEEPING
LNAME)	(METHOD)	BUILDUP PARAMETER (JACGUT)	(MITIDA)	(MOADD)	(DDFACT)	(CLFREQ)	(AVSWP)	(DSLCL)
Urban De	EXPONENTIAL (1)	AREA (1)	2.500E+01	0.500	60.000	30.000	0.300	30.000

€

	Total Su
Constituent units	mg/1
Type of units	0
KALC	N
Type of buildup calc	EXPONENTIAL (2)
KWASH	0
Type of washoff calc	POWER EXPONEN. (0)
KACGUT	F
Dependence of buildup	AREA (1)
LINKUP	0
Linkage to snowmelt	NO SNOW LINKAGE
Buildup param 1 (QFACT1).	25.000
param 2	0.500
	60.000
	0,000
10	0.000
Washoff power (WASHPO)	1.100
Washoff coef. (RCOEF)	3.000
Init catchb conc (CBFACT)	100.000
Precip. conc. (CONCRN)	0.000
Street sweep effic (REFF)	0.000
Remove fraction (REMOVE).	0,000
1st order ODECAY, 1/day	0.000
Land use number	1

0.0000 mg/1 Total Susp has a concentration of ...

270

***************************** * REMOVAL FRACTIONS FOR SELECTED CHANNEL/PIPES * * FROM J7 LINES

CHANNEL/ CONSTITUENT PIPE Total Susp -------------

0.000 201

***************** Subcatchment surface quality on data group L1 *

			Total	Number	Input
		Land	Gutter	of I	Loading
	Land	Use	Length	Catch-	load/ac
No.	Usage	No.	10**2£t	Basins	Total Su
		1			
300	Urban De	H	3.40	1.00	0.0E+00
Totals (Load	(Loads in 1b or other)	cother)	3.40	1.00	0.0E+00

* ******* DATA GROUP MI *

TOTAL NUMBER OF PRINTED GUTTERS/INLETS...NPRNT..

HOO NUMBER OF TIME STEPS BETWEEN FRINTINGS., INTERV., STARTING AND STOPPING PRINTOUT DATES......

0

****** * ******** DATA GROUP M3 *

CHANNEL/INLET PRINT DATA GROUPS.....

-200

* Rainfall from Nat. Weather Serv. file * ************

GoVenture Capital Group Franklin Street DMH#110

Rainfall Station Worcester Wso Ap State/Province Massachusetts

1957. 1958. 1959. 1960. 1961. 1962.		CO I	Mar	Apr	May	unf	Jut	Aug	Sep	oct	NOV	Dec	Total
158. 959. 960. 961.		1.4		3.6	4.6	1.1.1	1.1	2.8		3.00 00	1.11		
159. 960. 961.	0.6	2.9	6.6	7.2	4.3	2.8	6.1	4.4	8.1	2.0	5.0	3.2	60.8
961. 961.	1.0	2.8	0.00	4.2	2.4		8.4	4.5		8.3			
961.	2.4	6.3		5.4	5.9		7.2	9.6		э.о	4.0		
962.	3.7	2.5		5.2	4.2		4.3	5.3		3.5			
	2.4	5.4		9.9	4.4		2.1	4.6	1.1	9.2			54.4
963.	4.2	3.4		1.9	3.6		2.0	3.0		1.7	•	•	44.0
964.	5.9	3.6		4.5	1.5	1.12	3.6	2.9	- 14	2.5	- 1		1.1
.965.	3.1	4.9		3.9	3.1		2.0	3.2		2.3	3.2		37.1
.996	4.4	4.4		1.7	3.8		3.5	2.0	7.5	9.5			45.6
967.	2.8	3.7		5.2	7.4		6.5	3.5		2.4		5.0	55.7
968.	3.7	1.4		2.3	1.1		1.9	0.7		2.4	6.2		50.7
. 696	1.8	4.2		5.6	3.4		4.3	4.7		1.8	1.1		51.1
.010.	2.2	5.5	4.1	3.9	6.1		0.9	5.8	3.6	3.0			45.7
.176	3.2	5.9	1.9	2.0	5.6		4.9	8.0		3.6			48.3
972.	3.1	8.2	6.1	4.8	8.4		6.6	5.1		6.0		6.4	L. LL
973.	4.4	4.1	4.9	5.7	4.8		4.1	4.4		4.8		8.8	61.1
	4.2	3.4	5.6	3.6	6.3		3.4	3.7		3.6		4.1	61.0
	6.9	3.3	5.9	1.3	2.0		4.3	5.1		6.6		5.2	57.9
1976.	6.9	2.9	4.5	2.5	3.2			6.6	2.3	5.3	1.0	3.4	45.0
	2.4	3.2	6.4	4.2	2.7	4.2	4.8	2.4		5.6		6.8	55.0
	11.9	1.8	3.4	2.5	3.8			5.4		4.1		4.3	46.5
	12.2	3.1	4.0	5.5	4.7	0.6	6.1	2.7		4.9		1.8	58.8
	8.0	1.2	7.4	5.2	2.4		3.9	2.1		5.4	4.8	2.2	43.4
	1.9	9.4	1.4	4.9	4.1	14	8.2	1.2		5.7	- 6	6.1	55.0
	4.4	4.0	4.2	4.8	3.4	1.1	6.0	2.0		3.2		9.9	55.7
	5.3	5.3	0.6	8.4	7.3	1.4	0.9	6.4		6.3	- A.	7.1	69.5
	3.3	6.7	6.3	5.1	10.3	3.3	6.4	1.2		3.3		3.4	55.1
	1.9	3.6	3.5	3.0	5.1		6.6	4.1		3.0	- *	2.7	50.7
	5.5	3.5	9.6	1.9	3.4		3.5	3.6		3.0	1.0	7.8	52.9
	6.2	1.9	5.8	6.6	1.5		1.0	5.4		4.5	- *	2.6	53.6
	3.7	3.5	3.3	3.8	5.1	- A	6.7	4.5		5.9	5.9	1.8	46.8
	1.6	3.4	3.0	4.8	6.6		4.6	0.0		0.0		0.0	42.3
	0.0	0.0	0.0	0.0	0.0		3.2	8.1	· •	3.8	6.0	3.5	31.5
	3.1	3.3	4.7	3.2	2.7		5.7	7.2		2.4	6.3	5.1	50.9
	3.2	2.9	1.1	4.0	1.9		3.4	2.1	9.4	4.0	5.2	5.8	51.8
4.	0.9	2.9	6.6	2.9	6,8			8.0		1.3		4.2	55.7
	5.9	2.3	2.2	2.5	0.0		4.7	2.1	3.7	8.8	5.2	1.4	38.8
	1.1	3.3		7.3				4.5		4.9		5.0	55.8
97.	3.3	1.7	4.6	3.4	2.6		3.2	2.8	1.6	1.8		2.3	34.4
	3.9	2.8		2.8	5.7	6.7		2.3	1.2	5.0		1.4	45.4
. 66	0.7	2.4		1.1	3,3	1.8	1.	2.4	8.6	4.6		4.3	45.7

49.3 4.2 4.0 2.4 3.5 4.5 2.5 3.7 1.1 5.4 3.9 7.6 4.2 а.а 3.2 3.5 2000.

2227.9 (in) Total Rainfall Depth for Simulation Period

Rainfall Intensity Analysis (in/hr)

(%)	30.5	25.6	9.5	10.1	4.5	3.6	4.1	2.9	1.2	1.3	0.8	0.8	0.8		0.3	0.7	0.3	0.6	0.3	0.4	1.3	
(ii)	5	571.	211.	224.	100.	80.	92.	64.	26.	29.	18.	18.	17.	13.	7.	15.	100	12.	7.	.8	30.	
(%)	69.5	19.4	4.1	3.2	1.1	0.8						0.1		0.0	0.0	0.0	0.0		0.0	0.0	0.1	
(#)	55294	15423	3295	2538	868	597	577	337	120		70	64		38	18	38	16	28	14	16	48	
(in/hr)	0.10	2	0.30		0.50	0.60	0.70		06.0	1.00	1.10		1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	> 2.00	

Total # of Intensities 79578

Daily Rainfall Depth Analysis (in)

(8)			6.2									-					
(uŗ)	85.	4	138.	0	m	S	m	-	0	-	93.	.06	86.	66.	81.	68.	
(8)	H	-	10.2	œ			1.1			1.04				•			
(#)	o	5	575	00	0	5	0	S	N	N	89	79	69	64	56	44	
(in)	-	2	0.30	4	5	9	F.	00	0	0	4	2	m.	4	5	6	

1.

2.9	2.2	1.6	1.4	12.1	
64.	49.	37.	31.	270.	
0.7	0.5	0.4	0.3	1.8	
39	28	20	16	104	
1.70	1.80	1.90	2.00	> 2.00	

Total # Days with Rain 5639

****************************** * End of time step DO-loop in Runoff

			seconds.	hours.	hours.	days.			
12/31/2001	3055980	2001365	86399. s	24.00	394464.0000	16436.0000	******	1s *	ed Steps * Lls *
rr) =	steps =						***************************************	Extrapolation Summary for Watersheds	<pre># Steps ==> Total Number of Extrapolated Steps # Calls ==> Total Number of OVERIND Calls</pre>
Yea	e s	11	=	#	11	11	***	SU	NG
/Day/	f tin	ate	day	day	time	time	*****	ation	Total
Final Date (Mo/Day/Year)	Total number of time steps	Final Julian Date	time of	time of day	puinnur	Final running t	******	Extrapol	eps =>
Final	Total	Final	Final	Final	Final	Final	*****	*	* # St * # Ca

# Steps # Calls	and the second second	
Subcatch # S		
# Calls		
# Steps		
Subcatch	anneres a	
# Calls		3370448
# Steps		13546640
Subcatch		300

************************************ Extrapolation Summary for Channel/Pipes

* # Steps ==> Total Number of Extrapolated Steps *
* # Calls ==> Total Number of GUTNR Calls * *********************************

Chan/Pipe	# Steps	# Calls	Chan/Pipe # Steps # Calls Chan/Pipe # Steps # Calls Chan/Pipe # Steps	# Steps	# Calls	Chan/Pipe	# Steps
201	0	0					
•							
*******	******	*******	*********************************	*****			
* Cor	ntinuity Ch	leck for S	Continuity Check for Surface Water	* 1			
*********	*********	*******	***********************************	*****			

Calls 1111111

Total Water remaining in Surface Storage Infiltration over the Pervious Area... Total Precipitation (Rain plus Snow) Surface Runoff from Watersheds -----Total Infiltration Total Evaporation

Water remaining in Surface Storage + Surface Runoff + Snow removal + Infiltration + Evaporation +

Inches over Total Basin 93. 282. 2225. 0 2195. 1865. 31. 662980. 5224530. 662980. 218638. 4379592. cubic feet

Water remaining in Snow Cover	5261242.	2240.	
Total Precipitation + Initial Storage.	5224530.	2225.	
The error in continuity is calculated as ************************************			
* Precipitation + Initial Snow Cover * * - Infiltration - *			
*Evaporation - Snow removal - *			
*Surface Runoff from Watersheds - *			
*Water in Surface Storage - *			
*Water remaining in Snow Cover *			
* Precipitation + Initial Snow Cover * ***********************************			
Error	-0.703 Percent		
*************	**		
<pre>* Continuity Check for Channel/Pipes * ***********************************</pre>	* **		
	cubic feet	Inches over Total Basin	

化学 化分析 化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化化			
		Inches over	
	cubic feet	Total Basin	
Initial Channel/Pipe Storage	.0	0.	
Final Channel/Pipe Storage	0.	0.	
Surface Runoff from Watersheds	4379592.	1865.	
Baseflow	.0		
Groundwater Subsurface Inflow	.0	0.	
Evaporation Loss from Channels	.0	0.	
Channel/Pipe/Inlet Outflow	4379592.	1865.	
Initial Storage + Inflow	4379592.	1865.	
Final Storage + Outflow	4379592.	1865.	

* Final Storage + Outflow + Evaporation - *			
* Watershed Runoff - Groundwater Inflow - *			
* Initial Channel/Pipe Storage *			
*			
* Final Storage + Outflow + Evaporation *			

Error	0.000 Percent		
*			

* Continuity Check for Subsurface Water *			

		Inches over	
	cubic feet	Subsurface Basin	
Total Infiltration	0.	0.	
Total Upper Zone ET	0	0.	
Total Lower Zone ET	.0	0.	
Total Groundwater flow	0.	0.	
Total Deep percolation	0.	0.	
Initial Subsurface Storage	84550.	36.	

Upper Zone ET over Pervious Area Lower Zone ET over Pervious Area Final Subsurface Storage

36.

... 84550.

> ************************ ************* Infiltration + Initial Storage - Final * Storage - Upper and Lower Zone ET -Groundwater Flow - Deep Percolation -----Infiltration + Initial Storage ------

0.000 Percent

Error

SUMMARY STATISTICS FOR SUBCATCHMENTS

	TOT		
	E	SD	SID
DEPTH LOSSES	ff:		
(IN) (IN) (IN) (CES)	Ć.		(AC) IMPER. (J

*** NOTE *** IMPERVIOUS AREA STATISTICS AGGREGATE IMPERVIOUS AREAS WITH AND WITHOUT DEPRESSION STORAGE

SUMMARY STATISTICS FOR CHANNEL/PIPES

2

TOTAL NUMBER OF CHANNELS/PIPES =

¢

*** NOTE *** THE MAXIMUM FLOWS AND DEPTHS ARE CALCULATED AT THE END OF THE TIME INTERVAL

Runoff Quality Summary Page loads 41 kg

mass rates Ib/sec kg/sec

If NDIM = 1 Loads are in units of quantity

METRIC = 1 METRIC = 2

If NDIM = 0 Units for:

Total Su NDIM = 0 METRIC = 1 Total Su

Inputs	ts	
	1	
H	INITIAL SURFACE LOAD	13.
3	TOTAL SURFACE BUILDUP	24398.
m.	INITIAL CATCHBASIN LOAD	.0
4.	TOTAL CATCHBASIN LOAD	.0
ŝ	TOTAL CATCHBASIN AND SURFACE BUILDUP (2+4)	24398.
Rema	Remaining Loads	
.0	6. LOAD REMAINING ON SURFACE	Ю
7.	REMAINING IN CATCHBASINS	.0
80	8. REMAINING IN CHANNEL/PIPES	0.
Remo.	Removals	
.0	STREET SWEEPING REMOVAL	.0
10.1	NET SURFACE BUILDUP (2-9)	24398.
11.	SURFACE WASHOFF	24379.
12.	CATCHBASIN WASHOFF	.0
	and the summer that was	a second s

Removals	
9. STREET SWEEPING REMOVAL	0
0. NET SURFACE BUILDUP (2-9)	24398
1. SURFACE WASHOFF	24379
2. CATCHEASIN WASHOFF	0
3. TOTAL WASHOFF (11+12)	24379
4. LOAD FROM OTHER CONSTITUENTS	0
5. PRECIPITATION LOAD	0
5a. SUM SURFACE LOAD (13+14+15).	24379
16. TOTAL GROUNDWATER LOAD	0
16a. TOTAL I/I LOAD	0
7. NET SUBCATCHMENT LOAD	
(15a-15b-15c-15d+16+16a)	24379
	17b):
17a. REMOVE BY BMP FRACTION	0
17b. REMOVE BY 1st ORDER DECAY	0
18. TOTAL LOAD TO INLETS	24379
	T/5m
(INLET LOAD/TOTAL FLOW)	68
Percentages	
20. STREET SWEEPING (9/2)	0
21. SURFACE WASHOFF (11/2)	100
22. NET SURFACE WASHOFF (11/10)	100
VEL TI TEO I MEDILO / MACHINE CO	

	100.		.0		.0		.0		0.		.0		.0		.0		.0		.0		0.		.0		.0		.0	
SURFACE WASHOFF/INLET LOAD	(11/18)	CATCHBASIN WASHOFF/	SUBCATCHMENT LOAD (12/17)	-	INLET LOAD (12/18)	OTHER CONSTITUENT LOAD/	SUBCATCHMENT LOAD (14/17)	INSOLUBLE FRACTION/	INLET LOAD (14/18)	PRECIPITATION/	SUBCATCHMENT LOAD (15/17)		INLET LOAD (15/18)	- 5	SUBCATCHMENT LOAD (16/17)	12.	INLET LOAD (16/18)		SUBCATCHMENT LOAD (16a/17)	32b.INFILTRATION/INFLOW LOAD/	INLET LOAD (16a/18)	32c.CH/PIPE BMP FRACTION REMOVAL/	SUBCATCHMENT LOAD (17a/17)	32d.CH/PIPE 1st ORDER DECAY REMOVAL/	SUBCATCHMENT LOAD (17b/17)		(18+8+6a+17a+17b-17)/17	
24.		25.		26.		27.		28.		29.		30.		31.		32.		32a		32b		320		32d		33.		

CAUTION. Due to method of quality routing (Users Manual, Appendix IX) quality routing through channel/pipes is sensitive to the time step. Large "Inlet Load Summation Errors" may result. These can be reduced by adjusting the time step(s).

These can be reduced by adjusting the time step(s). Note: surface accumulation during dry time steps at end of simulation is not included in totals. Buildup is only performed at beginning of wet steps or for street cleaning.

Diameter (um) 4. 6. 7. 18. 45.	**************************************	Specific Gravity 2.65 2.65 2.65 2.65 2.65 2.65 2.65 2.65	Diameter % Specific Settling Velocity Cri (um) Gravity (ft/s) (ft/s) 1. 5.0 2.65 0.000002 4. 5.0 2.65 0.000035 6. 5.0 2.65 0.000035 7. 5.0 2.65 0.000108 18. 15.0 2.65 0.000108 18. 15.0 2.65 0.000110 45. 10.0 2.65 0.000110 70 2.65 0.000120 2.65	Critical Peclet Number 0.022000 0.049420 0.062619 0.068516 0.118919 0.203034
90. 125. 200.	10.0 15.0		0.016354 0.029465 0.063279	0.304305 0.368637 0.485025

0.156843 0.726951 0.321303 1.128801	<pre>************************************</pre>	gh Q Treated Runoff Treated TSS Removed (ofs) (%) (%)	6.273 96.0 69.6 6.273 98.6 77.1<=TSS Removal 6.273 99.1 83.3	.273 99.5		100.0
		Q Treated cfs)	.273 .273 .273	.273	.273	.273
5.0 2.65 5.0 2.65	Summary of TSS Summary of TSS states on NJCAT Lab	Low Q Treated High (cfs) (0.397 0.685 0.833		1.868	
400. 850.	**************************************	Model #	HS 3 HS 4 HS 5			HS 10 HS 12

	10.1	70.7	72.8	67.2	5.14	66.7	67.8	0.90		11.3	6.07	72.4	2.01	2.01	2.11	G. 1	5.07	1.60			0 13	0./0		70.7		TSS Removal (%)	75.6	6.19	76.3	77.7	78.5	7.77	78.4	78.7	78.4		0.0/	78.2	71.5	78.2	10.0	71.5	14.0	13.1	0.27	1 27	80.1	P
	94.9	97.0	98.2	92.5	96.0	94.8	94.8	0.16	2.86	92.5	98.6	1.99	90.0	0	20.00	0.00	n u	0.00	ó v	0.00	n u	1.00	ir	2.76		Flow Treated (%)	5.99	4.66	6	98.1	98.0	99.4	100.0	99.5	100.0	5.99	2.22	98.5	1.99	98.4	0.99	95.2	ώu	95.1	100.0	1.00	6.66	
3		.0		.0			.0																		100	TSS BYP (dl)	0.	0.	0	.0	0.	0.	0.	0.	0,											òc		
144	169.	180.	136.	190.	172.	196.	187.	209.	170.	164.	155.	147.	159.	120.	- 61	Tot	100.	.021			100.	154	167	138.	and the second	TSS Out (1b)	109.		145.	132.	126.	124.	119.	112.	.011	124.	140.	115.	.121	114.	145.	214.	167.	164.	121	135		
	395.	435.	364.	390.	355.	393.	394.	464.	404.	408.	378.	386.	374.	340.	. CA1		.1.14	. 074	.000	. 104	244	.000	. 100	332.		TSS Ren (1b)	338.	459	466.	461.	461.	434.	430.	412.	399.	429.	419.	414.	. 114	409.	444.	532.	405.	446.	441.	480	400.	
	563.	615.	500.	580.	526.	589.	581.	672.	574.	573.	533.	533.	.55.	404.	214.						411.	010	254	470.	The set	(dl)	448.	614	611.	593.	587.	558.	549.	524.	509.	553.	. 670	529.	538.	523.	. 9/9	746.	020.	.019	562.	202. 615	500.	
	997895.	1251983.	1068061.	1290576.	972694.	1226695.	1245613.	1611249.	1282184.	1097360.	1220632.	1255944.	.6787601	. 509065	. TD9//9	11/4094.	11407/9.	. 11CC071		12/31/4.	1202011	· / TOPCOT	1115400	807214		Flow Treated (ft3)	848604.	1417195	1429090	1333453.	1185037.	1279658.	1035039.	988241.	865471.	1070471.	1303230.	. 6877811	1195814.	1065726.	. 140200.	1775540.	1438656.	TABBLA.	1021845	1070207	1086351.	
	1051996.	1291208.	1087380.	1395054.	1012756.	1294230.	1313310.	1661720.	1302171.	1186828.	1238252.	1267900.	1095006.	- 2795/5	/54243.	"900TATT	1222201.	- 7601161	. 180226	- 076/ 101	. 120000	1075040	1140116	852077	10 11 11 11 11 11 11 11 11 11 11 11 11 1	Flow Vol (ft3)	854358.	1425351	1487101.	1359795.	1209362.	1286845.	1035039.	993412.	865471.	1078169.	1313553.	1205347.	1206572.	1082775.	1151774.	1864922.	1455440.	1460820.	1051006	- 061501	1087380.	
	1976.	1977.	1978.	1979.	.086I	1981.	1982.	1983.	1984.	1985.	1986.	1987.	1988.	- TOOT	TAAT	. 766T						000		2001.	12 4	Теаг	1957.	- 00	959	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1961	1968.	1969.	016	.1/61	1972.	1973.	1974.	1076	1077	1978.	÷

75 3	75.4		76.2	75.9	77.9	78.7	78.0	79.5	77.3	77.6			77.5			75.7	78.8	74.1	1.77	÷.,	78.3		TSS Removal	(%)	81.2	80.9	82.7	84.0	84.8	84.0	83.9	85.1	84.4	84.1	82.9	84.2	84.1	84.3	80.7	78.5				84.3		85.9		÷.	81.4
OF O	8 80	0.00	4.66	99.3	99.66	96.4	99.9	100.0	98.8	1.99 1	96.3	7.96	97.8	99.5	98.8	98.7	6	ó	0.99	99.7	96.9		Flow Treated	(%)	7.66	99.8	97.0	98.6	7.86	99.7	100.0	100.0	100.0	99.6	99.7	œ.	99.4	o,	oi .	96.1	99.5	96.9	100.0		o'		97.2	99.6	0.99
c	i c	ċc				0.		0.	.0	0,	.0	.0	0.	0.	.0	0.	0.	0.	0.	0,	0,		TSS BYP	(पा)	0.	0.	0.	.0	0.	0.	0.	0.	.0	0.	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0	.0		.0	.0	.0
1.13	130	148	138.	162.	127.	122.	117.	109.	121.	104.	61.	123.	134.	144.	102.	152.	101.	134.	119.	128.	102.		TSS Out	(पा)	84.	117.	106.	95.	89.	89.	. 88	78.	80.	.88	107.	84.	86.	82.	112.	161.	124.	121.	84.	.68	95.	70.	105.	97.	109.
924	202	141	442.	510.	447.	451.	416.	424.	411.	360.	214.	469.	460.	471.	336.	475.	376.	383.	400.	436.	368.		TSS Rem	(qT)	364.	497.	505.	498.	498.	469.	461.	445.	430.	465.	518.	446.	453.	441.	466.	585.	506.	488.	478.	475.	519.	429.	474.	429.	480.
200	506		581.	672.	574.	573.	533.	533.	533.	464.	274.	592.	593.	615.	438.	627.	477.	516.	518.	564.	470.		TSS In	(qT)	448.	614.	611.	593.	587.	558.	549.	524.	509.	553.	624.	529.	538.	523.	578.	746.	630.	610.	9	563.	615.	500.	00	N	589.
1227700	1000488	100004	1304874.	1649847.	1296934.	1144530.	1236494.	1267900.	1081856.	971130.	726390.	1187239.	1195049.	1304711.	911362.	1301062.	805600.	1066628.	1065688.	1137039.	825679.		Flow Treated	(ft3)	851473.	1422112.	1443066.	1341188.	1194022.	1283513.	1035039.	992988.	865471.	1074108.	1309572.	1190989.	1199587.	1074415.	1144494.	1793121.	1447994.	1415009.	1364043.	1040868.	1278606.	1087380.	1355295.	0825	1281884.
1 205054) 10	1004030	1313310.	1661720.	1302171.	1186828.	1238252.	1267900.	1095006.	979618.	754243.	1191006.	1222501.	1311092.	922087.	1317928.	806527.	1073450.	1075949.	1140116.	852077.		Flow Vol	(ft3)	854358.	1425351.	1487101.	1359795.	1209362.	1286845.	1035039.	993412.	865471.	1078169.	1313553.	1205347.	1206572.	1082775.	1151774.	1864922.	1455440.	1460820.	1364043.	1051996.	1291208.	1087380.	0 1	1012756.	1294230.
1070	1980	2001	1982.	983	984	1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	1996.	1997.	66	1999.	2000.	2001.	HS 5	at the		1957.	1958.	959	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1968.	1969.	1970.	.171.	1972.	1973.	1974.	1975.	1976.	1977.	1978.	6	1980.	1981.

	82.6		4.	1.4			84.0			83.6				in'	81.3	m	m	83.8		TSS Removal	(%)	85.7	v	10	.00	6			o,	œ.		87.3	, p o	00.1	0.00	2.20	0.50		1.08	88.5	.00	1.06	5	10	5	'e	87.0	
 D.001	99.66	99.99	91.6	100.0	100.0	1.99	5.7	98.0	6.96	98.7	100.0	99.2	99.3	100.0	7.66	99.5		97.9		Flow Treated	(%)	100.0	0 001	6.76	99.2	99.5	100.0	100.0	100.0	100.0	6.9	100.0	1.22		0.001	0 10	0 00	4 80	0.001	1.001	9.66	100.0	1.86	100.0	99.8	100.0	99.8	100.0
	.0			.0	.0		0.	.0	.0	.0	0.	.0	0.	0.	.0	.0	.0	0.		TSS BYP	(वा)	0.	c		0.	0.	.0	0.	.0	.0	0.						c	, c			.0	0.	0.	0.	.0	.0	0.	0.
 102.	117.	.06	88	85.	. 17.	.06	74.	45.	89.	97.	105.	75.	114.	. 69	97.	.88	. 16	76.		TSS Out	(वा)	64.	88	80.	66.	63.	64.	62.	56.	57.	65.	.61	. 00	. 10						65.	68.	49.	80.	75.	84.	78.	87.	65.
 479.	555.	484.	484.	448.	456.	443.	390.	229.	504.	496.	510.	362.	513.	408.	420.	431.	470.	394.		TSS Ren	(पा)	384.	506	531.	527.	524.	494.	487.	468.	452.	488.	545.	404.	. 8/ 5	. 705		537		203	499.	546.	450.	500.	451.	504.	503.	585.	508.
 58T.	672.	574.	573.	533.	533.	533.	464.	274.	592.	593.	615.	438.	627.	477.	516.	518.	564.	470.		TSS In	(पा)	448.	614		593.	587.	558.	549.	524.	509.	553.	624.	529.	. 876		.0/0		.019	262	563.	615.	500.	580.	526.	589.	581.	672.	574.
 m	1654665.	1301008.	1158686.	1238252.	1267900.	1085128.	976320.	738941.	1189901.	1206234.	1310454.	914560.	1308675.	806527.	1070216.	1071070.	1139682.	834244.		Flow Treated	(ft3)	854358.	C A	1455262.		1203828.	1286734.	1035039.	993412.	865471.	1077430.	1313465.	1194970.	1203282.	TOSKSON.	1000606		1420245				1087380.	1369226.	1012682.	1291071.	1313310.	1658153.	1302171.
 1313310.	1661720.	1302171.	1186828.	1238252.	1267900.	1095006.	979618.	754243.	1191006.	1222501.	1311092.	922087.	1317928.	806527.	1073450.	1075949.	1140116.	852077.		Flow Vol	(ft3)	854358	1425351	1487101.	1359795.	1209362.	1286845.	1035039.	993412.	865471.	1078169.	1313553.	1205347.	120001	. C/ / 7001	. #//TCTT	1455440	1460800	1364043	1051996.	1291208.	1087380.	1395054.	1012756.	1294230.	1313310.	1661720.	1302171.
 1982.	1983.	1984.	1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	2001.	9 SH	Year		1957	1958	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1968.	- 505T	.0/51			VLOT	1975	1976.	1977.	1978.	1979.	1980.	1981.	1982.	1983.	1984.

88.8	00	89.3	87.5	88.3	87.9	89.0	87.9	86.9	87.2	86.3	8 08	1.78	87.3	87.9	88.5		A STATISTICS	TSS Removal (%)	88.8	88.1	89.8	91.3	91.7	0.16	91.6	91.7	91.3	50.7	90.2	61.3	1.16	1.05	7.00	6 88	87.8	92.0	91.0	91.3	92.4	0.68	88.5	88.4		89.7	91.4	91.2	91.0	91.8	
98.6	100.0	100.0	99.4	100.0	99.5	100.0	66.3	100.0	99.6	1.66	100.0	0 001	100.0	100.0	98.9			Flow Treated (%)	100.0	100.0	99.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	8.66	100.0	0.001	0.001	0 001	6.66	100.0	100.0	100.0	100.0	99.4	100.0	100.0	100.0	100.0	100.0	96.6	100.0	100.0	
0.	0.	0.	0.	.0	0.	0.		.0		.0					0.			TSS BYP (di)	0.	.0	.0	.0	.0	0.	0.	.0	.0	0.	.0						.0	0.	0.	0.	.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	
64.	62.	57.	67.	54.	33.	65.	72.	81.	56.	86.	48	12.	66		54.			TSS Out (1b)	50.	73.	62.	52.	49.	50.	46.	44.	44.	51.	61.	46.	48.	40.		75.	74.	45.	51.	53.	38.	64.	60.	68.	62.	69.	49.	50.	48.	44.	
508.	471.	476.	466.	410.	241.	527.	521.	534.	382.	541.	429	445	452	496	416.		100 million 100 million	TSS Rem (1b)	398.	541.	549.	541.	538.	508.	503.	480.	465.	501.	563.	483.	490.	4/4.	. DTC	555	535.	517.	513.	561.	462.	516.	466.	521.	518.	603.	525.	522.	485.	489.	
573.	533.	533.	533.	464.	274.	592.	593.	615.	438.	627.	477	516	518	564	470.			(dl)	448.	614.	611.	593.	587.	558.	549.	524.	509.	553.	624.	529.	538.	. 575	.0/0	.051	610.	562.	563.	615.	500.	580.	526.	589.	581.	672.	574.	573.	533.	533.	
1170251.	1238252.	1267900.	1088892.	979545.	750666.	1191006.	1214310.	1311092.	918192.	1313643.	806527	1073384	1075855	1140116	842435.		10 10 10 10 10 10 10 10 10 10 10 10 10 1	Flow Treated (ft3)	854358.	1425351.	1471547.	1359200.	1209362.	1286845.	1035039.	993412.	865471.	1078169.	1313553.	1202587.	1206572.	.C//ZROT		1455440	1459609.	1364043.	1051996.	1291208.	1087380.	1386849.	1012756.	1294230.	1313310.	1661720.	1302171.	-	1238252.	1267900.	
1186828.	1238252.	1267900.	1095006.	979618.	754243.	1191006.	1222501.	1311092.	922087.	1317928.	806527	1073450	1075949	1140116.				FLOW VOL (ft3)	854358.	1425351.	1487101.	1359795.	1209362.	1286845.	1035039.	993412.	865471.	1078169.	1313553.	1205347.	1206572.	. G//7801		1455440	1460820.	1364043.	1051996.	1291208.	1087380.	1395054.	1012756.	1294230.	1313310.	1661720.	1302171.	1186828.	1238252.	1267900.	
1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	1996.	1997	1998	0001	2000.	2001.	1	1 SH	Year	1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1968.	1969.	-0/61	TLOT	1973	1974.	1975.	1976.	1977.	1978.	1979.	1980.	1981.	1982.	1983.	1984.	1985.	1986.	1987.	

89.9	91.0	90.8	2.16	90.2	89.5	89.9	89.4	92.7	88.8	89.9	90.6	0.16			TSS Removal (%)		5.15 K 00	0.00	1.59	93.6	93.1	93.7	93.3	93.6	93.0	92.3	2.22	a ca	6.06	1.98	90.8	1.06	94.0	93.1	93.3	54.3	0 00	a 00	5 16	92.1	93.4	93.4	93.1	93.9	92.3	93.2	92.9	
100.0		100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.8			Flow Treated (%)		0.001	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	0.001	100.0	7.99	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
.0	0.					.0		0.	0.			0.			TSS BYP (1b)	ł					.0	.0	.0	.0	.0					0.	.0	0.	.0	.0								0.		.0	.0	.0	.0	
54.	42.	25.	49.	58.	64.	44.	.99	35.	58.	52.	53.	42.			TSS Out (1b)	1	يم. ۳۵	40	41.	37.	38.	35.	35.	33.	39.	48.	100	100	52.	82.	58.	60.	34.	39.	41.	29.		24		53.	38.	38.	37.	33.	41.	32.	20.	
479.	422.	249.	543.	535.	551.	393.	560.	442.	459.	466.	511.	427.			TSS Rem (1b)		404. REF	563	553	549.	520.	514.	488.	476.	514.	576.	. 474	ADF.	526.	664.	572.	549.	528.	524.	573.	471.	.070	224	123	619.	536.	535.	496.	500.	491.	432.	255.	
533.	464.	274.	592.	593.	615.	438.	627.	477.	516.	518.	564.	470.			TSS In (1b)		440.		593	587.	558.	549.	524.	509.	553.	624.	- 670	.000	578.	746.	630.	610.	562.	563.	615.	500.		580	581	672.	574.	573.	533.	533.	533.	464.	274.	
1094953.	979618.	754243.	1191006.	1222391.	1311092.	922087.	1317928.	806527.	1073450.	1075949.	4011	850389.			Flow Treated (ft3)		. 8024308.	1485945	1359795	1209362.	1286845.	1035039.	993412.	865471.	1078169.	1313553.	120054/.	100015	1151774.	1859506.	1455440.	1460820.	1364043.	1051996.	1291208.	1204060	1010756	1004030	1313310	1661720.	1302171.	1186828.	1238252.	1267900.	1095006.	979618.	754243.	
1095006.	979618.	754243.	1191006.	1222501.	1311092.	922087.	1317928.	806527.	1073450.	1075949.	1140116.	852077.			Flow Vol (ft3)		804308.	1017841	1359795.	1209362.	1286845.	1035039.	993412.	865471.	1078169.	1313553.	./#2007T	100011	1151774.	1864922.	1455440.	1460820.	1364043.	1051996.	1291208.	1205054	1010756	1004030	1313310	1661720.	1302171.	1186828.	1238252.	1267900.	1095006.	979618.	754243.	
1988.	1989.	1991.	992	1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	2001.		HS 8	Year		.1050	1050	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1060	1070	1971.	1972.	1973.	1974.	1975.	1976.	1977.	1978.	1080	1981	1982	1983.	1984.	1985.	86	1987.	98	1989.	1991.	

0 00	1 00	1.16	92.1	91.6	94.7	91.4	92.1	92.7	92.9		1	Removal			94.8	1.26		96.3	1.76	96.5	97.2	96.3	7.95	96.6		95.4				4. 70					94.9	1.26		90. 8						97.3	96.1	
				0.0	0.0	0.0	0.0	0.0	0.0			Flow Treated TSS		0.0	0.0			0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0		0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0	0.0	0.0		0.0	× .
OOL		100					1001	100	100					100	100.	0.001	1001	100.	100.	100.0	100	100	0.001	001	100	100	100	100	101	100	100.0	100.	1001	100.	100.	100.0	1001	1001	1001	100.	100.	100.	1001	TOC	001	INT
c	òc		.0	.0	0.	.0	.0	.0				t TSS BYP	Ì	.0	.0		òc		.0	.0	.0				.0	0.	.0					.0	0.	0							.0	0.	0.	0		
35		15	35.	53.	25.	44.	41.	41.	33.			TSS Out	i	20.	32.	. 1.7	.04	21.	16.	18.	14.	20.	24.		19.	27.	47.	30.	35.	14.	21.	13.	30.	25.	30.	25.		.α.F	18.	14.	20.	16.	.6	16.	23.	52·
587		564.	403.	574.	452.	472.	478.	523.	436.			TSS Rem		427.	582.	585.	567	537.	533.	505.	495.	533.	601.	520	504.	551.	. 669	600.	575.	. 140	594.	486.	550.	502.	559.	555.	647.	.000	515	519.	512.	449.	265.	576.	570.	.0%0
503	202	615	438.	627.	477.	516.	518.	564.	470.			UT SST		448.	614.	119		558.	549.	524.	509.	553.	524.	538. 538	523.	578.	746.	630.	.019	562	615.	500.	580.	526.	589.	581.	.2/9	. 4/0	533	533.	533.	464.	274.	592.	593.	*CT0
1101010	1000201	2001121	922087.	1317928.	806527.	1073450.	1075949.	1140116.	852077.			Flow Treated		854358.	1425351.	1487101.	1200362	1286845.	1035039.	993412.	865471.	1078169.	1305347	. 120051	1082775.	1151774.	1864922.	1455440.	1460820.	1051005	1291208.	1087380.	1395054.	1012756.	1294230.	1313310.	1001120.	1186828	1238252	1267900.	1095006.	979618.	754243.	1191006.	1222501.	"ZENTIST
1101005	1000501	1311092	922087.		806527.		1075949.	1140116.	852077.			FLOW VOL	10011	854358.	1425351.	1487101.	1209562	1286845.	1035039.	993412.	865471.	1078169.	1313553.	12005170	1082775.	1151774.	1864922.	1455440.	1460820.	1051005.	1291208.	1087380.	1395054.	1012756.	1294230.	1313310.	1661/20.	1186878	1238252	1267900.	1095006.	979618.	754243.	1191006.	1212001.	.2601161
1002	1002	1994	1995.	1996.	1997.	1998.	1999.	2000.	2001.		HS 10	Year		1957.	1958.	1959.	1961	1962.	1963.	1964.	1965.	1966.	1967.	1969	1970.	1971.	1972.	1973.	1974.	1076	1977.	1978.	1979.	1980.	1981.	1982.	1983.	1005	1986	1987.	1988.	1989.	1991.	1992.	1993.	- 777T

96.2	95.5	97.5	95.6	96.1	96.3	95.8			TSS Removal			97.4	n	÷	0.80		98.6	1.86	98.5	98.0	98.0	98.2	98.2	98.0	97.6	1.00	0.10	1 00	6.79	98.1	98.7	96.7	97.3	1.79	97.8	1.00	0.00	6.86	98.6	97.8	1.86	98.3	98.5	98.0	97.9	98.0	97.4	98.8
100.0	100.0	100.0	100.0	100.0	100.0	100.0			Flow Treated	(%)	1.5	ó e	0.001	0.001	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.001	0.001	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	.00	100.0
0.			.0	.0	.0	.0			TSS BVD	(पा)	ļ					0.	.0	0.	.0	.0	0.	.0	°,	0.						.0	0.	.0	0.	0.					.0	0.	0.	.0	.0	.0	.0	0.	0.	0.
17.	28	12.	23.	20.	21.	20.			TSS Out	(वा)		.11		- 01		10.	.00	10.	.7.	11.	12.	10.	10.	10.	14.	. 57	.01	. 77	12.	12.	7.	19.	14.	17.	13.		. 01			12.	б	л. Л	θ.	12.	13.	9.	16.	.9
421.	299	465.	494.	498.	543.	450.			TSS Rem	(qT)		436.			576	548.	541.	514.	502.	542.	612.	519.	529.	512.	564.	. 111			552.	603.	493.	561.	512.	572.	568.		562	524	525.	521.	455.	270.	584.	581.	602.	429.	611.	471.
438	627	477.	516.	518.	564.	470.			TSS In	(TP)	13.4	448.	. 510	. 110	. 185	558	549.	524.	509.	553.	624.	529.	538.	523.	578.	746.	.020	562	563.	615.	500.	580.	526.	589.	581.	274	573	533.	533.	533.	464.	274.	592.	593.	615.	438.	627.	477.
922087.	1317928	806527.	1073450.	1075949.	1140116.	852077.			Flow Treated	~	and the second se	854358.	.1620391.	1 250705	1209362	1286845	1035039.	993412.	865471.	1078169.	1313553.	1205347.	1206572.	1082775.	1151774.	14554922.	1 A 60020	1364043	1051996.	1291208.	1087380.	1395054.	1012756.	1294230.	1313310.	1202171	1186828	1238252	1267900.	1095006.	979618.	754243.	1191006.	1222501.	1311092.	922087.	1317928.	806527.
922087		806527.	1073450.	1075949.	1140116.	852077.			Flow Vol	(ft3)	1.13	854358.	. 1020291	1050705	1209262	1286845	1035039.	993412.	865471.	1078169.	1313553.	1205347.	1206572.	1082775.	1151774.	1864922.	1 A60800	. 070005T	1051996.	1291208.	1087380.	1395054.	1012756.	1294230.	1313310.	1212021	1186828	1238252	1267900.	1095006.	979618.	754243.	1191006.	1222501.	1311092.	922087.	1792	806527.
1995	1996	1997.	1998.	1999.	2000.	2001.		HS 12		4	anale .	1957.	. 8621		1961	1962	1963.	1964.	1965.	1966.	1967.	1968.	1969.	1970.	1971.	-2/5T	1074	1075	1976.	277	978	1979.	1980.	1981.	1982.	1084	1985	986	186	988	989	166	1992.	1993.	1994.	1995.	5	1997.

1998. 1073450. 1073450. 516 505. 12. 2001. 105149. 1073450. 518 508. 11. 2001. 852077. 852077. 470. 457. 13. 852077. 852077. 554 554. 852077. 852077. 554 556. 11. 852077. 13. 852077. 14. Nak 85107. 14. Nak 1.50 0.9 Nak 1.4 Nak 1.50 0.9 Nak 1.4 Nak 1.5	1073450. 1073450. 516. 505 1140116. 1140116. 564. 552 852077. 852077. 470. 457 852077. 852077. 470. 457 852077. 852077. 470. 457 852077. 852077. 470. 457 852077. 852077. 470. 457 852077. 852077. 470. 457 852077. 852077. 470. 457 852077. 852077. 470. 457 852077. 852077. 870. 457 852077. 852077. 870. 457 852077. 852077. 870. 457 8500 814. 818 818 8500 0.9 1.4 818 8.75 2.9 838 838 8.75 2.9 838 838 8.75 3.5 838 838 8.75 3.5 838 838 8.75 3.5 838 838 <	1073450. 1 1075949. 1 1140116. 1 852077. 852077. 852077. 1 Summary of Toronto Rainf ************************************	073450. 075949. 140116. 852077. ***********************************	0	505. 552. 457.	12.	0000
1073450. 1073450. 516. 505. 1073450. 10759450. 518. 505. 1140116. 1140116. 544. 552. 1140116. 544. 552. 554. 552. 554. 552. 554. 552. 554. 552. 557. 554. 554. 555. 557. 558. 554. 555. 557. 140. (L/s) Percentage % 14. NaM 3.00 1.8 NaM 3.00 0.9 NaM 3.00 1.8 NaM 3.00 0.9 NaM 3.00 1.8 NaM 3.00 0.9 NaM 1.5 NaM 3.00 1.8 NaM 3.00 5.2 NaM 1.8 NaM 3.00 5.2 NaM 1.8 NaM 3.00 5.2 NaM 3.0 1.4 NaM 3.0 N	1073450. 1073450. 516. 508 11075949. 1075949. 518. 508 11075949. 1075949. 518. 508 1100116. 100116. 564. 457 470. 470. 470. 470. 457 470. 470. 470. 470. 457 470. 11.8 max 1.4 max 1.4 max 3.75 2.9 max 4.9 max 3.75 2.9 max 4.9 max 4.19 max 3.75 2.9 max 4.9 max 4.9 max 4.75 2.9 max 4.9 max 4.9 max 4.75 2.9 max 4.75	1075949. 1 1140116. 1 1140116. 1 852077. 852077. 8110 Summary of Toronto Rainf ************************************	075450. 1400116. 1400116. 8520116. 8520116. 8520116. all Intensit ************************************	U U	505 505 4572.		
1075949. 1075949. 518. 508. 11400116. 11400116. 552. 552. mumary of Toronto Rainfall Intensities * 552. ummary of Toronto Rainfall Intensities * 554. 552. ummary of Toronto Rainfall Intensities * 554. 552. ummary of Toronto Rainfall Intensities * 554. 552. 1150 0.0 Percentage % * 1.50 0.14 NaN * 3.00 1.4 NaN * 3.00 1.4 </td <td>1075949. 1075949. 518. 508 1140116. 1140116. 564. 552 952077. 852077. 470. 457 ummary of Toronto Rainfall Intensities * 116.00 0.9 NaM 116.00 0.9 NaM 110.00 6.2 NaM 110.00 6.2 NaM 110.00 9.5 NaM 110.00<td>1075949. 1 1140116. 1 852077. 852077. 1 summary of Toronto Rainf ************************************</td><td>075949. 140116. 852077. ********* all Intensit ************************************</td><td>Ø</td><td>4552 . 457 .</td><td>11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14</td><td></td></td>	1075949. 1075949. 518. 508 1140116. 1140116. 564. 552 952077. 852077. 470. 457 ummary of Toronto Rainfall Intensities * 116.00 0.9 NaM 116.00 0.9 NaM 110.00 6.2 NaM 110.00 6.2 NaM 110.00 9.5 NaM 110.00 <td>1075949. 1 1140116. 1 852077. 852077. 1 summary of Toronto Rainf ************************************</td> <td>075949. 140116. 852077. ********* all Intensit ************************************</td> <td>Ø</td> <td>4552 . 457 .</td> <td>11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14</td> <td></td>	1075949. 1 1140116. 1 852077. 852077. 1 summary of Toronto Rainf ************************************	075949. 140116. 852077. ********* all Intensit ************************************	Ø	4552 . 457 .	11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	
1140116 1140116 564 552 B32077 B32077 540 554 552 ummary of Toronto Rainfall Intensities * * * ummary of Toronto Rainfall Intensities * * * Intensity (mm/h) Flow (L/s) Percentage % * Intensity (mm/h) Flow (L/s) Percentage % * 2:25 1.4 NaN NaN 3:00 2:3 NaN NaN 3:00 2:3 NaN NaN 2:15 1.4 NaN NaN 2:25 1.4 NaN NaN 2:16 0.9 9 NaN 2:25 1.4 NaN NaN 2:25 14.3 NaN NaN 2:25 14.3 NaN NaN 2:25 14.3 NaN NaN 2:3:5 14.3 NaN NaN 2:3:5 14.3 NaN NaN 2:3:5 14.3 NaN NaN 2:2:5 NaN NaN </td <td>1140116. 1140116. 564. 552 852077. 852077. 470. 457 ummary of Toronto Rainfall Intensities * ummary of Toronto Rainfall Intensities * tummary of Toronto Rainfall Intensities * tumesity (mm/h) Flow (L/s) Percentage % 1.50 0.9 NaM 3.75 2.9 NaM 3.75 2.9 NaM 3.75 3.5 NaM 0.00 9.5 NaM 110.00 9.5 NaM 23.25 14.3 NaM 23.25 14.3 NaM 23.25 14.3 NaM 23.25 14.3 NaM 25.9 9.5</td> <td>1140116. 852077. ***********************************</td> <td>852077, ***********************************</td> <td>Q</td> <td>457.</td> <td>11 11 11</td> <td>00</td>	1140116. 1140116. 564. 552 852077. 852077. 470. 457 ummary of Toronto Rainfall Intensities * ummary of Toronto Rainfall Intensities * tummary of Toronto Rainfall Intensities * tumesity (mm/h) Flow (L/s) Percentage % 1.50 0.9 NaM 3.75 2.9 NaM 3.75 2.9 NaM 3.75 3.5 NaM 0.00 9.5 NaM 110.00 9.5 NaM 23.25 14.3 NaM 23.25 14.3 NaM 23.25 14.3 NaM 23.25 14.3 NaM 25.9 9.5	1140116. 852077. ***********************************	852077, ***********************************	Q	457.	11 11 11	00
852077. 852077. 852077. 457. ummary of Toronto Rainfall Intensities * ummary of Toronto Rainfall Intensities * ummary of Toronto Rainfall Intensities * Intensity (mm/h) Flow (L/s) Percentage % 1.50 0.9 NaN 3.00 1.4 NaN 3.00 1.4 NaN 3.00 1.4 NaN 5.75 2.9 NaN 5.75 3.5 NaN 5.75 14.3 NaN 5.75 14.3 NaN 20.00 9.5 NaN 21.55 14.3 NaN 22.25 14.3 NaN 23.25 14.3 NaN 23.26 9.5 NaN 23.28 14.3 NaN	<pre>852077. 852077. 470. ************************************</pre>	852077. ***********************************	852077. ********* all Intensit ********** *************************	U U	457.	тз,	ò
immary of Toronto Rainfall Intensities * immary of Toronto Rainfall Intensities * immary of Toronto Rainfall Intensities * intensity (mm/h) Flow (L/s) Percentage 1:50 0:9 NaN 3:75 2.3 NaN 3:75 2.9 NaN 3:75 2.9 NaN 3:75 2.9 NaN 3:75 2.9 NaN 3:75 1.4 NaN 3:75 1.4 NaN 3:75 1.4 NaN 3:75 2.9 NaN 3:75 1.4 NaN 3:75 1.4 NaN 2:25 1.4 NaN 3:75 1.4 NaN 2:3 2.3 NaN 2:3 2.5 NaN 2:50 1.4.3 NaN 2:51 1.4.3 <td><pre>immary of Toronto Rainfall Intensities immary of Quantity and Quality Results at immary of Quantity at</pre></td> <td><pre>************************************</pre></td> <td>**************************************</td> <td>Ø</td> <td></td> <td></td> <td></td>	<pre>immary of Toronto Rainfall Intensities immary of Quantity and Quality Results at immary of Quantity at</pre>	<pre>************************************</pre>	**************************************	Ø			
<pre>************************************</pre>	<pre>************************************</pre>	<pre>************************************</pre>	**************************************	Ø			
<pre>************************************</pre>	<pre>************************************</pre>	<pre>************************************</pre>	**************************************	C)			
<pre>ummary of Toronto Rainfall Intensities * ***********************************</pre>	<pre>ummary of Toronto Rainfall Intensities * ***********************************</pre>	Summary of Toronto Rainf ************************************	all Intensit ************************************	۵.			
Intensity (mm/h) Flow (L/s) Percentage 1.50 0.9 NaN 2.225 1.4 NaN 3.00 1.8 NaN 3.150 0.9 NaN 3.75 2.9 NaN 5.75 3.5 NaN 5.75 2.9 NaN 5.75 3.5 NaN 10.00 6.2 NaN 2.325 14.3 NaN 10.00 6.2 NaN 23.25 14.3 NaN 20 14.3	<pre>rntensity (mm/h) Flow (L/s) Percentage 1.50 0.9 NaN 2.25 1.4 NaN 3.00 1.8 NaN 3.75 2.9 NaN 4.75 3.5 NaN 1.4.3 NaN 10.00 6.2 NaN 14.3 NaN 15.50 14.3 NaN 23.25 14.3 NaN 14.3 Con 14.4 Con 14.4 Con 15.50</pre>	**************************************	w (L/s) 0.9 1.4 1.8 1.8 2.3 3.9 3.5 6.2 6.2 9.5	۵.			
<pre>Intensity (mm/h) Flow (L/s) Percentage 1.50 0.9 NaN 2.25 1.4 NaN 3.75 0.9 NaN 5.75 1.4 NaN 5.75 2.9 NaN 8.00 6.2 NaN 10.00 6.2 NaN 11.8 NaN 10.00 6.2 NaN 11.8 NaN 23.25 14.3 NaN 14.3 NaN 14.3 NaN 14.3 NaN 15.50 1.14.3 NaN 14.3 NaN 15.50 1.14.3 NaN 14.3 NaN 15.50 1.14.3 NaN 15.50 1.14.3 NaN 15.50 1.14.3 NaN 14.9 NaN 15.50 1.14.3 NaN 14.9 NaN 15.50 1.14.3 NaN 14.9 NaN 15.50 1.14.3 NAN 15.50</pre>	<pre>Intensity (mm/h) Flow (L/s) Percentage 1.50 0.9 NaN 2.25 1.4 NaN 3.75 0.9 NaN 5.75 2.9 NaN 4.75 2.9 NaN 10.00 6.2 NaN 10.00 6.2 NaN 11.3 NaN 23.25 14.3 NaN 23.25 14.3 NaN 15.50 14.3 NaN 16.2 NAN 1</pre>	Intensity (mm/h) 1.50	w 1.1.8 1.1.8 2.3 3.9 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2				
1.50 0.9 Naw Naw 3.00 2.25 1.4 Naw 3.00 3.75 2.9 Naw Naw 5.75 2.9 Naw Naw 8.00 6.2 Naw Naw 0.00 6.2 Naw Naw Naw 14.9 Naw Naw 15.50 0.00 6.2 Naw Naw Naw 14.3 Naw Naw 15.50 14.3 Naw Naw Naw 14.3 Naw Naw Naw 14.3 Naw Naw 14.3 Naw Naw Naw 14.3 Naw Naw Naw Naw 14.3 Naw Naw Naw 14.3 Naw Naw Naw Naw Naw Naw 14.3 Naw 14.3 Naw Naw Naw Naw 14.3 Naw Naw Naw 14.3 Naw Naw Naw Naw Naw Naw 14.3 Naw	1.50 0.9 Naw 2.25 1.4 Naw 3.00 1.8 Naw 3.75 2.9 Naw 4.75 2.9 Naw 8.00 4.9 Naw 10.00 6.2 Naw 10.00 6.2 Naw 11.3 50 14.3 Naw 23.25 14.3 Naw 23.25 14.3 Naw 14.3 Naw 15.50 14.3 Naw 14.3 Naw 15.50 14.3 Naw Naw 14.3 Naw 15.50 14.3 Naw 14.3 Naw Naw 14.3 Naw 15.50 14.3 Naw 14.3 Naw Naw 14.3 Naw 15.50 14.3 Naw Naw 14.3 Naw 14.3 Naw Naw 14.3 Naw Naw 14.3 Naw Naw 14.3 Naw Naw 14.3 Naw Naw 14.3 Naw Naw 14.3 Naw Naw 14.3 Naw Naw Naw Naw Naw Naw Naw Naw Naw Naw	1.50	0 H H V V W 4 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nan Nan Nan Nan Nan Nan Nan Nan			
2.25 1.4 Naw 3.00 1.8 Naw 3.75 2.9 Naw 5.75 3.5 Naw 5.75 3.5 Naw 5.00 6.2 Naw 0.000 6.2 Naw 2.00 14.3 Naw 2.20 14.3 Naw 14.3	2.25 1.4 NaN 3.00 1.8 NaN 4.75 2.9 NaN 5.75 2.9 NaN 8.00 4.9 NaN 10.00 6.2 NaN 15.50 14.3 NaN 15.50 14.3 NaN 15.50 9.5 NaN 14.3 NaN 23.25 14.3 NaN * Values are instantaneous at indicated time step * * Values are instantaneous at indicated time step * ***********************************		<u>ี</u> 4 œ น อ ช อ ช อ ช 4 œ น อ ช อ ช อ ช อ ช อ ช อ ช อ ช อ ช อ ช อ ช อ	Nan Nan Nan Nan Nan Nan Nan			
3.00 1.8 NaN 3.75 2.3 NaN 4.75 2.9 NaN 5.75 3.5 NaN 6.2 NaN 0.000 6.2 NaN 0.000 6.2 NaN 2.25 14.3 NaN 14.3 NaN	3.00 1.8 NaN 3.75 2.9 NaN 4.75 2.9 NaN 5.75 3.5 NaN 8.00 4.9 NaN 10.00 6.2 NaN 15.50 14.3 NaN 15.50 14.3 NaN 23.25 14.3 NaN * Values are instantaneous at indicated time step * * Values are instantaneous at indicated time step * ***********************************	2.25	н и и и и и и ю и о и о и о и и	Nan Nan Nan Nan Nan Nan			
3.75 2.3 NaN 4.75 2.9 NaN 5.75 3.5 NaN 6.2 NaN 6.2 NaN 0.000 6.2 NaN 0.2.25 14.3 NaN 0.2.25 14.3 NaN 0.2.25 14.3 NaN 0.2.26 Nal 14.3 NaN 14.3 NaN	<pre>3.75 2.3 NaW 4.75 2.9 NaN 5.75 3.5 8.8 8.00 4.9 NaN 10.00 6.2 NaN 15.50 14.3 NaN 15.50 14.3 NaN 23.25 14.3 NaN * values are instantay and Quality Results at * * Values are instantaneous at indicated time step * ***********************************</pre>	3.00	0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Nan Nan Nan Nan Nan Nan			
<pre>4.75 2.9 Naw 5.75 3.5 Naw 6.2 Naw 0.000 6.2 Naw 2.50 14.3 Naw 23.25 14.3 Naw 23.2 Naw 23.2 Naw 24.3 Naw 25.2 Naw Naw 25.2 Naw Naw Naw Naw Naw Naw Naw Naw Naw Naw</pre>	 4.75 5.75 5.75 5.75 5.75 5.75 5.75 5.75 8.00 6.2 8.14.3 8.00 8.2 8.4 8.4<!--</td--><td>3.75</td><td>9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>Nan Nan Nan Nan Nan</td><td></td><td></td><td></td>	3.75	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Nan Nan Nan Nan Nan			
9.10 4.9 Naw 5.50 4.9 Naw 5.50 9.5 Naw 5.50 9.5 Naw 5.50 9.5 Naw 5.50 9.5 Naw 23.25 14.3 Naw 23.25 14.3 Naw 23.25 14.3 Naw 20 Unlity Results at Naw 20 INFlow in cfs. Naw 20 INFlow in cfs. Naw 21 200 INFlow in cfs. 23 are instantaneous at indicated time step Naw 23 Time Flow Fotal Su 23 Time Flow Su Su 24 0.007 89. Su Su 24 2.240 2.94. Su Su 24 2.240 2.94. Su Su 25 0.000 0.000 Su Su Su 23 2.240 2.94. 2.94. Su Su 241 0.0000	9.10 0.00 4.9 NaN 10.00 6.2 NaN 15.50 9.5 NaN 23.25 14.3 NaN * Summary of Quantity and Quantity Results at * * * Location 200 INFlow in cfs. * * Values are instantaneous at indicated time step * * GoVenture Capital Group Franklin Street Date Flow Total Su Mo/Da/Year Time Flow Total Su	4.75	0.4.00 0.0.01 0.01	Nan Nan Nan Nan			
<pre>0.00 6.2 NaW 5.50 9.5 NaN 0.50 9.5 NaN 23.25 14.3 NaN 23.25 14.3 NaN 24.3 NaN 25.50 14.3 20 Nality Results at 20 INFlow in cfs. 20 INFlow in cfs. 20 INFlow in cfs. 20 INFlow in cfs. 20 10 10 10 10 10 10 10 10 20 10 10 10 10 10 10 20 10 200 10 10 10 20 10 10 1</pre>	10.00 6.2 NaN 15.50 9.5 NaN 23.25 14.3 NaN 23.25 14.3 NaN * * *********************************	8.00	6.2 9.5	NaN NaN NaN			
<pre>5.50 9.5 NaN 53.25 14.3 NaN 74.4.3 NaN 75.55 14.3 NaN 74.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.</pre>	15.50 9.5 NaN 23.25 14.3 NaN 23.25 14.3 NaN ***********************************	10.00	9.5	NaN			
<pre>23.25 14.3 Naw 23.25 14.3 Naw 24. of Quantity and Quality Results at 27. of Quantity and Quality Results at 28. are instantaneous at indicated time step 29. are instantaneous at indicated time step 20. Time Flow Total Su 20. Time Flow Total Su 20. 0.007 89. 20. 0.000 20. 0.004 68. 20. 20. 20. 204. 20. 20. 204. 20.</pre>	23.25 14.3 NaN 23.25 14.3 NaN 23.25 14.3 NaN 23.25 14.3 Nan 23.25 14.3 Nan 24.2 Summary of Quantity and Quality Results at 25.2 200 INFlow in cfs. 25.2 200 26.2 10 cation 200 INFlow in cfs. 26.2 200 INFlow in cfs. 27.2 200 27.2 200 27	15.50		NaN			
<pre>************************************</pre>	<pre>************************************</pre>	23.25	14.3				
<pre>v of Quantity and Quality Results at con 200 INFlow in cfs. s are instantaneous at indicated time step r************************************</pre>	<pre>************************************</pre>	a substantia de la contraria de	and the second se				
<pre>-r valuery and value results at .on 200 INFlow in cfs. at</pre>	<pre>autory or your try and yourly resurds at * Jocation 200 INFlow in cfs. * * Values are instantaneous at indicated time step * ***********************************</pre>	·*************************************	*****	*****			
are instantaneous at indicated time step ************************************	<pre>* Values are instantaneous at indicated time step * ***********************************</pre>	2000	in ofe	*			
<pre>####################################</pre>	<pre>************************************</pre>	re instantane	indicated ti				
Time Flow Fotal File Flow Fotal File Flow Fotal File 0.007 File File 0.007 File File 0.034 File File 0.000 Cub-Ft	Flow Total cfs mg/l	**************************************	************* 1in Street	*****			
Time Flow Total Bar Hr:Min cfs mg/l Bar Bars 0.007 means 0.007 0.034 std devs 0.034 ralue 0.034 0.034 ds 0.034 0.034 ds 0.034 2.240 240 ds 0.000 2400 2400	Flow Total cfs mg/1						
max Hr:Min mfs mg/l 0.007 means 0.034 std devs 0.034 2.240 ralue 0.000 0.000 24 ds 4375864 24 24 ds 0.000 24	cfs mg/1	Time					
 means		Hr:Min	mg/1				
means 0.007 std devs 0.034 ralue 2.240 aalue 4375864. 24 dds 4375864. 24		1					
sca devs 0.034 ralue 2.240 aalue 4375864. 24 ads 4375864. 24	means 0.007	means					
0.000 4375864.24 Cub-Ft POU	std devs 0.034	stu devs					
2439 ads 4375864. 2439 Cub-Ft POUNT	0.000						
Cub-Ft P	1375864 2430	437	02490				
	Cub-Ft B		<u></u> еч				

97.7 97.9 98.0 97.3

100.0 100.0 100.0 100.0

> ===> SWMM 4.4 simulation ended normally. Always check output file for possible warning messages.

SWIN	SWMM 4.4	Simulat	ion Date an	Simulation Date and Time Summary	ary *
*******	******	*******	*******	***************************************	*****
Starting	Date	October	15, 2024		*
	Time		17:56:14.599	6	*
Ending	Date	October	15, 2024		*
	Time		17:56:20.542	2	*
Elapsed	Time		0.099	0.099 minutes.	*
Elapsed	Time		5.943	5.943 seconds.	*

MASS DEP "Standard Method to Convert Required Water Quality Volume to a Discharge Rate for Sizing Flow Based Manufactured Proprietary Stormwater Treatment Practices"

DMH#114-Water Quality Unit

For First 1.0-Inch Runoff WQV

Step 1: Area of Impervious Surface to Structure

2.567 acres 55.34% Impervious = 1.42 Acres Impervious 1.42 Acres x .0015625 sq mi = $2.2x(10^{-3})$ square miles.

Step 2: Tc of Train

Total Tc to DMH#109	9.8 min or 0.163 hours
DMH#113 to DMH#114	0.3 min
DMH#112 to DMH#113	0.4 min
DMH#111 to DMH#112	0.6 min
DCB#23 to DMH#111	3.5 min
P123 to DCB#123:	5.0 min

Step 3: Determine qu

From Figure 4:

Tc @ 0.167, qu=700csm/in

Step 4: Determine Q(1)

Q(1) = (qu)x(A)x(WQV)

 $Q(1) = (700 \text{csm/in})x(2.2x(10^{-3})) x(1.0 \text{ in})$

Q(1) = 1.54 CFS

<u>Determination</u> Determination of Water Quality Flow rates for units by Connecticut DOT (CONNDOT)

From Technology Verification HS 6 Treatment Flow rate 2.6 cf.s > 1.54 c.f.s.

"Pass"

HydroGuard HS6 to be utilized in Design.

INSTRUCTIONS:

1. Sheet is nonautomated. Print sheet and complete using hand calculations. Column A and B: See MassDEP Structural BMP Table

2. The calculations must be completed using the Column Headings specified in Chart and Not the Excel Column Headings

3. To complete Chart Column D, multiple Column B value within Row x Column C value within Row

To complete Chart Column E value, subtract Column D value within Row from Column C within Row
 Total TSS Removal = Sum All Values in Column D

	E Remaining *C) Load (C-D)	0.75	0.18	*Equals remaining load from previous BMP (E)
	D Amount Removed (B*C)	0.25	0.57	*Equals remaining load
	C Starting TSS Load*	1.00	0.75	Total TSS Removal =
DMH#114	B TSS Removal Rate ¹	0.25	0.76	Prepared By: Hannigan Engineering, Inc.
Location: DMH#114	A BMP ¹	Deep Sump Hooded Catch Basin	Hydroworks Unit HS6	Project:

Non-automated: Jan. 31, 2019

Summary for Reach DMH114: TO DMH-K1

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 2.314 ac, 61.30% Impervious, Inflow Depth > 0.81" for 1-Year event

 Inflow =
 0.94 cfs @
 12.14 hrs, Volume=
 0.157 af <= wqv</td>

 Outflow =
 0.94 cfs @
 12.14 hrs, Volume=
 0.157 af, Atten= 0%, Lag= 0.0 min

 Routed to Reach DP4 : DMH-K1
 DMH-K1
 0.157 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.50 fps, Min. Travel Time= 0.0 min Avg. Velocity = 2.15 fps, Avg. Travel Time= 0.1 min

Peak Storage= 1 cf @ 12.14 hrs Average Depth at Peak Storage= 0.23', Surface Width= 1.08' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 18.57 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 8.0' Slope= 0.0313 '/ Inlet Invert= 459.00', Outlet Invert= 458.75'

Summary for Subcatchment P123: TO DCB#23

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.12 cfs @ 12.15 hrs, Volume= 0.017 af, Depth= 0.27" Routed to Reach DCB23 : TO DMH#111

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr D 1-Year Rainfall=2.58"

A	rea (sf)	CN	Description		
	20,008	39	>75% Gras	s cover, Go	ood, HSG A
	13,338	98	Paved park	ing, HSG A	
	33,346	63	Weighted A	verage	
	20,008		60.00% Pe	vious Area	
	13,338		40.00% Im	pervious Are	ea
15	1				
Tc	Length	Slope			Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.5	40	0.1000	0.27		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.13"
0.2	10	0.0200	0.86		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.13"
0.7	121	0.0200	2.87		Shallow Concentrated Flow,
	0.0				Paved Kv= 20.3 fps
3.4	171	Total.	Increased t	o minimum	$T_c = 5.0 \text{ min} <= t_c$

Summary for Reach DCB23: TO DMH#111

[52] Hint: Inlet/Outlet conditions not evaluated

 Inflow Area =
 0.766 ac, 40.00% Impervious, Inflow Depth =
 0.27" for 1-Year event

 Inflow =
 0.12 cfs @
 12.15 hrs, Volume=
 0.017 af

 Outflow =
 0.10 cfs @
 12.22 hrs, Volume=
 0.017 af, Atten= 12%, Lag= 3.9 min

 Routed to Reach DMH111 : TO DMH#112
 0.017 af, Atten= 12%, Lag= 3.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.17 fps, Min. Travel Time= 1.9 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 3.5 min<=tc

Peak Storage= 12 cf @ 12.18 hrs Average Depth at Peak Storage= 0.11', Surface Width= 0.63' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 3.97 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 250.0' Slope= 0.0124 '/' Inlet Invert= 466.70', Outlet Invert= 463.60'

Summary for Reach DMH111: TO DMH#112

[52] Hint: Inlet/Outlet conditions not evaluated

- [61] Hint: Exceeded Reach DCB19 outlet invert by 0.05' @ 12.15 hrs
- [61] Hint: Exceeded Reach DCB22 outlet invert by 0.05' @ 12.15 hrs
- [61] Hint: Exceeded Reach DCB23 outlet invert by 0.05' @ 12.15 hrs

Inflow Area = 1.139 ac, 44.50% Impervious, Inflow Depth = 0.40" for 1-Year event Inflow = 0.29 cfs @ 12.14 hrs, Volume= 0.038 af Outflow = 0.28 cfs @ 12.15 hrs, Volume= 0.038 af, Atten= 1%, Lag= 0.4 min Routed to Reach DMH112 : TO DMH#113

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.76 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.61 fps, Avg. Travel Time= 0.6 min <=Tc

Peak Storage= 5 cf @ 12.15 hrs Average Depth at Peak Storage= 0.15', Surface Width= 0.72' Bank-Full Depth= 1.00' Flow Area= 0.8 sf, Capacity= 5.63 cfs

12.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 60.0' Slope= 0.0250 '/' Inlet Invert= 463.50', Outlet Invert= 462.00'

Summary for Reach DMH112: TO DMH#113

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach UGS2B outlet invert by 0.12' @ 12.15 hrs

 Inflow Area =
 1.770 ac, 59.09% Impervious, Inflow Depth > 0.78" for 1-Year event

 Inflow =
 0.50 cfs @
 12.16 hrs, Volume=
 0.116 af

 Outflow =
 0.50 cfs @
 12.16 hrs, Volume=
 0.116 af, Atten= 1%, Lag= 0.3 min

 Routed to Reach DMH113 : TO DMH#114
 To DMH#114
 14

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.20 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.43 fps, Avg. Travel Time= 0.4 min<=tc

Peak Storage= 5 cf @ 12.16 hrs Average Depth at Peak Storage= 0.22', Surface Width= 1.05' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 11.23 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 35.0' Slope= 0.0114 '/' Inlet Invert= 460.20', Outlet Invert= 459.80'

Summary for Reach DMH113: TO DMH#114

[52] Hint: Inlet/Outlet conditions not evaluated [61] Hint: Exceeded Reach DMH112 outlet invert by 0.16' @ 12.15 hrs

 Inflow Area =
 2.314 ac, 59.12% Impervious, Inflow Depth > 0.76" for 1-Year event

 Inflow =
 0.85 cfs @
 12.14 hrs, Volume=
 0.147 af

 Outflow =
 0.84 cfs @
 12.14 hrs, Volume=
 0.147 af, Atten= 0%, Lag= 0.2 min

 Routed to Reach DMH114 : TO DMH-K1
 To DMH-K1
 10.147 af, Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.21 fps, Min. Travel Time= 0.1 min Avg. Velocity = 1.65 fps, Avg. Travel Time= 0.3 min<=TC

Peak Storage= 6 cf @ 12.14 hrs Average Depth at Peak Storage= 0.26', Surface Width= 1.13' Bank-Full Depth= 1.50' Flow Area= 1.8 sf, Capacity= 13.32 cfs

18.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 28.0' Slope= 0.0161 '/' Inlet Invert= 459.70', Outlet Invert= 459.25'

******************************* * Lobow ----*

÷

*

* * * * * * ***

*

Storm Water Management Sizing Model Hydroworks, LLC	Version 4.4	Continuous Simulation Program	Based on SWMM 4.4H	Hydroworks, LLC	Graham Bryant	2003 - 2021	***********************************
		j.		2			***

Developed by

Distributed and Maintained by

4

*

*	

*	
-44	
- 22	
-×	
-	
-14	
*	
**	
T	
*	
100	
**	
30	
*	
5.0	
*	
*	
~	
*	
1.0	
*	
*	
*	
-	
**	
- C -	
*	
*	
*	
*	
*	
*	
*	
*	
**	

- If any problems occur executing this

- model, contact Mr. Graham Bryant at Hydroworks, LLC by phone at 888-290-7900 or by e-mail: support@hydroworks.com

"Nature is full of infinite causes which This model is based on EPA SWMM 4.4

* Entry made to the Rain Block

* Created by the University of Florida - 1988 * * Updated by Oregon State University, March 2000 *

GoVenture Capital Group Franklin Street DMH#114

HydroStorm Simulation

	**
Station Name Worcester Wso Ap	Worcester Wso Ap
Station Location	Massachusetts
Station, ISTA	9923
Beginning date, IYBEG (Yr/Mo/Dy)	1957/ 1/ 1
Ending date, IYEND (Yr/Mo/Dy)	2001/12/31
Minimum interevent time, MIT	T
Number of ranked storms, NPTS	10
NWS format, IFORM (See text)	T
Frint storm summary, ISUM (O-No 1-Yes)	0
Frint all rainfall, IYEAR (O-No 1-Yes)	0
Save storm event data on NSCRAT(1) (IFILE =0 -Do not save, =1 -Save data)	0
<pre>IDECID 0 - Create interface file 1 - Create file and analyze 2 - Synoptic analysis</pre>	N
Plotting position parameter, A	0.40
Storm event statistics, NOSTAT	1100
EA (from optional group B0)	2
 U, DO NOT INCLUCE NULC CUMULATIVE VAL 1, AVERAGE NCDC cumulative values. 2, Use NCDC cumulative value as inst. 	values. ist. rain.
KODEPR (from optional group B0) Print NCDC special codes in event summary	0 ary:
1, on all days with codes pides: A = accumulated value,	esent. I = incomplete value,
	r code present

Precipitation output created using the Rain block Number of precipitation stations ...

Location Station Number ------

9923 1.

9923 CHECK TO BE SURE THEY MATCH. STATION ID ON PRECIP. DATA INPUT FILE = 2302 REQUESTED STATION ID =

Note, 15-min. data are being processed, but hourly print-out, summaries, and statistics are based on

*** *** **** Entry made to the Runoff Block, last updated by # Oregon State University, and Camp, Dresser and "And wherever water goes, amoebae go along for Tom Robbins McKee, Inc., March 2002. the ride"

GoVenture Capital Group Franklin Street

DMH#114

subcatchment lines. Infil.tration volume regenerates during non rainfall periods. N -0 Maximum infiltration volume is limited to RMAXINF input on Quality is simulated - KWALTY Snowmelt parameter - ISNOW Horton infiltration equation used - INFILM..... Number of rain gages - NRGAG ..

IVAP is negative. Evaporation will be set to zero

during time steps with rainfall.

<pre>raporation data on lin raporation data on lin of hour at start of storm SERO at start of storm input print control graph plot control graph plot control output print control output print control and use load percenta number of groundwater day, year of start of day, year of start of the step length (second re step length (second re step length is t of impervious area * timfiltration model be or regeneration model be or regeneration of finf is read in for each su "</pre>	1	I I	1.	1.017	0	o	1	o	(=no) 0	, 1=yes) 0	convergence messages to 10000 (if simulated)	1/ 1/1957	300.	. 000	450.	20011231.0 Yr/Mo/Dy	depth 25.0	* DECAY 0.01000	********** Eùlo * **********		SEP. OCT. NOV. DEC.
<pre>raporation data on line(f day at start of storm of hour at start of storm (ZERO at start of storm (S. Customary units for m input print control graph plot control graph plot control druput print control headers every 50 lines - land use load percentage number of groundwater co day, year of start of s me step length (seconds) r of impervious area wit t of impervious area wit area wit t of impervious</pre>	s) F1 (F2) - IVAI	- NHR	Em - NMN	hours)					NOHEAD (0=yes,]		nvergence message				nds)		h zero detention	a = REGEN at	**************************************	* * * *	JUL.
<pre>raporation dd f day at star of hour at s s: Customary input print graph plot graph plot output prin headers ever land use loa number of gr any, year o day, year o day, year o to imfiltratio or regenerat t of impervi t of impervi t of impervi t of impervi t aporation Ra ####################################</pre>	ata on line(start of sto	t of storm ()	units for m		control	t control	50 lines	d percentage	oundwater co	start of	th (seconds)	th (seconds)	length (seco	is	ous area wit	n model bein ion of infil or each subc	*********** ipitation wi ************	############ oup F1 te (in/day) ###############	
	vaporation da	at	of hour at :	ZERO at star	S. Customary	input print	Runoff graph plot	output prin	headers ever	land use load	Limit number of gr	day, year o	me step leng	me step leng	Wet/Dry time step	tion length	t of impervi	infiltratio for regenerat is read in f	*************** Processed Prec	############### Data Gr Evaporation Ra ####################################	

************************ ************************************** CHANNEL AND PIPE DATA

Full FLOW (cfs) ings "Nu Mann-Max (£t) Depth Depth (£t) Intial (ft/ft) -----R Side Slope -----(ft/ft) L Side Slope (ft/ft) Invert -----Slope Width Length -----(ft) (ff) -----Channel . -----Type Drains NGTO: ţ Channel. NAMEG: # Input equen umber ----

0.0 0.0000 0.0000 0.0000 0.0 0.0 Dummy 200 201 н

0.0000 0.00E+00

0.0

********************************** ************************ SUBCATCHMENT DATA

(INCHES) 4.00000 MAXIMUM VOLUME H DECAY RATE GAGE -----NO. 0.00055 (1/SEC) MUMINIM MUMINUM STORAGE (IN) INFILTRATION 0.40 RATE (IN/HR) 2.50 ----0.200 PERV. DEPRES. IMPERV. 0.020 -----RESISTANCE FACTOR PERV. 0.250 IMPERV. 0.015 (FT/ET) SLOPE ------0.0200 SUBCATCHMENT PARAMETERS* AREA PERCENT IMPERV. 55.34 1.42 2.57 -2.57 (JAC) SEE LATER TABLE FOR OPTIONAL (LI) 334.39 HIDIM PERVIOUS AREA (ACRES) TOTAL TRIBUTARY AREA (ACRES) IMPERVIOUS AREA (ACRES) TOTAL NUMBER OF SUBCATCHMENTS ... 200 OR INLET CHANNEL SUBCATCH-MENT NO. 300 *NOTE . 1 H

0.00E+00 (IN/HR-FT^2) A3 1.000 M 82 CONSTANT (IN/HR-FT^B2) 0.000E+00 AZ MOTA === 2.600 BI TW A1 (FT) (IN/HR-FT^B1) 4.500E-05 2.00 -----2.00 (FT) 1 BC ELEVATIONS 0.00 (LI) STAGE -----0.00 BOTTOM -----(LI) GROUND 10.00 -----(EI) OR 602 TALET CHANNEL -----0 NUMBER -----CATCH SUB-

55.34

334.39

PERCENT IMPERVIOUSNESS

TOTAL WIDTH (FEET)

GROUNDWATER INPUT DATA

* GROUNDWATER INPUT DATA (CONTINUED) *

PROPERTIES SATURATED SOIL

(in/hr) INITIAL CAPACITY MOISTURE MILTING FIELD TNIOT HYDRAULIC CONDUCTIVITY (in/hr) POROSITY SUBCAT

OF ET (ft) PARAMETERS PCO HCO

FRACTION OF ET ET PARAMETERS TO UPPER ZONE DEPTH

MAX. DEEP PERCOLATION

NO.

PERCOLATION

0	.4000	5.000	.1500	. 3000	.3000	2.000E-03	10.00	15.00	14.00	
**************************************	<pre>********** tent of Su ********** subcatchm ment to s ************************************</pre>	<pre>************************************</pre>	******* L Channe ******** e for c ws.	r********* 1/Pipes r******** connectivit *********	* * * * * * *					
Channel or Pipe 201	No Tributary No Tributary	Tributary Channel/Pipes Tributary Subareas	ipes							
INLET 200	Tributary Tributary	rry Channel/Pipes	· · · · · · · · · · · · · · · · · · ·	201 300						
**************************************	<pre>************************************</pre>	**************************************	:****** followi :******	**************************************	**************************************					
<pre>* * * * * * * * * * * * * * * * * * *</pre>	######################################	######################################	######################################	****						
Description			Vari	Variable	Value					
Number of gu	ality con	Number of quality constituents	NQS	NQS	H					
Number of land uses	ind uses		UNALL	JILAND	r					
Standard cat	chbasin v	catchbasin volume	CBVOL		4.00	4.00 cubic feet				
Erosion is n	iot simula	Erosion is not simulated	IROS	Sec. 1	D					
DRY DAYS PRI	IOR TO STA	DRY DAYS PRIOR TO START OF STORM	DRYDAY		3.00 DAYS	DAYS				
DRY DAYS REQUIRED TO RECHARGE CATCHBASIN CONCENTRATION TO INITIAL VALUES	DUIRED TO	RECHARGE JION TO	DRYBSN		5.00	5.00 DAYS				
DUST AND DIRT STREET SWEEPING EFFICIENCY	RT PING EFFIC	TENCY	REFEDD.		0.000					
DAY OF YEAR ON WHICH STREET SWEEPING BEGINS	ON WHICH	4.1	KLINBGN		120					

0.350

			DNILIWIT			CLEANING	AVAIL.	DAYS SINCE
			BUILDUP	BUILDUP	BUILDUP	INTERVAL	FACTOR	LAST
AND USE	BUILDUP EQUATION TYPE	FUNCTIONAL DEPENDENCE OF	QUANTITY	POWER	COEFF.	IN DAYS	FRACTION	SWEEPING
LNAME)	(METHOD)	BUILDUP PARAMETER (JACGUT)	(MIIDD)	(DDPOW)	(DDFACT)	(CLFREQ)	(AVSWP)	(DSLCL)
Urban De	EXPONENTIAL (1)	AREA (1)	2.500E+01	0.500	60.000	30.000	0.300	30.000

÷

Total Su	mg/1	0	0	EXPONENTIAL (2)	0	POWER EXPONEN. (0)	F	AREA (1)	0	NO SNOW LINKAGE	25.000	0.500	60,000	0.000	0.000	1.100	3.000	100.000	0.000	0.000	0.000	0.000	T
	Constituent units	Type of units	KALC	Type of buildup calc	KWASH	Type of washoff calc	KACGUT	Dependence of buildup	LINKUP	Linkage to snowmelt	Buildup param 1 (QFACT1).	Buildup param 2 (QFACT2).		param 4	S	Washoff power (WASHPO)	Washoff coef. (RCOEF)	Init catchb conc (CBFACT)	Precip. conc. (CONCRN)	Street sweep effic (REFF)	Remove fraction (REMOVE).	1st order QDECAY, 1/day	Land use number

******************************* T/5m 0.0000 Total Susp has a concentration of ...

270

****************************** * REMOVAL FRACTIONS FOR SELECTED CHANNEL/PIPES * ********************************** + * FROM J7 LINES

CHANNEL/ CONSTITUENT

PIPE Total Susp 0.000 ----------201

				Total	Number	Input
			Tiand	Gutter		Loading
		Land	Use	Length	Catch-	load/ac
	No.	Usage	No.	10**2£t	Basins	Total Su
i						
	300	Urban De	н	6.70	4.00	0
Totals	(Loads	s in 1b or	cother)	6.70	4.00	0.0E+00

-

* DATA GROUP M1

0

* ********* *********** DATA GROUP M3 *

CHANNEL/INLET PRINT DATA GROUPS.....

-200

* Rainfall from Nat. Weather Serv. file * ***********************

GoVenture Capital Group Franklin Street DMH#114

ainfall	Station	Worcester	WSO	Ap
tate/Pro	vince	Massachuse	etts	

Rainfall Depth Summary (in)

49.3 4.2 4.0 2.4 а.4 а.5 2.5 4.5 5.4 4.2 3.9 7.6 4.2 9.9 9.9 3.5 2000. 2001.

Total Rainfall Depth for Simulation Period 2227.9 (in)

Rainfall Intensity Analysis (in/hr)

(%)	30.5	25.6	9.5	10.1		3.6		1.0	1.2		0.8	0.8	0.8			2.0				0.4	1.3	
(ii)	679.	571.	211.	224.	100.	80.	92.	64.	26.	29.	18.	18.	17.	13.	7.	15.	7.	12.	7.	8.	30.	
(%)	69.5		4.1	3.2							1.1					0.0						
(#)	52	15423	3295	2538	868	597		337	120	123	70	64	56	38	18	38	16	28	14	16	48	
(in/hr)			0.30							•								80	1.90	0.	> 2.00	

Total # of Intensities 79578

Daily Rainfall Depth Analysis (in)

(8)	10.4							1.1			4.2				1.4		
(ii)		143.	3	166.	134.		m	113.	0	H	93.		86.				
(%)	31.7	17.7	10.2		- 9	4.9		0.4			1.6	1.4	1.2			•	
(#)	1790	966	575	489	302	279	209	152		126	89	19	69	49	56	44	
(ui)	0.10	. •	m.		ŝ.	0.60	5.	0.80	σ.		1.10	1.20	1.30	1.40	1.50	1.60	

2.9	2.2	1.6	1.4	12.1	
64.	49.	37.	31.	270.	
0.7	0.5	0.4	0.3	1.8	
39	28	20	9T	104	
1.70	1.80	1.90	2.00	> 2.00	

Total # Days with Rain 5639

			seconds.	hours.	hours.	days.
1/ 1/2002	3056067	2002001	2. se	0.00	394464.0000	16436.0000
ar) =	steps =					
Yea	e		II.		H	
/Day/	f tin	ate	day	day	time	time
(Mo	0 H	D H	ξO	μo	bu-	bu-
Date	numbe	Julia	time	time	runni	runni
Final	Total	Final	Final	Final	Final	Final running time =

Subcatch 300	# Steps 13588193	# Calls 3387191	Subcatch	# Steps	# calls	Subcatch	# Steps	# Calls
*********** * Extro * # Steps : * # Calls : ***********	********** apolation ==> Total ==> Total	************ Summary fo Number of Number of	<pre>************************************</pre>	**************************************				
Chan/Pipe	# Steps		<pre># Calls Chan/Pipe</pre>	# Steps	# Calls	<pre># Calls Chan/Pipe</pre>	# Steps	# Calls
201	0	0	0					
*****	*****	*****	***************************************	****				
*******	ntinuity C	THECK TOT S	CONTINUTY CACK TOT SULFACE WATEY * **********************************					
						H	Inches over	
					cubic feet		Total Basin	
Total Precipitation (Rain plus Snow)	ipitation	(Rain plus	Snow)		2072	20728543.	2225.	
Total Infiltration	ltration				915	9154488.	982.	
Total Evaporation	oration				57	574319.	62.	
Surface Runoff from Watersheds	noff from	Watersheds			1107	11079930.	1189.	
Total Wate	r remainin	ig in Surfa	Total Water remaining in Surface Storage			. 17 .	0.	
Infiltration over the Pervious Area	on over th	e Pervious	Area		916	9154488.	2200.	

Infiltration + Evaporation + Surface Runoff + Snow removal + Water remaining in Surface Storage +

Water remaining in Snow Cover Total Precipitation + Initial Storage		20808814. 20728544.
The error in continuity is calculated as ***********************************	20 C	
* Precipitation + Initial Snow Cover	*	
- Infiltration -	*	
*Evaporation - Snow removal -	*	
*Surface Runoff from Watersheds -	*	
*Water in Surface Storage -	*	
*Water remaining in Snow Cover	*	

2233.

Error..... * Precipitation + Initial Snow Cover * ******************* *-----

-0.387 Percent

<pre>* Continuity Check for Channel/Fipes * ***********************************</pre>		
Initial Channel/Pipe Storage Final Channel/Pipe Storage Surface Runoff from Watersheds	cubic feet 0. 11079930.	Inches over Total Basin 0. 1189.
Baseflow	0 0 0 11079930. 11079930.	0. 1189. 1189.
<pre>* Final Storage + Outflow + Evaporation - * * Watershed Runoff - Groundwater Inflow - * * Initial Channel/Pipe Storage * *</pre>	0.000 Percent	
 Continuity Check for Subsurface Water * * Continuity Check for Subsurface Water * * * 	*** * *** cubic feet	Inches over Subsurface Basin
Total Infiltration Total Upper Zone ET Total Lower Zone ET Total Groundwater flow Total Deep percolation Initial Subsurface Storage	0.0 0.0 335450.0 335456.	,
SASANA SASANA TRANSPORT		

Upper Zone ET over Pervious Area Lower Zone ET over Pervious Area Final Subsurface Storage

36.

... 335456.

> ****************** * Infiltration + Initial Storage - Final * ********************** Storage - Upper and Lower Zone ET -Groundwater Flow - Deep Percolation Infiltration + Initial Storage -----

0.000 Percent Error

SUMMARY STATISTICS FOR SUBCATCHMENTS

AREA	 PEAK	TINU	RUNOFF	(IN/HR)	2.886
CATCHMENT	 PEAK	RUNOFF	RATE	(CES)	7.407
TOTAL SUBCATCHMENT AREA		RUNOFF	DEPTH	(NII)	5.157 1188.033
S AREA	 PEAK	RUNOFF	RATE	(CES)	
IMPERVIOUS AREA		RUNOFF	DEPTH	(NI)	21.4452203.277 2.251 2129.483
REA	 PEAK	RUNOFF	RATE	(CES)	2.251
PERVIOUS AREA		TOTAL 1	LOSSES	(NI) (NI)	203.277
PER	 TOTAL	RUNOFF	DEPTH	(NI)	21.4452
	TOTAL	SIMULATED	RAINFALL	(NI)	55.3 2224.52
				IMPER.	
			AREA	(JC)	2.57
		GUTTER	OR INLET	NO.	200
			SUBCATCH-	MENT NO.	300 200 2.

ł

*** NOTE *** IMPERVIOUS AREA STATISTICS AGGREGATE IMPERVIOUS AREAS WITH AND WITHOUT DEPRESSION STORAGE

SUMMARY STATISTICS FOR CHANNEL/PIPES

RATIO OF RATIO OF	TO FULL	DEPTH	
RATIO OF	FULL	FLOW	
MAXIMUM			
LENGTH	SURCHARGE	(HOUR)	
8	OCCURRENCE	HR.	1/ 0/1900 0.00 7/19/1972 17.50
HC	OCCUR	DAY	0/1900 0 19/1972 17
MAXIMUM	VELOCITY	(EPS)	17
MAXIMUM MAXIMUM	DEPTH	(FT)	
MAXIMUM			
MAXIMUM	INFLOW	(CES)	0.00
CITE T	DEPTH	(FT)	
	VELOCITY	(FPS)	
	FLOW	(CES)	
		NUMBER	201

CHANNEL	FULL FLOW (CFS)	FULL VELOCITY (FPS)	FULL DEPTH (FT)	COMPUTED INFLOW (CFS)	COMPUTED OUTFLOW (CFS)	DEPTH V DEPTH V (FT) (TELOCITY (FPS)	OF OCCURRENCE DAY HR.	OF CE SURCHARGE . (HOUR)
201				0.00			46	1/ 0/1900 0.00 7/19/1972 17.50	

*** NOTE *** THE MAXIMUM FLOWS AND DEPTHS ARE CALCULATED AT THE END OF THE TIME INTERVAL

Runoff Quality Summary Page loads

mass rates 1b/sec

METRIC = 1 lb lb/sec # METRIC = 2 kg kg/sec # If NDIM = 1 Loads are in units of quantity

METRIC = 1METRIC = 2

If NDIM = 0 Units for:

N

TOTAL NUMBER OF CHANNELS/PIPES =

÷

*** # If NDIM = 2 loads are in units of concentration #
#
times volume and mass rates have units# of concentration times volume/second and mass rates are quantity/sec #

0 Total Su NDIM = METRIC = 1 Total Su

50.

. . .

78760. 78760. 78760. 78686. 78686. 78686 78681. 78686. >>Removal in channel/pipes (17a, 17b): 17a.REMOVE BY BMP FRACTION..... 19. FLOW WT'D AVE.CONCENTRATION mg/1 1. INITIAL SURFACE LOAD 2. TOTAL SURFACE BUILDUP..... 3. INITIAL CATCHBASIN LOAD 6. LOAD REMAINING ON SURFACE ... 7. REMAINING IN CATCHBASINS 10. NET SURFACE BUILDUP (2-9) ... 12. CATCHBASIN WASHOFF 16. TOTAL GROUNDWATER LOAD..... 16a.TOTAL I/I LOAD...... 17. NET SUBCATCHMENT LOAD (15a-15b-15c-15d+16+16a) 17b.REMOVE BY 1st ORDER DECAY ... 18. TOTAL LOAD TO INLETS..... 8. REMAINING IN CHANNEL/PIPES. 9. STREET SWEEPING REMOVAL 15a.SUM SURFACE LOAD (13+14+15). TOTAL CATCHBASIN LOAD..... TOTAL CATCHBASIN AND 11. SURFACE WASHOFF..... 15. PRECIPITATION LOAD SURFACE BUILDUP (2+4) Remaining Loads Removals Inputs ---------

ö

0

00

0

0

0 0 114.

(INLET LOAD/TOTAL FLOW)

24.

00

Percentages

		:	:	;
	(9/2)	(11/2)	WASHOFF (11/10)	(T1/11) UA
	SWEEPING (SURFACE WASHOFF (:	SURFACE WASHO	/SUBCAT LOAD (11
	STREET S	SURFACE	NET SURE	WASHOFF/
l	20.	21.	22.	23.

100. 100.

0

	100.	0.	°.		0.		.0	0.	.0	.0	0	0		.0
SURFACE WASHOFF/INLET LOAD	(11/18) MASHOFF/	\$UBCATCHMENT LOAD (12/17) CATCHBASIN WASHOFF/	Thlet load (12/18)	SUBCATCHMENT LOAD (14/17) INSOLUBLE FRACTION/	INLET LOAD (14/18)	SUBCATCHMENT LOAD (15/17) PRECIPITATION/	TNLET LOAD (15/18)		INLET LOAD (16/18)	.INFILTRATION/INFLOW LOAD/ SUBCATCHMENT LOAD (16a/17)	Thritration/inflow Load/ Thref Load (16a/18)	32C.CH/PIPE BMP FRACTION REMOVAL/ STRCATCHMENT LOAD (172/17)	CH/FIPE 1st ORDER DECAY REMOVAL/ SUBCATCHMENT LOAD (17b/17)	INLET LOAD SUMMATI (18+8+6a+17a+17b-1
24.	25.	26.	27.	28.	29.	30.	31.	32.	1	32a.	32b.	320	32d.	33.

CAUTION. Due to method of quality routing (Users Manual, Appendix IX) quality routing through channel/pipes is sensitive to the time step. Iarge "Inlet Load Summation Errors" may result. These can be reduced by adjusting the time step(s).

These can be reduced by adjusting the time step(s). Note: surface accumulation during dry time steps at end of simulation is not included in totals. Buildup is only performed at beginning of wet steps or for street cleaning.

TSS Particle Size Distribution

*

*

******	******	****************	***************************************	****
Diameter (um)	ofo	Specific Gravity	Settling Velocity (ft/s)	Critical Peclet Number
1.	5.0	2.65	0.000002	0.022000
4.	5.0	2.65	0.000035	0.049420
.9	5.0	2.65	0.000079	0.062619
7.	5.0		0.000108	0.068516
18.	15.0	2.65	0.000710	0.118919
45.	10.01	2.65	0.004352	0.203034
70.	5.0	2.65	0.010215	0.262779
.06	10.01	2.65	0.016354	0.304305
125.	15.0	2.65	0.029465	0.368637
200.	15.0	2.65	0.063279	0.485025

			н				
			TSS Removal (%)	48.6 43.4 47.3	49.2 50.3 8.9.3	52.4	49.7 47.5 50.4 49.6
		<u>-</u> 0	Flow Treated (%)	87.9 87.9 84.3	86.4 90.7 7.7	99.8 93.8 93.8	92.2 90.8 93.6 87.9
		======================================	TSS BYP (dl)				
		TSS Removed (*) (*) 49.0 60.5 69.6 79.9 83.1 83.1 92.7 92.7	TSS Out (1b)	730. 1145. 1060.	989. 944. 919.	787.	888. 1055. 839. 870. 834.
0.726951 1.128801		Treated 3.5 3.1 3.1 3.1 0.1 0.1 0.1 0.1	TSS Rem (1b)	689. 876. 953.	960. 957. 893.	882. 866. 792.	876. 954. 852. 872.
w w w	********* * * ********		ni str (di)	1419. 2021. 2013.	1949. 1901. 1811.	1/25. 1653. 1582.	1763. 2009. 1691. 1742. 1654.
0.156843 0.321303 *************************		Q Treated fs) 495 495 495 495 495 495 495 495 495 495	Flow Treated (ft3)	1887943. 3129838. 3182902.	3003833. 2760479. 2990152.	2465164. 2342117. 2035560.	2498623. 2998781. 2860577. 2840648. 2409069.
400. 5.0 2.65 850. 5.0 2.65	**************************************	Model Low Q Treated High (cfs) (cfs) (c HS 3 0.486 18, HS 4 0.805 18, HS 5 1.022 18, HS 5 1.713 18, HS 1 1.713 18, HS 1 2.222 18, HS 1 2.222 18, HS 1 4.301		2147739. 3583236. 3777918.	3477684. 3044446. 3297150.	2602401. 2497945. 2175439.	2710681. 3302580. 3101141. 3033579. 2739990.
5.0 5.0	******** Sur ***************************	Low Q Tr (cfs) (cfs) 0.486 0.805 1.713 1.713 2.222 3.166 4.301 4.301 4.301 *********	Flow Vol (ft3)	2141 3585 3777	347	260240 249794 217543	271(3301 3031 3033
400. 850.	********** * * TSS Removal	Model # #S 4 #S 4 #S 5 #S 6 #S 6 #S 7 #S 10 #S 10 #S 10 #S 12 #S 12 #S 12 #S 12 #S 12 #S 12 #S 12 #S 12	HS 3 Year	1957. 1958. 1959.	1960. 1961. 1962.	1963. 1964. 1965.	1966. 1967. 1968. 1969. 1970.

49.3	51.5	52.0	47.4	45.0	46.5	46.3	47.8	50.4		50.5	51.8	50.3	50.0	53.9	52.1	50.1	49.4	50.1	47.4	54.6	0.74			53.1		TSS Removal	(%)	60.0	56.1	58.9	61.0	61.4	60.9	63.4	5.50	1.00	01.0	0.00	1 12	61.5	56.8	52.3	54.0	54.8	63.6	60.4	62.3	63.6
88.2	91.8	92.2	85.8	85.1	87.8	86.0	89.2	94.1	83.7	91.6	91.2	87.0	89.1	77.0	92.7	84.8	88.8	88.2	87.2	95.1	- 1	20.00	6.06	20.7		Flow Treated	(%)	95.5	94.2	91.0	91.5	94.1	96.1		96.4	2.12	0.00	0.00	0.10	8.00	1.59	8	92.8	87.4	98.9		95.8	ó
.0	0.	0.		0.	.0	.0	.0	.0		.0		.0			.0	.0	.0	.0						.0		TSS BYP	(qt)	0.	0.	0.	0.		.0	.0								0.			0.		0.	
899.	962.	766.	1003.	915.	1020.	1009.	1181.	916.	891.	854.	829.	843.	748.	419.	.106	956.	1010.	710.	1063.	672.	863.	827.	894.	. 069		TSS Out	(qI)	568.	887.	827.	760.	734.	.807	631.	607.	. 400	. 1 10	STD.	644. 667		802	1201.	960.	914.	670.	702.	746.	582.
873.	1020.	830.	904.	750.	887.	870.	1081.	932.	942.	872.	892.	854.	747.	490.	1005.	961.	985.	714.	956.	808.	.181.	834.	904.	780.		TSS Rem	(qT)	851.	1134.	1186.	1189.	1167.	1103.	1094.	1046.	. 966	. 980T	1040	1075	1017	1053	1315.	1128.	1108.	1172.	1070.	1235.	1015.
1772.	1981.	1596.	1907.	1665.	1907.	1880.	2262.	1847.	1833.	1726.	1721.	1696.	1494.	908.	1906.	1916.	1995.	1424.	2020.	1480.	1644.	1661.	1798.	1470.		TSS In	(qT)	1419.	2021.	2013.	1949.	.1901.	1811.	1725.	1653.	.2851	. 5000	2009.	TAGT	165A	1855	2517.	2089.	2023.	1842.	1772.	1981.	1596.
2334250.	2987940.	2519148.	3040120.	6530	2857165.	2861717.	3738736.	3140654.	2537312.	2870373.	3033516.	2394294.	2192848.	1502401.	2775016.	2631696.	2925428.	2048508.	2889404.	1929026.	2364306.	2369008.	n	1944008.		Flow Treated	(ft3)	2050995.	3374158.	3436468.	3183710.	2865347.	3168458.	2574602.	2406843.	2128848.	. 10101	. 101010	296/250.	. 10001.	0701954	4181261	3407240.	3236897.	3390366.	2472950.	3119270.	2648674.
2645985.	3256463.	2733655.	3542112.	2545177 .	3253994.	3327298.	4193488.	3336914.	3030148.	3134400.	3325364.	2752944.	2461736.	1951820.	2994369.	3102550.	3295920.	2323442.	3314965.	2027434.	2701996.	63	2865293.	2142851.		FLOW VOL	(£t3)	2147739.	3583236.	3777918.	3477684.	3044446.	3297150.	2602401.	2497945.	2175439.	.18901/2	3302580.	3101141.	. 8/05005	7912000	4730816	3671674.	3704591.	3429739.	645	256	33
1976.	1977.	1978.	1979.	1980.	1981.	1982.	1983.	1984.	1985.	1986.	1987.	1988.	1989.	.1991.	1992.	1993.	1994.	1995.	1996.	1997.	.8661	1999.	2000.	2001.	HS 4	Year		1957.	1958.	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1906.	1961.	.896T	1070	1071	1972.	973	1974.	1975.	1976.	1977.	1978.

58.3	57.6	57.9	57.8	59.4	61.3	62.6	62.3	63.7	61.5	61.1	63.1	64.3	61.2	60.5	9.19	59.7		58.9		62.4	T' CQ	and accelere	TSS Removal (%)	68.9	66.6	68.4	69.9	70.5	70.2	72.1		0.27	# · · ·	2.02	70.3	70.6	67.0	62.5		64.3	72.1	70.2	71.2	72.9		67.0	66.6	
90.6	93.6	93.2	92.5	95.2	97.9	89.6	97.4	97.6	95.0	in	85.4	91.6	90.5	d'	94.7	4	÷.	94.5	94.4	96.4	7.96		Flow Treated (%)	97.4	Q	93.1	93.5	95.5	97.5	99.6	97.5	1.99	n	0.70	97.8	94.6	95.5	1.19	95.3	90.2	6.66	95.2	97.0	98.4		96.4	95.2	
0.	C	. 0	.0	0.	0.		.0	.0	.0	0.	.0	.0	0.		.0	.0	.0	.0	.0				TSS Byp (1b)	0.	0.	0.	0.	0.	.0	.0						0.	0.	.0	.0	0.	.0	.0	.0	.0			.0	
796	707	803.	793.	918.	715.	685.	651.	624.	654.	581.	335.	681.	743.	789.	546.	814.	521.	676.	629.	676.	045.		TSS Out (1b)	.1441	675.	637.	586.	561.	539.	482.	469.	443.	. 776	1010	517.	487.	613.	944.	731.	722.	514.	529.	570.	432.	624.	550.	636.	
1112	958	1103.	1087.	1344.	1133.	1148.	1075.	1097.	1043.	913.	573.	1226.	1174.	1206.	878.	1206.	959.	968.	1033.	1122.	.126		TSS Rem (1b)	978.	1345.	1376.	1363.	1340.	1272.	1243.	1184.	1139.	1241.		1225	1168.	1243.	1573.	1357.	1301.	1328.	1243.	1411.	1164.	1283.	1115.	1270.	
1 907	1665	1907	1880.	2262.	1847.	1833.	1726.	1721.	1696.	1494.	908.	1906.	1916.	1995.	1424.	2020.	1480.	1644.	1661.	1798.	1470.		TSS In (dl)	1419.	2021.	2013.	1949.	1901.	1811.	1725.	1653.	1582.	1/03.	. 2002	1742	1654.	1855.	2517.	2089.	2023.	1842.	1772.	σ	1596.	1907.	1665.	1907.	
3208170	1305350	3032016	3078217.	3990670.	3265991.	2715604.	3051646.	3246242.	2614602.	2346718.	1667340.	2922880.	2808228.	3125344.	2200297.	3147530.	1993628.	2552184.	2572581.	2762794.	201/553.		Flow Treated (ft3)	2091481.	3453166	3517580.	3250212.	2906000.	3214795.	2592557.	2434762.	2155867.	2654863.	3211508.	- 20467077	2590884	2771271.	4309779.	3498230.	3339962.	3425133.	2517935.	3157946.	2691082.	3265804.	2454088.	3096690.	
3542112		11 TCEC2	3327298	4193488.	3336914.	3030148.	3134400.	3325364.	2752944.	2461736.	1951820.	2994369.	3102550.	3295920.	2323442.	3314965.	2027434.	2701996.	2726378.	S)	2142851.		Flow Vol (ft3)	2147739.	3583236	3777918.	3477684.	3044446.	3297150.	2602401.	2497945.	2175439.	2/10681.	.0802025	3033579	055555	2903187.	4730816.	3671674.	3704591.	3429739.	2645985.	3256463.	2733655.	3542112.	2545177.	3253994.	
1 070	0001	1981	1982	1983.	1984.	1985.	1986.	1987.	1988.	1989.	1991.	1992.	1993.	1994.	1995.	1996.	1997.	1998.	1999.	2000.	.1002	C SH	Year	1957.	1958	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	. 1961	1060	1970	1971.	1972.	1973.	1974.	1975.	1976.	1977.	1978.	1979.	1980.	1981.	

67.9	1.69	70.9	71.2	70.9	72.4	70.1	70.5	70.6	72.5				68.5	1.00	67.7		70.6	71.0		TSS Removal	(8)	75.0	73.4	75.1	76.8	77.5	76.9	78.2	78.2		× .	4.01	6.10	ř	4	69.7	N	ef (œ.	76.9	÷	n.		m	13.9	1-51	75.1	77.4	
95.1	97.0	98.6	91.9	98.7	99.2	96.8	97.3	88.9	7.86	93.2	96.9	1.10	96.8	1.99	97.0	ó	1.86	94.9		Flow Treated	(%)	98.5	7.76	94.2	94.9	96.4		6.99	98.3	99.5	98.0	1.02	68.3	96.0	97.1	92.8	96.9	91.9	100.0	96.3	51.7	14	1.10	97.6	1.0		98.2	0.66	
0.	0.	0.	0.	0.	0.	0.		0.	0.	0.	0.	0.	0.	.0	0.	.0	.0	.0		TSS BYP	(qT)	0.	0.	.0	0.	0.	0.	.0	.0					.0	0.	.0	0.		.0	.0	.0			.0				.0	
604.	669.	537.	529.	503.	474.	508.	441.	267.	525.	574.	609.	429.	636.	406.	531.	492.	529.	427.		TSS Out	(वा)	355.	537.	501.	452.	428.	419.	376.	360.	345.	408.	4/4	402	375.	476.	763.	578.	580.	403.	409.	442.	330.	492.	436.	497.	467.	563.	417.	
1276.	1563.	1310.	1304.	1223.	1247.	1189.	1053.	641.	1382.	1342.	1386.	.996	1384.	1074.	1113.	1169.	1269.	1043.		TSS Rem	(qT)	1063.	1484.	1511.	1497.	1473.	1393.	1349.	1293.	1237.	1356.	. 0201	1340	1280.	1379.	1754.	1511.	1443.	1439.	1364.	1539.	1266.	1415.	1229.	1410.	1412.	1699.	1430.	
1880.	2262.	1847.	1833.	1726.	1721.	1696.	1494.	908.	1906.	1916.	1995.	1424.	2020.	1480.	1644.	1661.	1798.	1470.		TSS In	(qT)	1419.	2021.	2013.	1949.	1901.	1811.	1725.	1653.	1582.	1763.	2003		1654.	1855.	2517.	2089.	2023.	1842.	1772.	1981.	1596.	1907.	1665.	1907.	1880.	2262.	1847.	
3162802.	0	0	0	0				1734275.									ω	2033749.		Flow Treated	(£t3)	2115177	3500988	3558365.	3300762.	2935826.	3244436.	2598526.	2455989.	2165594.	2673032.	3238230.	.0600200	2629532.	2817921.	4390470.	3556365.	3402868.	42973	2547025.	3180271.	2716680.	3307430.	2483208,	13992	3217488.	23	3304854.	
3327298.	4193488.	3336914.	3030148.	3134400.	3325364.	2752944.	2461736.	1951820.	2994369.	3102550.	3295920.	2323442.	3314965.	m	2701996.	7263	2865293.	2142851.		Flow Vol	(ft3)	2147739	3583236	777918	3477684.	3044446.	3297150.	2602401.	2497945.	2175439.	2710681.	.0802025	3033570	2739990.	2903187.	4730816.	3671674.	3704591.	3429739.	2645985.	3256463.	2733655.	29	54517	25399	32729	193	3691	
1982.	1983.	1984.	1985.	1986.	1987.	988	989	1991.	1992.	1993.	1994.	395	1996.	1997.	1998.	1999.	2000.	2001.	8 6 HS	Year		1957	50	1959.	960	o,	S	0	1964.	σ	1966.	. 1961	h O	016	1971.	1972.	1973.	1974.	1975.	1976.	1977.	1978.	1979.	σ	σ, ι		0/ 1	1984.	

77.6 77.0 77.0 7.6.0 7.6.0 7.3.9 7.6.0 7.6.2 7.6.2 7.6.2 7.6.2 7.6.2 7.6.2 7.6.2 7.7 7.7 7.6 7.7 7.7 7.6 7.7 7.7 7.6 7.7 7.7	TSS Removal (%)	78.4 77.6 80.7 4	81.9 80.13 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 82.05 80.05 8	8,18 9,97 9,97 9,97 9,18 8,19 1,18 1,18 1,18 1,18 1,18 1,18	2011 2017 2017 2017 2017 2017 2017 2017	888777777 88877777 888887777777 888888 8777777
899999999999999999999 899784999999999999	Flow Treated (%)	900000 90000 9000000000000000000000000	0.86 0.06 0.06 0.06 0.0 0.0 0.0 0.0 0.0 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1 9 8 7 8 9 9 9 1 8 8 9 9 9 9 1 1 9 8 7 8 9 0 1 1 9 8 7 8 0 1 8 7 8 0 1 9 7 8 0 1 8 7 8 0 1 9 7 8 0 0 1 9 7 8 0 1 9 7 8 0 0 1 9 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 8 9 8 8 8 9 9 9 9
	TSS BYP (1b)					
4 8 8 4 4 4 7 2 4 4 8 8 4 6 8 4 6 9 7 4 4 4 7 2 7 4 4 6 9 8 9 8 4 4 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TSS Out (1b)	307. 453. 3829.	355 349 297	288. 337. 3318. 3318.	1 4 9 4 4 6 6 7 1 6 9 8 4 6 6 6 1 6 7 6 8 8 8 8 8 1 6 7 7 7 7 8 8 1 6 7 7 7 7 8 1 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4
1423. 1330. 1353. 1353. 1353. 1353. 1465. 1465. 1516. 1516. 1213. 1213. 1213. 1213. 1213. 12141.	TSS Rem (1b)	1112. 1568. 1583.	1546. 1462. 1356.	1294. 1426. 1426. 1373. 1411.	1446. 1446. 1667. 1667. 1525. 1528. 1438.	13226. 14296. 14876. 1487. 1484. 1484. 1489. 1489. 1489.
1833. 1726. 1726. 1721. 1696. 1494. 1906. 1424. 1664. 1661. 1768. 1768.	TSS In (1b)	1419. 2021. 2013. 1949.	1901. 1811. 1725. 1653.	1582. 1763. 2009. 1691. 1742.	1854. 1855. 2517. 2517. 2023. 1862. 1772. 1862.	1981. 1596. 1596. 1665. 1907. 1880. 2262. 1833. 1726. 1726.
2833356 3108649 3316855 2690112 2690112 2690112 26918025 17818025 2970773 2947873 2269448 3238007 2269448 3238007 2265448 22651512 2651553 2651553 2651512 2051512 205151512 205151515555555555	Flow Treated (ft3)	2133804. 3562800. 3611758. 3377313.	2982812. 3279634. 2602401. 2485183.	2175398. 2691520. 3276494. 3053300. 3007142.	26874555, 2871408, 448642, 3625039, 3511073, 3511073, 2595777, 2595777,	3206502 3731110. 331110. 2515196. 3196645. 3301303. 4159394. 3323939. 3323399. 3323939. 3323939. 3323128. 3325364.
3030148. 3134400. 3325364. 2752944. 2752944. 295259. 3102559. 3102550. 3295920. 3314965. 3314965. 3314965. 2701996. 2701996. 2701996. 276378. 2865293. 2865293.	Flow Vol (ft3)	2147739. 3583236. 3777918. 3477684.	3044446. 3297150. 2602401. 2497945.	2175439. 2710681. 3302580. 3101141. 3033579.	2/39990. 2903187. 4730816. 3704591. 3404591. 3425985. 2645985.	3256463. 27356463. 25451112. 25451112. 3253994. 3253994. 33253994. 3336914. 3336914. 3336914. 3325364.
1985. 1986. 1986. 1988. 1988. 1993. 1993. 1998. 1998. 1998. 2000. 2000.	HS 7 Year	1957. 1958. 1959. 1960.	1961. 1962. 1963.	1965. 1966. 1967. 1968.	1970. 1971. 1972. 1974. 1976. 1975.	1977 1978 1978 1981 1982 1983 1985 1985 1985

79.6	80.9	80.0	82.1	80.1	79.8	79.6	78.5	82.6	77.7	80.0	80.3	80.6		Leriomod Som	(%)	81.3	80.7	82.2	83.6	84.7	83.9	4	84.9	84.8	4 0	83.3	04.5 C V0	7.20	6.08	77.6	79.9	79.0	85.2	84.0	84.6	85.7	81.4	6.08	0.10	1.78	5.78	84.5	6.00	83.8	1.08	82.9	84.0	82.9
98.8	66.2	94.9	1 00	97.3	99.5	98.8	98.7	99.9	99.4	98.9	99.7	96.9		Plow month	(%)	8.99		96.9	1.86	98.9	8.99	100.0	100.0	100.0	2.66	99.8	20.00		4.00	96.0	9.66	97.1	100.0	99.2	1.99	100.0	97.0	6. 66	2.22	0.001	0.00	100.0	97.2	100.0	100.0	on o	8.66	97.1
.0	0	.0				.0	.0		0.			۰.		moo Dem	(dI)	0.	0.	.0	0.	0.	0.	.0	.0		.0				òc	.0	0.	0.	0.	.0	.0		.0											0,
346.	286	182	241	282	402	291.	435.	257.	367.	331.	354.	285.		4-00 000	(ID)	265.	389.	358.	320.	291.	291.	267.	250.	240.	279.	336.	. 602	.0/2	255	565.	419.	424.	273.	284.	306.	229.	354.	318.	303.	336.	400.	286.	294.	280.	257.	289.	239.	156.
1350.	1208	726.	1565	1534	1593.	1134.	1585.	1222.	1277.	1330.	1444.	1185.			(qI)	1153.	1632.	1655.	1629.	1610.	1520.	1458.	1403.	1341.	1484.	1673.	1425.	10001	1501	1952.	1670.	1599.	1570.	1488.	1675.	1367.	1553.	1347.	1544.	1543.	1862.	1562.	1539.	1446.	1464.	1407.	1255.	752.
1696.	1494	808	1006	1016	1995	1424.	2020.	1480.	1644.	1661.	1798.	1470.			(dl)	1419.	2021	2013.	1949.	1901.	1811.	1725.	1653.	1582.	1763.	2009.	1691.	1664	1855	2517.	2089.	2023.	1842.	1772.	1981.	1596.	1907.	1665.	.7061	1880.	2262.	1847.	1833.	1726.	1721.	1696.	1494.	. 806
2720194	- 4	1852886	.0004704	0100005	3279943	2294784.	3272552.	2025070.	2684579.	2697158.	2857554.	0			Flow Treated (ft3)	2142961.		3659503.	4	3012350.	3291269.	2602401.		2175439.	2703050.	3296812.	3064336.	5012424	2884350	4542544		3596804.	3429739.	2624697.	3226120.	2733655.	3436337.			3326404.	4173822.	3336066.	2946255.	3134400.	3325364.	2731344.	2455935.	1894368.
2752944	2461736	1051820		2102550	3295920	2323442.	3314965.	2027434.	2701996.	2726378.	2865293.	2142851.			(ft3)	2147739	3583236	3777918.	3477684.	3044446.	3297150.	2602401.	2497945.	2175439.	2710681.	3302580.	3101141.	. 6/ 55505	2022220.	4730816	3671674.	3704591.	3429739.	2645985.	3256463.	2733655.	3542112.	2545177.	3253994.	3327298.	4193488.	3336914.	3030148.	3134400.	3325364.	2752944.	2461736.	1951820.
1988	1080	1001		- 766T	1004	1995.	1996.	1997.	1998.	1999.	2000.	2001.		HS 8	rear	1957	1 958	1959.	1960.	1961.	1962.	1963.	1964.	1965.	1966.	1967.	1968.		1071	1972	1973.	1974.	1975.	1976.	277	1978.	1979.	986	.1981.	86	6	66	68	1986.	86	86	1989.	1991.

0 1	10	5	nc	5 m	10	N	101		Removal	1	4	a	0, 1	01,	- 4	0 4	0 10	9	9	0.0	0,	-1 u	. –	7	2	2	011	<u>م</u>	N F	4 0	0 00	0	8	2	t t	2	9	m	0	4 1		n	n o	'n	
85. 83.	82.	82.	10	. 18	82.	83.	83.		TSS Re		87.	86.	87.	. 68	.06		.06	.06	89.6	88	.06	0.00	87.	84.	86.	85.	.06	. 68		10	.98	87.	87.	88	.06	.68	.68	06	20 00	58		.05			
100.0 98.5	100.0	99.2	4.00	8 66	9.66	100.0	98.3		Flow Treated	(8)	100.0	100.0	1.86	1.99	8.55	0.001	100.0	100.0	100.0	100.0	. 66	100.0	6.66	97.6	100.0	5.99	100.0		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00T	100.0	100.0	100.0	99.9	0	98.9	ö	ò	66				9.65	ŝ	
o c		.0			.0	0	.0		TSS Run	(qI)	0.	.0						.0		.0				.0			.0					0.					0.							*	
287.	340.	250.	373.	308	283	301	237.		TES Out	10	179.	265.	243.	197.	187.	Tag.	157.	149.	183.	222.	169.	173	240	386.	279.	289.	168.	186.	1.44.	143.	220	247.	229.	260.	184.	192.	180.	167.	194.	158.	102.	182.	215.		
1619. 1503	1654.	1175.	1647.	1272.	1378	1497	1233.		TOC DOW	(qt)	1240.	1756.	1770.	1753.	713	4 0	1496.	1433.	580	1786.	1522.	1569.	1615	2131.	1810.	1733.	1674.	1587.	1787.	. 4041	1445	1659.	1651.	2001.	1664.	1641.	1546.	1554.	1503.	1336.	806.	1725.	1701.		
1906.	1995.	1424.	2020.	1640.	1661	1708	1470.		at ope	(qT)	1419.	2021.	2013.	1949.	1901.	1811.	1653	1582.	1763.	2009.	1691.	142.	1855	2517.	2089.	2023.	1842.	1772.	1981.	-96CT	1665	1907.	1880.	2262.	1847.	1833.	1726.	1721.	1696.	1494.	.808	1906.	1916.	.CKAT	
2993388. 3054006	NC	(1)	(1)	U 4		EDC228	2105836.		Blow Brostod	(ft3)	2147739.	3583236.	3706283.	3448020.	3039304.	3297150.	2007945	2175439.	2710681.	3302580.	3083379.	3033579.	2800480	4617753.	3670886.	3678448.	3429739.	2645985.	3252795.	2/33655.	3430314. 3545177	3253994.	3327298.	4188896.			-	3325364.	2748334.	2461736.	m		3088848.	0	
2994369. 3107550	3295920.	2	in :	4 4	- 046T0/7	2 6	2142851.		Tot mold	(ft3)	2147739.	53	16	3477684.	3044446.	3297150.	. 1042002	2175439	2710681.	3302580.	3101141.	3033579.	2022220.	4730816.	3671674.	3704591.	3429739.	2645985.	3256463.	2733655.		3253994	3327298.	1.1.2	3336914.	3030148.	3134400.		2752944.	2461736.	1951820.	2994369.	3102550.	.0280825	
266	1994.	5	0 1	1666	n o	000	000	100	HS 10	TOAT	95	1958.	6	1960.	1961.	1962.	1064	1965	1966.	1967.	1968.	1969.	1071	1972.	973	974	1975.	1976.	116	8/6	1000	180	1982.	983	984	586	986	186	98	86	66	66	6 6	1994.	

80	0.00	0.10	0.16	r 00	2 00	5.68		TSS Removal	(%)	92.0	90.9		93.3	93.6	(# I)	5.40	0.00				m	93.0	91.6	89.0	1.19	89.8	94.2	m		94.4	7.16	0 10	8 10	92.4	93.7				1.1	93.2	92.7	94.2				0 VO		
0 00			0.001	0.001	100.0	9.66		Flow Treated	(%)	100.0	100.0	99.2	99.8	100.0	100.0	0.001	0.001	100.0	100.0	6.66	100.0	100.0	100.0	0.66	100.0	100.0	100.0	100.0	100.0	100.0	2.22	100.0	100 0	100.0	100.0	99.8	100.0		100.0	100.0	100.0	100.0	100.0	100.0		100.0	D'DOT	
					òe			TSS Byp	(qT)	0.	.0	.0	.0	.0					. 0	.0	0.	0.	.0	0.	.0	.0	.0	.0	.0					.0	0.	.0	0.		0.	.0	.0	.0	0					
164		.052	100		103	154.		TSS Out	(q1)	.114.	183.	160.	130.	122.	122.			122	144.	112.	116.	116.	156.	277.	186.	206.	107.	122.	129.	.06	109.	177	154	173.	116.	127.	116.	105.	129.	101.	67.	111.	149.	154.	- 110	165.	.01	
1901		1/69.	1353.	.0441	1606	1316.		TSS Rem	(q1)	1305.	1838.	1852.	1820.	1778.	1689.	1540.	.0501	1641	1864.	1579.	1626.	1538.	1699.	2240.	1903.	1817.	1736.	1651.	1852.	1506.	- 1739.	1735	1726	2089.	1732.	1706.	1610.	1616.	1567.	1393.	841.	1796.	1767.	1841.	1314.	1405.	- CO#T	
4041		2020.	1480.	1044.	1708	1470.		TISS IN	(qI)	1419.	2021.	2013.	1949.	1901.	1811.	T/25.		. 70CT	2009	1691	1742.	1654.	1855.	2517.	2089.	2023.	1842.	1772.	1981.	1596.	-106T	- COOT	1880	2262.	1847.	1833.	1726.	1721.	1696.	1494.	908.	1906.	1916.	1995.	1424.	2020.	1480.	
0030060		3313268.	202/434.	.966T0/2	2865203	2131752.		Flow Treated	(ft3)	2147739.	3583236.	3747932.	3472026.	3044446.	3297150.	260704E		. 2240172	3302580.	3099016	3033579.	2739990.	2903187.	4681246.	3671674.	3703644.	3429739.	2645985.	3256463.	2733655.	3517468.	. / / TCFCZ	3307098	4193488	3336914.	3024095.	3134400.	3325364.	2752944.	2461736.	1951820.	2994369.	3102550.	3295920.	2323442	3314965.	202/454.	
CARECEC	- 7550200	3314965.	2027434.	.95510/2	202212 2865203	2142851.		Flow Vol	(ft3)	2147739.	3583236.	3777918.	3477684.	3044446.	3297150.	. 1042002	. 042/242	12210681	3302580	3101141	3033579.	2739990.	2903187.	4730816.	3671674.	3704591.	3429739.	2645985.	3256463.	2733655.	3542112.	. / / TC#C7	8001025	4193488.	3336914.	3030148.	3134400.	3325364.	2752944.	2461736.	1951820.	2994369.	H	29592	32344	50	202/434.	
1005		1996.	1997.	. 866T		2001.	HS 12	Year		1957.	1958.	5	1960.	1961.	5 0	1064		1065	1967	896	969	970	1971.	1972.	1973.	1974.	1975.	1976.	1977.	1978.	.979.	1001	1987	1983.	1984.	1985.	1986.	1987.	1988.	1989.	.1991.	1992.	σ	1994.	ירכ	1996.	71	

91.9 92.6 93.1 93.0

Always check output file for possible warning messages.

mmary * *******	*	*	*	*	*	*	*****
* SWMM 4.4 Simulation Date and Time Summary * ***********************************	October 15, 2024		October 15, 2024	18: 1: 1.109	0.100 minutes.	6.011 seconds.	*************************
SWMM 4.4	Starting Date October	Time	Ending Date October	Time	Elapsed Time	Elapsed Time	*********

<u>3.1</u> OPERATION AND MAINTENANCE

STORMWATER OPERATION, MAINTENANCE AND POLLUTION PREVENTION PLAN

Residential Apartment Complex Franklin Worcester, Massachusetts

RESPONSIBLE PARTY DURING CONSTRUCTION: T.B.D. N/A

RESPONSIBLE PARTY POST CONSTRUCTION: GoVenture Capital Group, LLC Brendan Gove, Manager 10 E. Worcester Street, Suite 3A Worcester, Massachusetts 01605

BEST MANAGEMENT PRACTICES

To prevent the migration of soils, Best Management Practices (BMP's) shall be employed. During construction, hay bales and silt fence will be installed as shown on the plans and also at additional locations on an as needed basis to provide sufficient erosion controls on the site. These components shall be installed to catch and trap the migrating soil materials and pollutants.

All applicable BMP's listed below and in the Department of Environmental Protection's Stormwater Management Handbooks (Volume1: Overview of Massachusetts Stormwater Management Standards and Volume 2: Technical Guide for Compliance with Massachusetts Stormwater Management Standards) dated January 2008 (as amended), shall be incorporated in this project.

INSPECTION AND MAINTENANCE (DURING CONSTRUCTION)

- 1. At all times, hay bales, siltation fabric fencing and wooden stakes sufficient to construct sedimentation control barrier a minimum of 50 feet long will be stockpiled on the site in order to repair established barriers which may have been damaged or breached.
- 2. Necessary erosion controls shall be in place prior to any clearing or construction on the site. Construction sequence shall be phased in such a manner that the on-site detention basins are stabilized and functioning prior to the establishment of any new impervious areas on the site. The Contractor shall provide temporary stilling or settling basins as needed to catch and trap any migrating soil materials and pollutants from the construction areas.
- 3. An inspection of all erosion control and stormwater management systems shall be conducted at least once every fourteen (14) calendar days and following significant storm events. Where sites have been finally or temporarily stabilized, or runoff is unlikely due to

winter conditions, such inspections shall be conducted at least once every month. (EPA SWPPP IS REQUIRED FOR THIS PROJECT)

In case of any noted breach or failure, the General Contractor shall immediately make appropriate repairs to any erosion control system and notify the engineer of any problems involving storm water management systems.

A significant storm event shall be defined as all or one of the following thresholds.

- Any storm in which rain is predicted to last for twelve consecutive hours or more.
- b. Any storm for which a flash flood watch or warning is issued.
- c. Any single storm predicted to have a cumulative rainfall of greater than one inch.
- d. Any storm not meeting the previous three thresholds but which would mark a third consecutive day of measurable rainfall.
- If site inspections identify BMPs not operating effectively, maintenance must be performed as soon as possible and before the next storm event.
- 5. If BMPs need modification or additional BMPs need to be added, implementation must be completed before the next storm if practicable. If implementation before the next storm event is impracticable, the situation must be documented in the construction log and alternative BMPs must be implemented as soon as possible
- 6. The General Contractor shall also inspect the erosion control and stormwater management systems at times of significant increase in surface water runoff due to rapid thawing when the risk of failure of erosion control measures is significant.
- 7. In such instances as remedial action is necessary, the General Contractor shall repair any and all significant deficiencies in erosion control systems within two days.
- 8. The Department of Public Works and/or Conservation Commission shall be notified of any significant failure of storm water management systems and erosion and sediment control measures and shall be notified of any release of pollutants to a water body (stream, brook, pond, etc.).
- 9. The General Contractor shall remove the sediment from behind the fence of the sedimentation control barrier when the accumulated sediment has reached one-half of the original installed height of the barrier.

INSPECTION AND MAINTENANCE (POST-CONSTRUCTION)

It is the agreement of the responsible parties to finance, inspect, and perform (respectfully) the long-term maintenance of the erosion control devices and the stormwater management systems within the limits stated below.

- 1. A visual inspection of all erosion control and stormwater management systems shall be conducted by the above identified person(s) a minimum of once per month and after every major storm during the first six months of operation (a portion of that time must be in the growing season). Thorough investigations shall be conducted twice a year. Monthly maintenance requirements may be adjusted based upon the results obtained from the first year of operation.
- Roads and parking lots shall be swept at least twice per year and on a more frequent basis depending on sanding operations. All resulting sweepings shall be collected and properly disposed of off-site in accordance with MADEP and other applicable requirements.
- 3. Accumulated sediment shall be removed a minimum of one time per year by means of a clamshell bucket or equivalent from the bottom of the deep sump catch basins and manhole. Disposal of accumulated sediment and pollutants must be in accordance with local, state, and federal guidelines and requirements.
- Hydroworks Units shall be inspected and maintained per the manufactures recommendations or as needed.
- All resulting sweepings or sediment removed from catch basins, Hydroworks Units, and manhole connections shall be collected and properly disposed of off-site in accordance with MADEP and other applicable requirements.

6. Maintenance Schedule

Structure Type	Inspection	Maintenance	Task	Cost Estimate	Owner	
Deep Sump Catchbasin/Yard Drains	Quarterly and at the end of the foliage and snow removal seasons	Quarterly, or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe	Clean/Remove Debris and Sediment	\$3,000* (\$3,000/Year)	Land Owner	
Hydroworks Unit Annually in the spring		Annually in the spring	Clean/Remove Debris and sediment	\$3,000* (\$3,000/Year)	Land Owner	
Underground Storage System	Seasonally	Six Months	Clean/Remove Debris	\$2,000* (\$2,000/Year)	Land Owner	
	Total Annua	I Estimated Cost	\$8,000/Year	Land Owner		

LONG TERM POLLUTION PREVENTION PLAN

- 1. Access drives to the site shall be swept on an annual basis with a commercial cleaning unit. Any sediment removed shall be disposed of in accordance with applicable local and state requirements.
- Trash and other debris shall be removed from the drives periodically as needed. Full inspection of the site shall be made on a semi-annual basis to ensure clean and neat appearance to the site. This measure will help in the overall performance of the onsite systems.
- 3. Trash and other debris shall be removed from landscaped and planted areas periodically as needed. Full inspection of the site shall be made on a semi-annual basis to ensure clean and neat appearance to the site. This measure will help in the overall performance of the onsite systems.
- 4. Reseed any bare areas as soon as they occur. Erosion control measures shall be installed in these areas to prevent deposits of sediment from entering the drainage system
- 5. Grass shall be maintained at a minimum blade height of two to three inches and only 1/3 of the plant height shall be removed at a time.
- 6. Plants shall be pruned as necessary. The use of fertilizers will be kept at a level consistent with typical residential use. Fertilizer will be applied a maximum of once to twice per year during the initial planting and stabilization of landscaped areas. Once plants are established and growing well fertilizer will be applied judiciously.

- 4 -STORMWATER OPERATION, MAINTENANCE AND POLLUTION PREVENTION PLAN Franklin, Worcester, Massachusetts October 18, 2024

- 7. The use of pesticides will be kept at a level consistent with typical residential use. Where possible mechanical methods (i.e. pest traps) or biological methods (i.e. beneficial insects) of pest control shall be implemented. If pesticides (insecticide, herbicide, and fungicide) are required to be used a pesticide which poses the lowest risk to public health and the environment shall be used.
- 8. Pet waste shall be disposed of in accordance with local regulations. Pet waste shall not be disposed of in a storm drain or catch basin.

Inspection Log Franklin Street, Worcester, Massachusetts

DATE	ACTION	RESULT	PERFORMED BY
		7	
			÷

- 6 -STORMWATER OPERATION, MAINTENANCE AND POLLUTION PREVENTION PLAN Franklin, Worcester, Massachusetts October 18, 2024

Maintenance Log Franklin Street, Worcester, Massachusetts

DATE	ACTION	PERFORMED BY

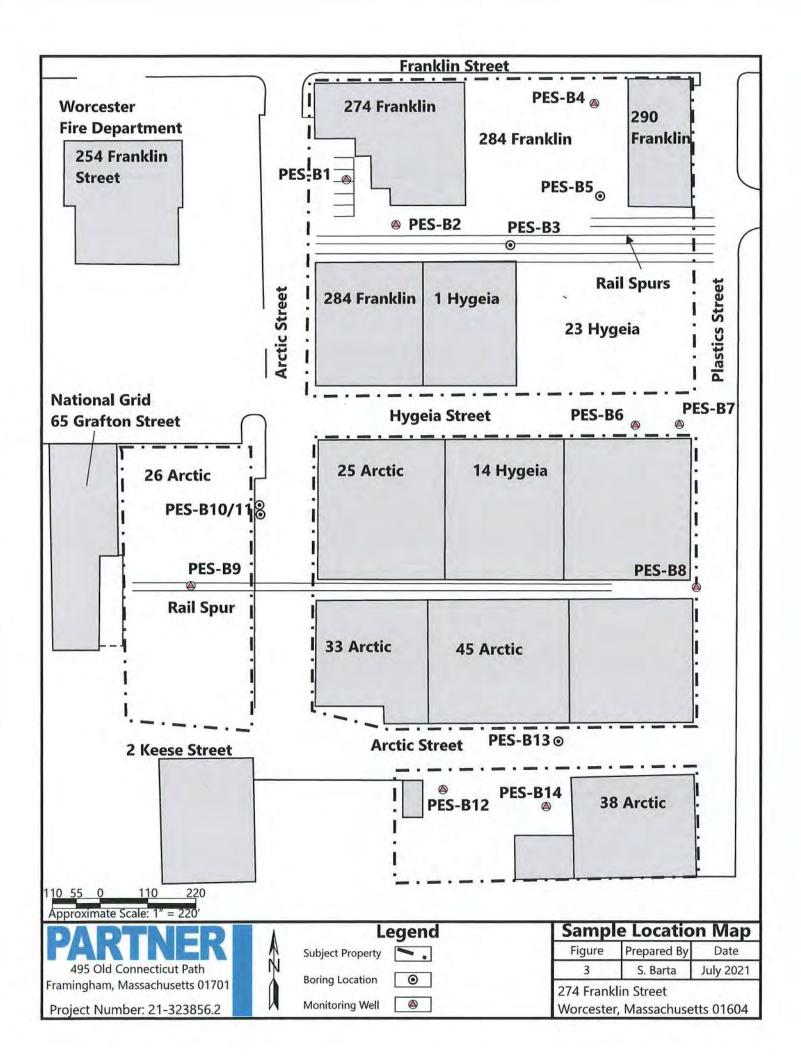
- 7 -STORMWATER OPERATION, MAINTENANCE AND POLLUTION PREVENTION PLAN Franklin, Worcester, Massachusetts October 18, 2024

FIGURE 1 LOCUS MAP AND SOILS MAP

Soil Map-Worcester County, Massachusetts, Northeastern Part

The soil surveys that comprise your AOI were mapped at 1:20,000. Warning: Soil Map may not be valid at this scale. Marning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Veb Soil Survey URt. Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Worcester County, Massachusetts, Northeastern Part Soil Survey Area: Worcester County, Massachusetts, Soil Survey Area Instance of a space allows) for map scales in Soil Survey Area integration 16, Sep 3, 2021 Soil Survey Area integrated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area Integration 16, Sep 3, 2021 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. The orthoprobal or other base map on which the soil lines were compiled and digitized probaby differs from the background fundershowed on these marks. As a result store and digitized probaby and the soil lines were compiled and digitized bolds.	Spoil Area Stony Spot Very Stony Spot Wet Spot Wet Spot Other Special Line Features Special Line Features Special Line Features Special Line Features Special Line Features Interstate Highways Interstate Highways Major Roads Major Roads Local Roads Local Roads dd Aerial Photography	st (AOI) Sto Polygons Sto Lines Ven Points Ste Points Ste Rail Ste Rail Maj Maj Maj Maj Maj Maj Loc Background Maj Loc	Area of Interest (AOI) Soils Soil Map Unit Polygons Special Point Features Soil Map Unit Polygons Marsh or swamp Marsh or swamp
imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			Slide or Slip
The orthophoto or other base map on w compiled and digitized probably differs i			everely Eroded Spot
Date(s) aerial images were photographe 2020			andy Spot
I SOLOO OI ISIGEI.			aline Spot
Soil map units are labeled (as space allo 1:50 000 or larger			Rock Outcrop
Survey Area Data: Version 16, Sep 3,			Perennial Water
			Miscellaneous Water
Soil Survey Area: Worcester County N			ne or Quarry
This product is generated from the USD of the version date(s) listed below.	Aerial Photography		arsh or swamp
accurate calculations of distance or area	pi	Backgroun	va Flow
Albers equal-area conic projection, sho	Local Roads	ł	Indfill
projection, which preserves direction and	Major Roads	1	avelly Spot
Maps from the Web Soil Survey are bas	US Routes	2	avel Pit
Coordinate System: Web Mercator (El	Interstate Highways	2	osed Depression
Source of Map: Natural Resources Co	Rails	Ŧ	ay Spot
measurements.	outails and canad	Transnorta	Borrow Pit
Please rely on the har scale on each ma	Ctraams and Parals	water reat	owout
scale.	Special Line realures		Special Point Features
line placement. The maps do not show contrasting soils that could have been s	Other	4	Soil Map Unit Points
misunderstanding of the detail of mappi	Wet Spot	2	oil Map Unit Lines
Warning: Soil Map may not be valid at t	Very Stony Spot	8	il Map Unit Polygons
2000	Stony Spot	0	ea or interest (AUI)
The soil surveys that comprise your AO	Spoil Area	œ,	st (AOI)

11/10/2021 Page 2 of 3


Web Soil Survey National Cooperative Soil Survey

Natural Resources Conservation Service

VOSI

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
602	Urban land	27.6	100.0%
Totals for Area of Interest		27.6	100.0%

APPENDIX A: BORING LOGS

	lentification:	PES-B1				Page 1 of 1
Boring Lo	ocation:		1 Gas Ta		Date Started:	7.6.2021
ite Addr	(ess:		ranklin S		Date Completed:	7.6.2021
				Aassachusetts 01604	Depth to Groundwater (feet bgs):	16.18
roject Number:		21-323	3856.2		Field Technician:	SWB
Drill Rig T	1.1	Geoprobe Direct Push			PARTNE	R
	npling Equipment: Macrocore Ba			arrel	495 Old Connecticut	5. N. 71712
Borehole Diameter:		3.25	1		Framingham, Massachuse	etts 01701
Depth	Sample	PID	USCS	Description	Notes	
1					Penetration/Recovery: 60/44	
2				4" Asphalt over 4" Binder over 8" Brown fine to		
3			SM	medium SAND and small GRAVEL over 28" fine to medium dark brown SAND with brick fragments,		
4		1.1		ash, wood ash.		
5						
6	PES-B1-6	2.2			Penetration/Recovery: 60/46	
7	1.0			10" fine to medium dark brown SAND with brick		
8			SM	fragments, ash, wood ash over 36" light brown fine to medium SAND with small Gravel	9	
9		<1		No and an an an and a strand stranger. Stranger		
10						
11					Penetration/Recovery: 60/60	
12			SM			
13				12" Blowback over 48" light brown fine to medium SAND with small Gravel		
14		<1				
15						
16					Penetration/Recovery: 60/36	
17						
18			SM	36" light brown fine to medium SAND with small Gravel with faint petroleum odor		
19						
20					End of Boring: Scope of Work	

	entification:	PES-B2				Page 1 of 1	
Boring Lo	ocation:	LACC UN	2 Oil Ro	F210	Date Started:	7.6.2021	
Site Addr	ess:		ranklin Street		Date Completed:	7.6.2021	
		-		assachusetts 01604	Depth to Groundwater (feet bgs):	15.4	
Project N	umber:	21-323	3856.2		Field Technician:	SWB	
	vrill Rig Type: Geoprobe Dir				PARTNER		
			core Ba	arrel	495 Old Connecticut	2880400	
	Diameter:	3.25	i i		Framingham, Massachusetts 01701		
Depth	Sample	PID	USCS	Description	Notes		
1					Penetration/Recovery: 60/50		
2							
3			SM	4" Asphalt over 6" Binder over 30" dark brown fine to medium SAND with brick, ash, coal fragments,			
				slag over 10" light brown medium to coarse SAND			
4	PES-B2-4	5.1					
5		-					
6					Penetration/Recovery: 60/56		
7							
8		3.7	SM	18" light brown medium to coarse SAND over 38" light brown fine to medium SAND			
9							
10							
11					Penetration/Recovery: 60/60		
12							
13		2.3		60" light brown fine to medium SAND			
14							
15					A		
16			8		Penetration/Recovery: 60/44		
17							
18			SM	44" light brown fine to medium SAND			
19							
20					End of Boring: Scope of Work		

Boring Ide	entification:	PES-B3	3			Page 1 of	
Boring Lo	cation:	REC #3	B Foundr	y/Rail Road Spur	Date Started:	7.6.2021	
Site Addr	0.001	274 Fr	anklin St	rreet	Date Completed:	7.6.2021	
Site Addr	ess:	Worce	ester, Ma	assachusetts 01604	Depth to Groundwater (feet bgs):	NA	
Project N	ject Number: 21-3				Field Technician:	SWB	
Drill Rig T	ype:	Geopr	obe Dire	ect Push	PARTNER		
Sampling	Equipment:	Macro	core Bar	rrel	495 Old Connecticut	Path	
Borehole	Borehole Diameter:				Framingham, Massachuse	etts 01701	
Depth	Sample	PID	USCS	Description	Notes		
1					Penetration/Recovery: 60/46		
3		<1	SM	46" black fine SAND with brick, ash, coal ash			
4							
5	PES-B3-5	1.7					
6			- [Penetration/Recovery: 60/52		
7		<1					
8			SM	52" brown fine to coarse SAND			
9							
10							
11					Penetration/Recovery: 60/50		
12							
13		<1		50" brown fine to coarse SAND			
14							
15					End of Boring: Scope of Work		

Boring Ide	entification:	PES-B4			Page		
Boring Lo	cation:	REC # 4	I Gas T	ank	Date Started:	7.6.2021	
Site Addr	000	274 Fra	anklin S	itreet	Date Completed:	7.6.2021	
site Auun	235.	Worce	ster, M	assachusetts 01604	Depth to Groundwater (feet bgs):	15.1	
Project N	umber:	21-323	856.2		Field Technician:	SWB	
Drill Rig T				ect Push	PARTNE	R	
	Equipment:	Macrocore Barrel			495 Old Connecticut		
	Diameter:	3.25			Framingham, Massachusetts 01701		
Depth	Sample	PID	USCS	Description	Notes		
1					Penetration/Recovery: 60/40		
3		<1	SM	2" Loam over 38" black fine to medium SAND with brick and coal ash			
4							
5							
6	U.	3.4			Penetration/Recovery: 60/48		
7		3237.0		10 light brown coarse SAND over 10" light brown			
8	PES-B4-8		3237.0	SM	fine SAND with faint petroleum odor over 14" grey fine SAND with strong petroleum odor over 4" light brown SAND with faint petroleum odor		
9				light brown SAND with faint petroleum odor			
10		239.0					
11					Penetration/Recovery: 60/40		
12		55.1					
13			SM	30" light brown SAND without petroleum odor over 6" brown fine SAND over 4" black fine SAND			
14							
15							
16					Penetration/Recovery: 60/60		
17							
18			SM	4" black fine SAND over 34" brown fine to medium SAND			
19							
20					End of Boring: Scope of Work		

Boring Ide	entification:	PES-B5	l			Page 1 of	
Boring Lo	cation:	REC # 5	5 Forge	Shot	Date Started:	7.6.2021	
Site Address:		274 Franklin St		itreet	Date Completed:	7.6.2021	
Site Addit	255.	Worcester, Massachusetts 01604					
Project Number:		21-323	856.2		Field Technician:	SWB	
Drill Rig T	ype:	Geopro	be Dir	ect Push	495 Old Connecticut Path		
Sampling	Equipment:	Macroo	core Ba	irrel			
Borehole	Diameter:	3.25			Framingham, Massachusetts 01701		
Depth	Sample	PID	USCS	Description	Notes		
2							
2 3 4 5		<1	SM	2" Loam over 36" brown medium SAND with brick and some GRAVEL			
3 4		<1	SM	a there are a second as the second	Penetration/Recovery: 60/42		

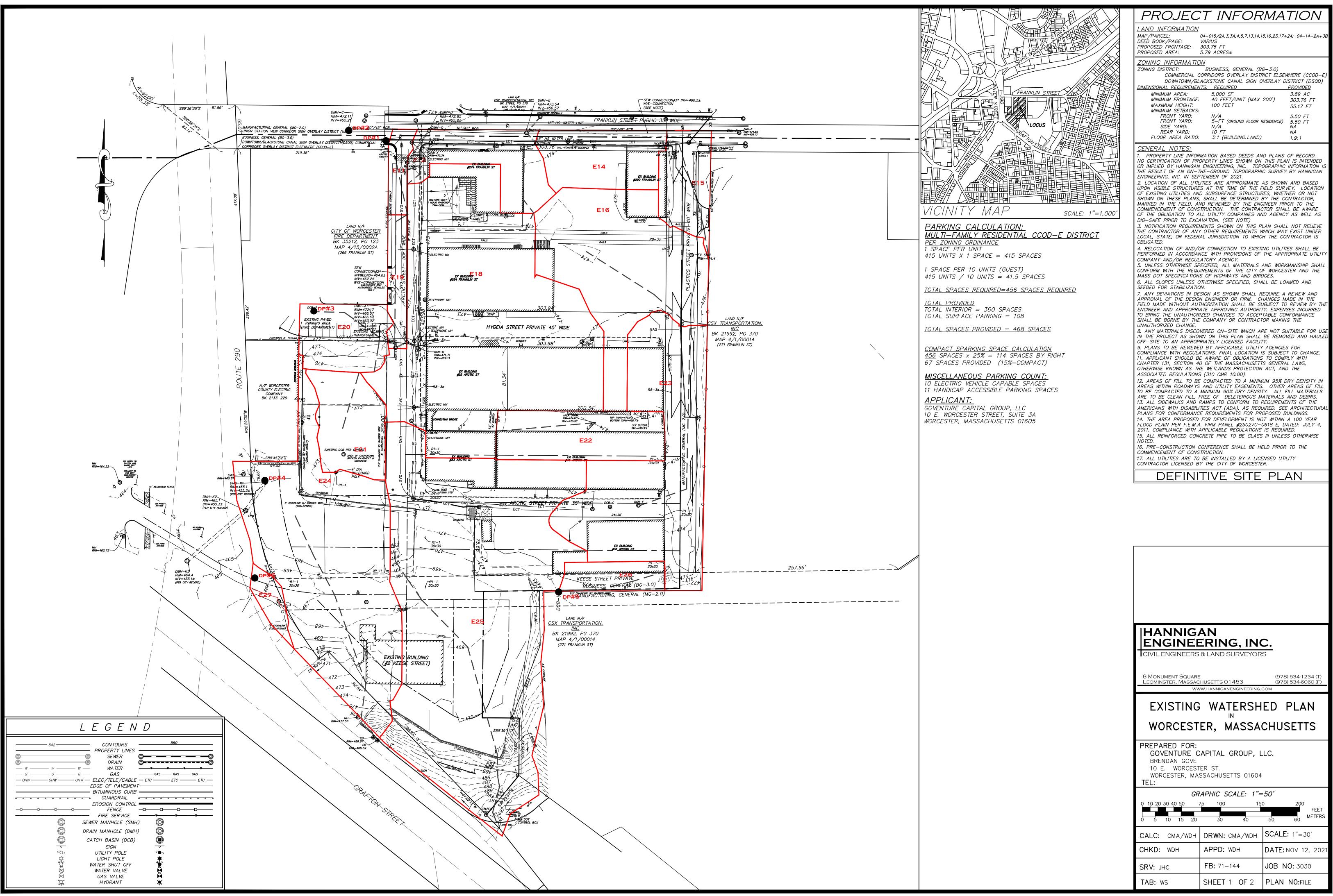
Boring Ide	entification:	PES-B6	5			Page 1 of		
Boring Lo	cation:	REC # 6 Oil Tanks		inks	Date Started:	7.6.2021		
Site Addre	'0CC'	274 Fr	ranklin S	Street	Date Completed:	7.6.2021		
site Auur	255.	Worce	ester, M	Aassachusetts 01604	Depth to Groundwater (feet bgs):	14.22		
Project N	umber:	21-32	3856.2		Field Technician:	SWB		
Drill Rig T		1.00	Carlor and	rect Push	PARTNE	ER		
	Equipment:	Macro 3.25	ocore Ba	arrel	495 Old Connecticut	2. C - C - C - C - C - C - C - C - C - C		
	orehole Diameter:				Framingham, Massachusetts 01701			
Depth	Sample	PID	USCS	Description	Notes			
1					Penetration/Recovery: 60/52			
2								
3		<1	SM	52" black fine to medium SAND with coal ash and brick				
4								
5								
6					Penetration/Recovery: 60/54			
7				6" black fine to medium SAND with coal ash and				
8			SM	brick over 16" light brown coarse SAND over 16" light brown fine SAND over 16" grey fine SAND				
9	PES-B6-9	760.1	760.1	760.1		with petroleum odor		
10				P				
11					Penetration/Recovery: 60/54			
12				10" light brown fine sand over 24" grey fine SAND				
13		54.7	SM	with petroleum odor over 14" light brown fine sand				
14								
15								
16					Penetration/Recovery: 60/60			
17								
18			SM	60" light brown fine sand				
19								
20			1	/ / / / / / / / / / / / / / / / / / / /	End of Boring: Scope of Work			

Boring Id	dentification:	PES-B7	7			Page 1 of
Boring Lo	ocation:				Date Started:	7.6.2021
Site Addr	ress				Date Completed:	7.6.2021
1		_		lassachusetts 01604	Depth to Groundwater (feet bgs):	14.25
Project N	lumber:	21-323	3856.2		Field Technician: SWB	
Orill Rig	orill Rig Type: Geoprobe Dir			ect Push	PARTNE	ER
-	g Equipment:		ocore Ba	arrel	495 Old Connecticut	8.7 4977D
	e Diameter:	3.25		1	Framingham, Massachuse	etts 01701
Depth	Sample	PID	USCS	Description	Notes	
1				/	Penetration/Recovery: 60/44	
2					1.000	
2				(
3		<1	SM	2" Asphalt over 42" black fine SAND with coal ash		
4					1	
4				//		
5						
6					Penetration/Recovery: 60/52	
				1	Feneral and the second second second	
7				1		
8		<1	SM	8" black fine SAND with coal ash and slag over 44"		
		1	5	light brown fine SAND		
9		1		la		
10						
				· · · · · · · · · · · · · · · · · · ·		
11				ſ · · · · · · · · · · · · · · · · · · ·	Penetration/Recovery: 60/52	
12				f // // // // // // // // // // // // //		
100						
13				52" light brown fine SAND		
14	PES-B7-14	<1				
15						
16					Penetration/Recovery: 60/60	
				ſ //		
17						
18			SM	60" light brown fine SAND		
10						
19				(/		
20				/	End of Boring: Scope of Work	

Boring Ide	entification:	PES-B8	3			Page 1 of 1	
Boring Lo	cation:	REC #	8 Oil Ho	ouse	Date Started:	7.6.2021	
Site Addr	0001	274 Fr	ranklin S	Street	Date Completed:	7.6.2021	
Site Auun	255.	Worce	ester, N	Aassachusetts 01604	Depth to Groundwater (feet bgs):	11.83	
Project Number:		21-32	3856.2		Field Technician:	SWB	
Drill Rig T	ype:	Geopr	obe Dir	rect Push	PARTNER		
Sampling	Equipment:	Macro	ocore Ba	arrel	495 Old Connecticut Path		
Borehole	Diameter:	3.25			Framingham, Massachusetts 01701		
Depth	Sample	PID	USCS	Description	Notes		
1 2 3		<1	SM	28" black fine to medium SAND with coal and coal ash over 8" light brown coarse SAND over 22" light brown fine SAND			
4							
5							
6		<1			Penetration/Recovery: 60/48		
7				CAND aver 10" light brown			
8			SM	16" light brown coarse SAND over 16" light brown fine SAND over 16" light grey fine SAND with faint petroleum odor			
9				peroleum ouor			
10	PES-B8-10	16.8		(
11					Penetration/Recovery: 60/44		
12							
13			SM	44" light brown fine SAND			
14							
15					End of Boring: Scope of Work		

	dentification:	PES-BS				Page 1 of
Boring Lo	ocation:	-		pur (No access to crane pit)	Date Started:	7.9.2021
Site Addr	ress:	17 33CC-31 01 0	ranklin St		Date Completed:	7.9.2021
		_		assachusetts 01604	Depth to Groundwater (feet bgs):	14.7
Project N	lumber:	21-323	3856.2		Field Technician:	SWB
Drill Rig T	Гуре:	Geopr	robe Dire	act Push	PARTNE	R
	g Equipment:		ocore Bai	rrel	495 Old Connecticut	t Path
	e Diameter:	3.25			Framingham, Massachuse	etts 01701
Depth	Sample	PID	USCS	Description	Notes	
1	PES-B9-1-2				Penetration/Recovery: 60/60	
~						
2	4					
3			SM	30" dark brown fine SAND with coal and brick fragments		
				itaginents		
4						
5					Heavy Rain no PID	
6					Penetration/Recovery: 60/48	
7						
1				A second second		
8			SM	48" light brown fine to medium SAND		
9						
9						
10					Heavy Rain no PID	
11					Penetration/Recovery: 60/52	
12						
13				52" light brown fine to medium SAND		
14						
15					Heavy Rain no PID	
16					Penetration/Recovery: 60/60	
17						
18			SM	60" light brown fine to medium SAND		
19						
					DID	
20		183	1		Heavy Rain no PID	

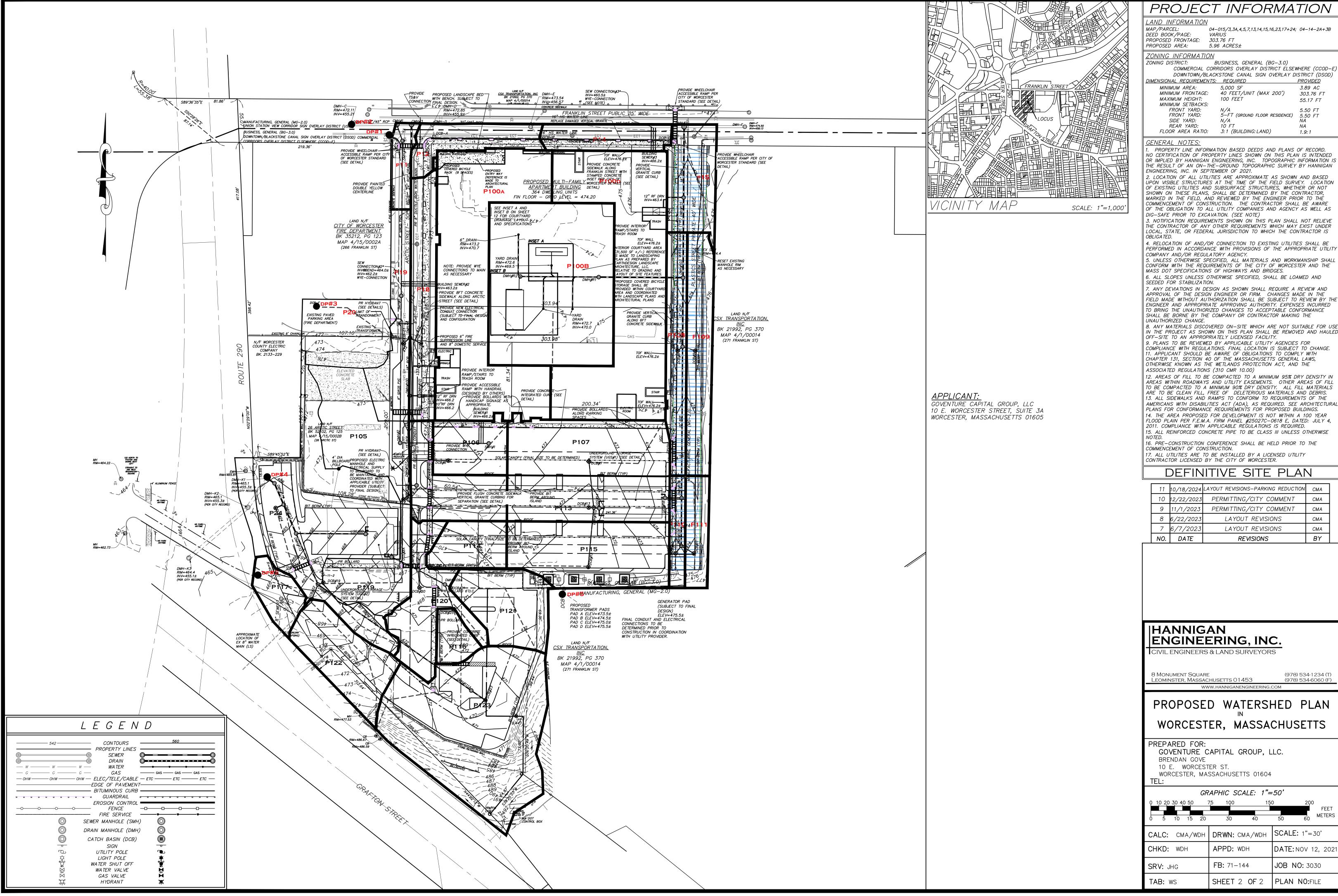
Boring Id	entification:	PES-B:	10		Page 1 c		
Boring Location:		REC #	10 Gas Reto	rts	Date Started:	7.9.2021	
Site Address:		274 Fr	anklin Stree	t	Date Completed:	7.9.2021	
Site Addr	ess:	Worce	ester, Massa	chusetts 01604	Depth to Groundwater (feet bgs): NA		
Project Number: Drill Rig Type: Sampling Equipment:		21-323	3856.2		Field Technician: SWB PARTNER 495 Old Connecticut Path		
		Geopr	obe Direct P	ush			
		Macro	core Barrel				
Borehole	Diameter:	3.25			Framingham, Massachus	etts 01701	
Depth	Sample	PID	USCS	Description	Notes		
20	NA			2" Asphalt over Concrete	End of Boring: Refusal		


Boring Id	entification:	PES-B	11					
Boring Location: REC # 10 Gas Retorts Date Started:		7.9.2021						
Site Address:		274 Fr	anklin Stree		Date Completed:	7.9.2021		
Site Addr	ess.	Worce	ester, Massa	chusetts 01604	Depth to Groundwater (feet bgs):	NA		
Project N	umber:	21-323	3856.2		Field Technician: SWB			
Drill Rig Type: Sampling Equipment:		Geopr	obe Direct P	ush	495 Old Connecticut Path			
		Macro	core Barrel					
Borehole	Diameter:	3.25			Framingham, Massachusetts 0170			
Depth	Sample	PID	USCS	Description	Notes			
20	NA			2" Asphalt over Concrete	End of Boring: Refusal			

Boring Id	oring Identification: PES-B12					Page 1 of
Boring Lo	ocation:	REC #	12 Gas Tai	ink	Date Started: 7.9.2021	
Site Address:		274 Fr	ranklin Stre	eet	Date Completed:	7.9.2021
		-		ssachusetts 01604	Depth to Groundwater (feet bgs):	15.1
Project N	umber:	21-32	3856.2		Field Technician:	SWB
Drill Rig T		A CONTRACTOR OF	robe Direct		PARTNE	ER
	g Equipment:		ocore Barre	el	495 Old Connecticut	
	Diameter:	3.25	T		Framingham, Massachuse	etts 01701
Depth	Sample	PID	USCS	Description	Notes	
1					Penetration/Recovery: 60/42	
2						
3			SM	2" Asphalt over 40" coal ash and slag		
4						
5					Heavy Rain no PID	
6					Penetration/Recovery: 60/30	
7						
8			SM	30" coal ash and slag		
9						
10					Heavy Rain no PID	
11					Penetration/Recovery: 60/22	
12						
13	PES-B12-13			22" coal ash and slag		
14						
15					Heavy Rain no PID	
16					Penetration/Recovery: 60/18	
17						
18			SM	18" coal ash and slag		
19					Heavy Rain no PID	
20		1.1			End of Boring: Scope of Work	

Boring Id	entification:	PES-B:	13			Page 1 of	
Boring Lo	ocation:	REC #	13 Rail	Road Spur / Gas Tank	Date Started: 7.6.2021		
Site Addr	'ACC'	274 Fr	anklin S	itreet	Date Completed: 7.6.2021		
		_		assachusetts 01604	Depth to Groundwater (feet bgs):	NA	
Project N	umber:	21-32	3856.2		Field Technician:	SWB	
Drill Rig 1	Гуре:	Geopr	obe Dir	ect Push	PARTNE	R	
Sampling	Equipment:	Macro	core Ba	nrrel	495 Old Connecticut Path		
Borehole	Diameter:	3.25			Framingham, Massachusetts 017		
Depth	Sample	PID	USCS	Description	Notes		
1 2				4" Asphalt over 26" black fine to medium SAND	Penetration/Recovery: 60/30		
3		<1	SM	with brick ash coal			
4							
5							
6					Penetration/Recovery: 60/30		
7							
8			SM	30" black fine to medium SAND with brick ash coal			
9							
10	PES-B13-10	<1					
11		<1			Penetration/Recovery: 60/40		
12					Wet at 12'		
13				40" brown fine to medium SAND			
14							
15	1 h				End of Boring: Scope of Work		

Boring Identification:		PES-B1	14			Page 1 c
Boring Lo	ocation:	REC # 14 Chemical & Drug Storage			Date Started:	7.9.2021
Site Address:		274 Franklin Street			Date Completed:	7.9.2021
		Worce	ster, Mas	ssachusetts 01604	Depth to Groundwater (feet bgs):	15.05
Project N	umber:	21-323	3856.2		Field Technician:	SWB
Drill Rig 1	Гуре:	Geopr	obe Direc	t Push	PARTNE	R
Sampling	Equipment:	Macro	core Barr	rel	495 Old Connecticut	Path
Borehole	Diameter:	3.25			Framingham, Massachuse	etts 01701
Depth	Sample	PID	USCS	Description	Notes	
1 2					Penetration/Recovery: 60/30	
3 4			SM	30" black fine SAND with brick coal ash		
5					Heavy Rain no PID	
6					Penetration/Recovery: 60/52	
7						
8			SM	52" black fine SAND with brick coal ash		
9						
10					Heavy Rain no PID	
11					Penetration/Recovery: 60/60	
12						
13	PES-B14-13		SM	60" black fine SAND with brick coal ash		
14						
15					Heavy Rain no PID	
16					Penetration/Recovery: 36/12	
17				12" black fine SAND with brick coal ash		
18			SM		End of Boring: Refusal	


FIGURE 2 PRE-DEVELOMPENT WATERSHED MAP

EXISTING	W	ATERSHED	PLAN
WORCESTE	R,	MASSACHU	SETTS

GRAPHIC SCALE: 1"=50'							
0 10 20 30 40 50 0 5 10 15 20	75 100 15 30 40	0 200 FEET 50 60 METERS					
CALC: CMA/WDH	DRWN: CMA/WDH	SCALE: 1"=30'					
CHKD: WDH	APPD: WDH	DATE: NOV 12, 2021					
SRV: JHG	FB: 71–144	JOB NO: 3030					
TAB: WS	SHEET 1 OF 2	PLAN NO:FILE					

FIGURE 3 POST-DEVELOMPENT WATERSHED MAP

